首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anisotropy of magnetic susceptibility (AMS) represents a valuable proxy able to detect subtle strain effects in very weakly deformed sediments. In compressive tectonic settings, the magnetic lineation is commonly parallel to fold axes, thrust faults, and local bedding strike, while in extensional regimes, it is perpendicular to normal faults and parallel to bedding dip directions. The Altotiberina Fault (ATF) in the northern Apennines (Italy) is a Plio-Quaternary NNW–SSE low-angle normal fault; the sedimentary basin (Tiber basin) at its hanging-wall is infilled with a syn-tectonic, sandy-clayey continental succession. We measured the AMS of apparently undeformed sandy clays sampled at 12 sites within the Tiber basin. The anisotropy parameters suggest that a primary sedimentary fabric has been overprinted by an incipient tectonic fabric. The magnetic lineation is well developed at all sites, and at the sites from the western sector of the basin it is oriented sub-perpendicular to the trend of the ATF, suggesting that it may be related to extensional strain. Conversely, the magnetic lineation of the sites from the eastern sector has a prevailing N–S direction. The occurrence of triaxial to prolate AMS ellipsoids and sub-horizontal magnetic lineations suggests that a maximum horizontal shortening along an E–W direction occurred at these sites. The presence of compressive AMS features at the hanging-wall of the ATF can be explained by the presence of gently N–S-trending local folds (hardly visible in the field) formed by either passive accommodation above an undulated fault plane, or rollover mechanism along antithetic faults. The long-lasting debate on the extensional versus compressive Plio-Quaternary tectonics of the Apennines orogenic belt should now be revised taking into account the importance of compressive structures related to local effects.  相似文献   

2.
Analysis of anisotropy of magnetic susceptibility (AMS) and brittle mesostructures (hydroplastic synsedimentary faults and tension gashes) is applied in this study in order to characterize the Mesozoic tectonic events in the Cameros basin (NW Iberian Range), formed between Tithonian and Albian times. Low-field AMS at room and low temperature (LF-AMS at RT and LF-AMS at LT, respectively) together with high-field AMS (HF-AMS) measurements allow separating ferro- and paramagnetic fabrics. The combination of LF-AMS at LT and HF-AMS torque measurements confirms the reliability of both procedures in terms of isolating the paramagnetic contribution to the AMS. Magnetic fabric results combined with the analyses of synsedimentary faults indicate a NW–SE extension direction during Aptian (and probably Barremian) times. This extension direction is perpendicular to the main extension direction (NE–SW) prevailing during early and late stages of basin evolution. It is also consistent with extension direction deduced from large-scale bending folds and tension gashes, developed after partial lithification. Cleavage development during Albian enhanced the orientation of the magnetic fabric in lithologies where the previous extensional magnetic lineation is coaxial with the expected one for compression.  相似文献   

3.
In this work we analyse and check the results of anisotropy of magnetic susceptibility (AMS) by means of a comparison with palaeostress orientations obtained from the analysis of brittle mesostructures in the Cabuérniga Cretaceous basin, located in the western end of the Basque–Cantabrian basin, North Spain. The AMS data refer to 23 sites including Triassic red beds, Jurassic and Lower Cretaceous limestones, sandstones and shales. These deposits are weakly deformed, and represent the syn-rift sequence linked to basins formed during the Mesozoic and later inverted during the Pyrenean compression. The observed magnetic fabrics are typical of early stages of deformation, and show oblate, triaxial and prolate magnetic ellipsoids. The magnetic fabric seems to be related to a tectonic overprint of an original, compaction, sedimentary fabric. Most sites display a NE–SW magnetic lineation that is interpreted to represent the stretching direction of the Early Cretaceous extensional stage of the basin, without recording of the Tertiary compressional events, except for sites with compression-related cleavage.Brittle mesostructures include normal faults, calcite and quartz tension gashes and joints, related to the extensional stage. The results obtained from joints and tension gashes show a dominant N–S to NE–SW, and secondary NW–SE, extension direction. Paleostresses obtained from fault analysis (Right Dihedra and stress inversion methods) indicate NW–SE to E–W, and N–S extension direction. The results obtained from brittle mesostructures show a complex pattern resulting from the superposition of several tectonic processes during the Mesozoic, linked to the tectonic activity related to the opening of the Bay of Biscay during the Early Cretaceous. This work shows the potential in using AMS analysis in inverted basins to unravel its previous extensional history when the magnetic fabric is not expected to be modified by subsequent deformational events. Brittle mesostructure analysis seems to be more sensitive to far-field stress conditions and record longer time spans, whereas AMS records deformation on the near distance, during shorter intervals of time.  相似文献   

