首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
天然河流的河道综合糙率呈现出空间上的差异性和随水位(或流量)变化的动态性,但目前缺乏相关参数化方法来定量描述河道糙率的动态变化规律。尝试通过参数化方法开展受河道植被影响显著河流的糙率反演研究,用以提升模型精度。基于植被分布将河道断面划分为若干糙率不同的子区,通过率定河道断面各分区的糙率,从而反演糙率—水位曲线。在此基础上通过分析河道植被覆盖情况与河道断面特点对糙率曲线变化的影响,推求了基于分区糙率的河道断面综合糙率计算公式,从而定量描述分区糙率与综合糙率的关系。以漓江干流为例,采用该方法率定漓江干流(大溶江至阳朔段)水动力模型。结果表明:漓江干流综合糙率随水位在0.022~0.180间变化;在1.5 m的临界水深下,断面可划分为底床植被区(n=0.210)与非植被区(n=0.006),能较好地反演糙率—水位曲线并获得理想的水位模拟效果。漓江底床植被繁茂是糙率随水位变化的根本原因,断面边滩的坡度变化是糙率与水位曲线梯度变化的主要驱动因素,两者的共同作用使得糙率随着水位呈现两段式的非线性变化。  相似文献   

2.
生态水文学:生态需水及其与流速因素的相互作用   总被引:5,自引:0,他引:5       下载免费PDF全文
本文研究涉及生态水文学中生态需水问题的一般认知。探讨了生态系统动态变化与水流驱动力因素之间的关系,重点探讨水流驱动因素中的关键指标——流速,通过分析流速与生态系统相互作用,从生态水文学动力因素出发估算生态需水;基于生态流速和水力半径,提出考虑河道内生态需水与水力因素关系的生态水力半径法,充分利用水生生物信息(鱼类产卵洄游流速)与河道信息(水位、流速、糙率等)估算河道内生态需水;归纳生态水力半径法在生态需水计算中的初步应用:考虑污染物降解耦合水量水质的生态需水计算、考虑鱼类等生物对流速要求的生态需水计算、考虑河道冲淤平衡的输沙需水量计算等方面。本文提出的生态流速研究既包括生物生长发育适宜的流速,又包括流速大小变化所涉及的许多动力因素,旨在延伸与扩展生态水文学的内涵与应用。  相似文献   

3.
为了探索宽窄相间河道的水流紊动特性,以西南地区宝兴河上游宽窄相间河段为研究对象,基于室内概化模型试验,采用多普勒声学流速仪(ADV)测量了室内模型典型断面上的三维瞬时流速,分析典型断面上的纵向时均流速、紊动强度、雷诺切应力和紊动能的分布规律。试验结果显示:宽窄相间水槽中,扩散段边壁的紊动强度大于中心区域的紊动强度,最大值位于0.2倍水深处;扩散段两侧坡脚处紊动能最大;侧壁区的平面和立面雷诺切应力最大值出现在扩散段内,中心区域最大雷诺切应力位于两槽间的中间断面处;扩散段内水流紊乱,两侧出现旋涡和涡脱,易造成侧壁侵蚀加强,引起河道拓宽。深入分析了宽窄相间河道水流的紊动特性,可为山区河流治理和自然灾害防治提供参考。  相似文献   

4.
本文研究涉及生态水文学中生态需水问题的一般认知。探讨了生态系统动态变化与水流驱动力因素之间的关系,重点探讨水流驱动因素中的关键指标—流速,通过分析流速与生态系统相互作用,从生态水文学动力因素出发估算生态需水;基于生态流速和水力半径,提出考虑河道内生态需水与水力因素关系的生态水力半径法,充分利用水生生物信息(鱼类产卵洄游流速)与河道信息(水位、流速、糙率等)估算河道内生态需水;归纳生态水力半径法在生态需水计算中的初步应用:考虑污染物降解耦合水量水质的生态需水计算、考虑鱼类等生物对流速要求的生态需水计算、考虑河道冲淤平衡的输沙需水量计算等方面。本文提出的生态流速研究既包括生物生长发育适宜的流速,又包括流速大小变化所涉及的许多动力因素,旨在延伸与扩展生态水文学的内涵与应用。  相似文献   