4.
The origin of dome-and-keel structural geometries in Archean granite–greenstone terrains appears to lack any modern analogues and is still poorly understood. The formation of these geometries is investigated using structural and anisotropy of magnetic susceptibility (AMS) data for the Chinamora batholith in Zimbabwe. The roughly circular-shaped batholith is surrounded by ca. 2.72–2.64 Ga greenstones. The batholith granitoid suites have been divided on the basis of their ages and fabric relationships into four distinct units: (i) banded basement gneisses; (ii) granodioritic gneisses; (iii) equigranular granites; and (iv) central porphyritic granites. In the gneissic granites a partial girdle (N–S) of poles to the magnetic foliation is developed that has been folded around a consistent, flat lying magnetic lineation plunging at shallow angles to the E or W. In the equigranular granites, the magnetic lineation generally plunges to the NW. The magnetic foliation has a variable strike, no clear trends can be distinguished. The AMS measurements of the porphyritic granite revealed a NW–SE striking foliation and showed subhorizontal magnetic lineations. The magnetic foliation is subparallel to the macroscopic foliation. Wall rocks are moderately inclined and show radial or concentric lineations, triaxial strain ellipsoids and kinematics that demonstrate off-the-dome sliding and coeval pluton expansion. The results of the observations do not point to a single emplacement process. Neither the observed structural data nor the magnetic fabric support a model envisaging spherically ‘ballooning’. It is argued that pluton diapirism played a major part in the formation of the fabrics in the gneisses, whereas the fabrics in the porphyritic granites reflect emplacement as laccolith-like sheets.  相似文献   

5.
The aim of this paper was to provide a significant case‐history concerning the evolution of a segmented system of extensional faults and related basins, investigated by a set of seismic reflection profiles. We investigated two kinematically linked semi‐grabens, developed at the hangingwall of two opposite‐dipping normal faults: the Vallo di Diano and Auletta basins, located in the southern Apennines, one of the most seismically active regions of the Italian peninsula. Our interpretation suggests that the Pliocene–Quaternary tectonic history consists of a single extensional phase, where the major NW–SE trending normal faults, generating the basins, and the strike‐slip and transtensional faults connecting adjacent normal fault segments, simultaneously act, being part of the same extensional system. We also conclude that major normal faults, bordering the basins, should be considered as potential seismogenic sources in the seismic hazard evaluation.  相似文献   

6.
During the Cretaceous, the South China Block (SCB) experienced a widely distributed extensional event including numerous plutons emplacement and basin opening. Investigations on the tectonic regime coeval with pluton emplacement, and emplacement mechanism of the pluton remain relatively rare in the SCB. In order to address these questions, a multidisciplinary approach, including field structural and petrographic observations, anisotropy magnetic susceptibility (AMS) and paleomagnetic analyses, was carried out on the Qingyang–Jiuhua granitic massif which intrudes into the Lower Yangtze fold belt in the northeastern part of the SCB. The Qingyang–Jiuhua massif is composed of the granodioritic Qingyang and monzogranitic Jiuhua plutons dated by zircon U–Pb method at ca. 142 Ma, and ca. 131 Ma, respectively. Our structural observations show that the intrusion of the Qingyang–Jiuhua massif does not modify the fold strike. A weak ductile deformation of the country rocks and granitoid can be only observed in the boundary zone with limited contact metamorphism. In the contact aureole of the massif, the foliation follows the pluton contour, and the mineral lineation is rare. When present, it exhibits a down-dip attitude. Field and microstructural observations indicate isotropic magmatic textures in most parts of the massif. The AMS analysis of 93 sites reveals weak values for the anisotropy degree (PJ < 1.2) and oblate magnetic fabric dominance (T > 0) for most of the measured samples. Two principal foliation patterns are identified: horizontal foliations in the center of the plutons, and vertical foliations on the boundaries. Magnetic lineation strike is largely scattered, and weakly inclined at the scale of the entire massif. The paleomagnetic investigations indicate that (a) the younger Jiuhua pluton did not produce a remagnetization in the older Qingyang pluton, (b) no relative movement can be observed between these two plutons, (c) the entire massif did not experience any important relative movement with respect to South China, considering the paleomagnetic uncertainties. Integrating the newly obtained results with previous observations, our study favors a permissive emplacement mechanism for the two plutons, i.e. vertical magma intrusion into an opening space controlled by the NW–SE brittle stretching of the upper crust, which is in agreement with a weak extensional regional tectonic framework of the SCB.  相似文献   

7.
The tectonic evolution of the Mt Amiata volcano-geothermal area is under discussion. Some authors state that this region, as well as the hinterland of the Northern Apennines, were affected by compression from the Cretaceous to the Quaternary. In contrast, most authors believe that extension drove the tectonic evolution of the Northern Apennines from the Early Miocene to the Quaternary. Field data, seismic analyses and borehole logs have been integrated in order to better define the structural features of the continental crust in the Mt Amiata geothermal area. In this paper I propose the hypothesis that the structure of the crust in the Mt Amiata volcano-geothermal area derives from two main geological processes: (1) contractional tectonics related to the stacking of the Northern Apennines (Cretaceous–Early Miocene), (2) subsequent extensional collapse of the hinterland of the mountain chain, and related opening of the Northern Tyrrhenian Sea (Early Miocene–Quaternary). Compressional and extensional structures characterise the Mt Amiata region, although extensional structures dominate its geological framework. In particular the extension produced: (a) Middle-Late Miocene boudinage of the previously stacked tectonic units; (b) Pliocene–Quaternary normal faulting which favoured the emplacement of a magmatic body in the middle-upper crust; and (c) the eruption of the Mt Amiata volcano, which gave rise to an acid and intermediate volcanic complex (0.3–0.19 Ma). The extension produced the space necessary to accommodate the Middle-Late Miocene marine and continental sediments. Pliocene and Quaternary normal and transtensional faults dissected the previous structures and influenced the Early Middle Pliocene marine sedimentation within the structural depressions neighbouring the Mt Amiata volcano. The magmatic body was emplaced at depth (about 6–7 km) during the Pliocene extension, and produced the eruption of the Mt Amiata volcano during the Late Pleistocene. This gave rise to local uplift, presently reaching about 3,000 m, as well as a negative Bouguer anomaly (−16 mgal), both centred on the Mt Amiata area. The crustal dome shows a good correspondence with the convex shape of the regional seismic marker known as the K-horizon, which corresponds to the 450°C isotherm, and the areas with greatest heat flow. This is probably a consequence of the above-cited magmatic body presently in the process of solidification. A Late Pleistocene eruption occurred along a crustal fissure striking N50° (Mt Amiata Fault), which crosscuts the crustal dome. Hydrothermal circulation, proven by the occurrence of thermal springs and gas vents (mainly CO2 and H2S), mainly occurs along the Mt Amiata Fault both in the northeastern ans southwestern sides of the volcano.  相似文献   

8.
The magnetic fabric of Late Miocene sediments from the southern Pannonian basin was studied on oriented samples collected from 19 geographically distributed localities. All of them are characterized by near-horizontal magnetic foliation plane after tilt correction, indicating weak deformation. Well-developed lineations were observed for 16 localities, which are interpreted as due to compressional/transpressional deformation, except from three localities, where the fabric must have been formed in an extensional setting. Comparison between the orientation of the map-scale folds and faults and magnetic lineation directions shows that magnetic lineation is either related to NNE-SSW directed compression, leading to the formation of folds or it can be connected to NW–SE or NNE-SSW trending dextral faults.  相似文献   

9.
Geological mapping coupled with structural investigations carried out in the Voltri Massif (eastern Ligurian Alps, Italy) provide new data for the interpretation of the tectonic context controlling main fabric development during exhumation of its high-pressure core. The Voltri Massif is here interpreted as a c. 30 km-long eclogite-bearing, asymmetric dome formed by the progressive verticalisation of the regional, second-phase mylonitic foliation developed during retrogressive greenschist metamorphic conditions. In this light, the exhumation history is driven by a ductile-to-brittle extensional process, operating through low-angle, top-to-the-W multiple detachment systems. A Late Eocene–Early Oligocene age for this extensional episode is proposed on the basis of structural correlations, stratigraphic and radiometric constraints. In this scenario, the Voltri Massif is interpreted as an extensional domain developed to accommodate the Late Eocene–Early Oligocene arching of the Western Alps–Northern Apennines orogenic system.  相似文献   