5.
《地下水》2017,(4)
河道糙率是反映河流阻力的综合性系数,也是衡量河流能量损失大小的特征值。天然河道糙率一般由河道各种糙率单元综合组成。河道糙率是河道工程水力计算中的重要因素,关系到天然河道输水能力和行洪标准的确切评价。南运河处于漳卫南运河水系的最下游,河道全长309 km,是历史上京杭大运河的下段,也是引黄、引江南水北调东线方案的输水干线。通过对南运河畅流期及冰期糙率进行计算,并对畅流期与冰期糙率变化规律进行研究。结果表明,在畅流期,流量不同时,随着流量的增大,河道糙率逐渐变小。当增大至滩地过水(120 m3/以上)的情况下,河道糙率又有所增大。冰期河道糙率与期畅流期相比,冰盖下输水糙率值明显增大。研究河道畅流期与冰期糙率的变化规律,对南运河冰期输水监测具有指导意义。  相似文献   

6.
作为河、湖以及滨海湿地生态系统中必不可少的组成部分,水生植被具有重要的生态服务价值,且许多生态服务价值是通过改变水体动力条件实现的。含植被水流研究不仅可用于科学阐明水生植被的生态环境效应,还能指导河湖生态系统修复及污染治理的工程实践。本文考虑单向明渠流与波浪2种水动力环境,对国内外有关水生植被对水流结构以及泥沙运动影响研究的主要成果进行梳理。单向明渠流条件下,植被对水动力的影响研究主要集中于植被对水流阻力的影响以及冠层内水体的紊动结构与紊动尺度特征;波浪条件下,植被对波高与波浪流速的减弱作用以及冠层内水体的时均与紊动结构特征是研究重点。受水动力条件控制,植被影响下的泥沙运动特征也受到广泛关注,且研究焦点为单向明渠流条件下水生植被对泥沙起动与输移的影响以及波浪条件下植被对床底泥沙再悬浮的影响。  相似文献   

7.
山区型河道一维水力数值模拟糙率确定方法   总被引:3,自引:0,他引:3  
韩龙喜  朱羿  蒋莉华 《水文》2002,22(6):16-18,62
糙率参数取值是河道水流一维数值模拟的关键技术。山区型河道因河势变化急剧而产生的局部阻力对水流流态影响较大。根据山区型河道的水力特性,提出了综合反映子河段内河底切力及局部阻力的综合糙率的确定方法,并通过算例对该方法进行了测试,取得了预期的效果。该方法使得水流一维数值模拟时的计算子河段划分趋于方便,同时对于缺少历史观测资料的河道糙率参数的确定,提供了一种新的方法。  相似文献   

8.
一、问题的提出在推算河流洪水流量时,糙率是一个重要的参数,现在一般是利用糙率表或调查河段的实测流量及水面线资料反算糙率。由于目前还不可能从水流能量损失的物理成因去推求糙率,从宏观来看,在决定河床糙率的因素中,除了河流的平面形态、河床组成及岸壁特征这些基本因素以外,影响糙率的主要因素是河槽的水力条件,这一点已为整编的实测资料所证实,在所描述的80组糙率数值中,糙率与水深可呈正向、反向、常数或弓形四种不同的关系,其中只有2组糙率与水深为常数  相似文献   

9.
赵庆奎 《地下水》2011,(1):176-177,181
简略回顾了糙率研究的历史状况,收集山西44个水文站的实测水文资料分析后,认为影响河道糙率的主要因素是河床质组成、岸壁特征、植被状况和水流的平面形态,宽深比对糙率有影响,而比降、含沙量、流域面积大小对糙率没有影响.之外,断面上下游河道的地形、地貌和障碍物决定糙率曲线线型的变化.  相似文献   

10.
综合糙率是采用曼宁公式确定河道水位和流量关系的关键参数。在河道冰封期,冰盖的出现增加了流动的阻力,明流条件下确定的综合糙率不再适用,需要重新估算。基于Einstein阻力划分过流断面的原理,冰盖下矩形河道的过水断面可划分为冰盖区、河床区和边壁区。根据总流的连续性方程,在确定各分区糙率系数、水力半径和断面面积的基础上,提出了冰盖下矩形河道综合糙率的计算公式。采用已有的试验水槽测量数据和天然河道实测资料对公式进行了验证,结果表明:公式计算的综合糙率与实测值吻合较好,与Einstein公式和Sabaneev公式相比,计算精度更高;对于冰封水流,宽浅河道采用分区水深代替水力半径进行简化计算的条件有别于明渠水流,在宽深比大于20时,计算结果才满足精度要求。  相似文献   

11.
Manning’s roughness coefficient is one of the most important parameters in establishing the plan, design, operation, and maintenance of the water resource projects for hydraulic engineers, and since the worth of this value has a significant effect on the analysis of the water level and flow rate distribution, it is very important to carry out the calculation of flood stage, design of the stream/river structure, and safety assessment of the stream. Due to the importance of these factors, the calculation of objective and quantitative roughness coefficient has long drawn attention from researchers at home and abroad. Many studies have been conducted to estimate the roughness coefficient based on the actual measurements for various types of streams, such as gravel and sand streams, and many others have produced experience equation for various levels of materials and relative depth. Despite many of these efforts, the roughness coefficient uses constant values when applied to the actual model or real design. This application is a major source of error in simulating flood and unsteady flow. To solve these problems, good results were obtained by attempting to calculate the roughness coefficient applied with the entropy concept in open-channel flow. In particular, the proposed roughness coefficient based on the measurements taken from laboratories under conditions showed very similar to the actual stream flow which was found to be about the same as the value from the unsteady flow. Accordingly, the newly developed roughness coefficient equation, which is the result of this study, is a very practical one formula that can be applied to the flood flow of real natural streams. It can also be used as an alternative to make up for the disadvantages of the Manning’s roughness coefficient.  相似文献   

12.
陈界仁  曹淼 《水科学进展》2003,14(6):696-699
在坡面土壤侵蚀输沙计算中,可选用的输沙能力模式较多,但这些模式多运用于恒定输沙,在非恒定输沙中运用不多。建立了坡面土壤侵蚀非恒定输沙数学模型,模型中的输沙能力运用水流切应力、水流功率、单位水流功率3种模式,对模型过程采用有限差分格式离散求解。根据实测水沙资料进行模型参数率定,运用3种输沙能力模式于不同降雨强度、不同坡度的非恒定坡面输沙过程中。结果表明:在坡面非恒定输沙计算中,不同输沙能力模式对计算结果有明显影响,在降雨强度较小时,单位水流功率模式结果较其他两个模式为好,而在雨强较大时,切应力模式计算结果较好。  相似文献   

13.
刘杰  李建林  胡静  蔡健  赵宗勇 《岩土力学》2014,35(8):2163-2170
采用宜昌劈裂砂岩,在有、无砂岩填充条件下,分别从轴压、围压、劈裂面面积、凹凸高差、迹线长度、劈裂面2D投影面积、进出口长度、结构面粗糙度对渗流量的影响规律进行了对比分析。研究结果表明:有、无砂粒填充下轴压与渗流量均呈线性递增关系;无填充时围压与渗流量呈对数递减关系,有充填时围压与渗流量呈线性关系;无充填时渗流量与流面积呈三次函数关系,而充填后过流面积对渗流量几乎无影响;凹凸高差、2D面积与渗流量的关系也有相似规律,分析认为,这主要是砂粒充填后带来的过流通道要远大于上述三因素对过流通道的改变;无充填时,渗流量随迹线长度线性递减,有填充时该规律被淹没;无论有、无填充,渗流量与过流面粗糙度系数在一定范围内均呈现二次函数关系。这些规律能指导渗流测量时各因素的优先次序,可有效减少对次要影响因素的测量工作,同时可对渗流的数值模拟提供参考。  相似文献   

14.
河流-含水层系统数值模拟方法探讨   总被引:5,自引:0,他引:5  
潘世兵  王忠静  邢卫国 《水文》2002,22(4):19-21
地表水与地下水转化量的模拟预测一直是区域水资源评价和管理中的难题。提出了一种基于河流越流系数的处理方法,即将转化量计算模型同三维地下水数值模型完全耦合,能够预测在有人工干预条件下,地表水与地下水转化量的变化趋势。提出的方法适合多含水层系统的情形。实例研究表明,提出的河流-含水层系统模拟方法原理简单,易于实现,可以推广应用。  相似文献   

15.
地下水与河水相互作用的研究进展   总被引:8,自引:3,他引:8  
本文从地下水与河水的水流形态和水位动态变化 ,分析了二者的补排关系 ;详细介绍了地形地貌、水文地质、气候和人为因素等对地下水与河水相互作用的影响 ;综述了研究地下水与河水相互作用的研究方法 ,如野外实验和室内实验方法、动态资料分析方法、基流切割方法、水化学方法、地下水动力学方法等 ;评述了研究河流与含水层相互作用的解析模型和数值模型的发展状况。最后 ,指出多种方法的相互验证、数学模型中补排量和边界的处理、地下水与河水交错带的研究、河流与含水层相互作用的生态意义、加强相关学科的交流与合作将是未来的发展方向。  相似文献   

16.
以流线、流面、汇点的概念为基础,对稳定流双井干扰和直线隔水边界附近涌水量理论公式进行对比分析,提出了二个虚拟界面,其中虚拟界面Ⅰ,运用流线、流面的性质,流线方程等给出证明;虚拟界面Ⅱ则通过半无限条形降落漏斗的分析,应用元流和总流的能量方程得到流量为零,流线为零的平面。在同样条件下,条形无限涌水量是半无限潜含水层涌水量的二倍。应用总流能量方程对三种情况水头损失的分析,解释了这种关系存在的合理性,得出虚拟界面Ⅱ,并以此得出该界面内的最大残余水头计算公式。将基坑降水运用虚拟界面简化为扇形,条形半无限含水层,从而实现单井预测,该方法应用到昊华水泥厂基坑降水中,预测效果理想。  相似文献   

17.
平原河网区域来水组成原理   总被引:1,自引:0,他引:1  
朱琰  陈方  程文辉 《水文》2003,23(2):21-24
对于一般树状分布河网,上一级河道总是汇入至下一级河道,位于河道下游断面的流量总是由其上游汇集而至。但对于平原河网地区,特别是人工控制建筑物众多,又受潮汐影响的地区(如太湖流域),河网错综复杂,水流方向不定,要跟踪某个断面的水流去向,或某个河段的水体、断面流量是从哪里汇集而来的,非常困难。但这样的问题在生产实践中往往对其很感兴趣。例如从常熟枢纽引长江水流进入望虞河后,流向何处?河网各断面流量中或各河段水体中常熟枢纽引江水量占多少比重?对这些问题的研究可以估计常熟枢纽引江的效果和影响范围。因此,平原河网区域来水组成方法在生产实践中具有重要意义。重点介绍了平原河网区域来水组成原理及其在太湖流域的应用。  相似文献   

18.
浅水流动阻力特性的试验研究   总被引:1,自引:0,他引:1  
为研究浅水流动的阻力特性,专门设计了一个试验模型,其规模较大,测量设施齐全。通过多种流量和加糙条件的试验得出:加糙密度将直接影响水流的阻力,小流量时的阻力系数变化明显,随流量的加大,加糙的影响逐渐减弱;阻力系数随相对粗糙度的加大而增加,不受流量变化的影响;表面流速分布均匀,其平均值与断面平均流速相关性良好。  相似文献   

19.
黄土缓坡片蚀过程及其水力参数适宜性试验研究   总被引:3,自引:0,他引:3       下载免费PDF全文
为确定黄土缓坡片蚀过程中侵蚀限制条件的变化及水力参数的适宜性,采用模拟降雨试验,在60 mm/h雨强、3种坡度(7.5°、10°、15°)和2种坡长(5 m和10 m)条件下,验证含沙量作为表征参量判定片蚀过程侵蚀限制条件的可行性,提出检验水力参数与产沙量作用关系适宜性的评价方法。结果表明:①依据含沙量随径流的变化规律,片蚀过程依次经历输沙能力限制阶段、剥蚀能力限制阶段Ⅰ和剥蚀能力限制阶段Ⅱ共3个侵蚀阶段,其中剥蚀能力限制阶段Ⅰ的侵蚀量占绝对优势。②从水力参数的适宜性来看,径流功率和雷诺数均能很好地表征与产沙量的关系,径流剪切力和弗劳德数则不能有效反映与产沙量的关系。③在不同侵蚀限制阶段,径流功率和雷诺数与产沙量的作用关系是不同的。输沙能力限制阶段和剥蚀能力限制阶段Ⅱ时,径流功率和雷诺数与产沙量分别呈指数关系和线性正相关关系;剥蚀能力限制阶段Ⅰ时,该2种水力参数均与产沙量呈线性负相关关系,但作用关系不唯一,且存在雷诺数临界值,即在输沙能力限制阶段和剥蚀能力限制阶段Ⅱ,径流功率和雷诺数与产沙量的作用关系不受坡长效应影响;在剥蚀能力限制阶段Ⅰ,需要同时考虑坡长和雷诺数临界值的共同影响。该研究结果可为深入理解片蚀过程的复杂性提供参考依据。  相似文献   

20.
流动型态对曼宁糙率系数的影响研究   总被引:7,自引:0,他引:7  
何建京  王惠民 《水文》2002,22(6):22-24,53
根据明渠水流流动型态的概念,通过对实验资料的分析,得到均匀流时糙率系数随水深增加而减小,形成M1型水面线的非均匀流时糙率系数随水深、水力坡度的增大而增大的规律。提出的糙率系数的二步计算法,可以解决因非均匀流水深沿程变化,难以建立糙率系数与水深关系的困难,为在水力计算中修正糙率系数提供了依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号