10.
11.
Abstract

The fabric and the anisotropy of magnetic susceptibility of the Cabo Ortegal eclogite (NW Spain) are studied. These mafic rocks were metamorphosed and deformed under high pressures and temperatures between 390 and 370 Ma in a subduction/collision tectonic setting. Massive eclogite slices and deformed eclogite in shear zones have bulk magnetic susceptibilities of 31 to 82·10?5 S.I. and 28 to 75·10?5 S.I., respectively. The paramagnetic mineral fraction is the principal magnetic susceptibility carrier. This fraction includes notably garnet and clinopyroxene as matrix minerals, and ilmenite and rutile as accessory constituents. Though magnetic anisotropy degree varies between 3.1 % and 6.6 %, variations of this parameter in each rock type are marked. In the deformed eclogite, magnetic lineation (Kmax) and the pole to the magnetic foliation (Kmin) are coaxial and coincident with macroscopic petrofabric elements (foliation and lineation). In the massive eclogite, the magnetic fabric is dispersed along the principal structural planes and inversions are associated with samples with small degrees of anisotropy. The anisotropy of magnetic susceptibility is interpreted as being due to the crystallographic preferred orientation and spatial organisation of the polymineralic aggregate. Relating the evolution of the symmetry of magnetic fabric to the symmetry of petrofabric or deformation is rather precluded since susceptibility has multiple origins and bulk magnetic fabric is due to minerals of different symmetry. © Elsevier, Paris  相似文献   

12.
A combined sedimentological, shape-preferred orientation and anisotropy of magnetic susceptibility (AMS) analysis has been performed at the Arroyofrío Bed (Callovian–Oxfordian boundary level) in the locality of Moneva (Iberian Range, NE Spain). The Arroyofrío bed is a widespread iron-ooid limestone interval forming a condensed sequence. The present study has focused on the analysis of the potential presence of a preferred ooid orientation at the Arroyofrío bed. The obtained data show that ooids were originally ellipsoidal and had an imbricate disposition with respect to the bedding/lamination surface. The main ooid orientation within the bedding plane shows a NNE–SSW trend. Results of AMS analyses show a magnetic foliation parallel or slightly imbricated with respect to bedding and magnetic lineation parallel to the main ooid orientation. Magnetic mineralogy of studied samples shows that AMS is mainly controlled by magnetite with minor contributions of hematite and paramagnetic minerals (that can reach contributions of 35 %). The analyzed ooids show axial ratios between 1.4 and 2.8 (intrinsic anisotropy), while the anisotropy of their distribution shows lower anisotropies (e.g., Rs = 1.15) or very low values of the anisotropic magnetic parameters (e.g., P′ < 1.01). Sedimentary texture, matrix features, bioturbation and fossil content influenced both ooid main orientation and the magnetic fabric. Magnetic lineation and main orientation of long ooid axes are transverse to the inferred coastline in the studied area and parallel to the expected paleocurrent direction with respect to the Ejulve-Maestrazgo paleogeographic high. The direct correlation between AMS magnetic lineation and the ooid analysis permits to demonstrate that the paleocurrent imprint can be recorded by means of AMS despite the highly ferromagnetic context fabric and at coarse deposits. Obtained results support the interest and reliability of AMS to unravel paleocurrent imprints for paleogeographic reconstructions.  相似文献   

13.
The aim of this work is to study the Anisotropy of the Magnetic Susceptibility (AMS) in two Jurassic–Cretaceous synclines located in the northern border of the Central High Atlas (Morocco): the Aït Attab and Ouaouizaght basins. AMS is used in order to obtain the magnetic fabric and its relationship with the kinematic evolution of both basins. The tectonic evolution of the basins, still under discussion, is mostly considered as the result of inversion during Tertiary and perhaps since Bathonian, of extensional and/or strike-slip Jurassic basins. Both basins are filled with Upper Jurassic to Lower Cretaceous silts and sandstones, with less frequent marine marly limestones.The bulk magnetic susceptibility (km) generally shows higher values in the red facies (163.2 E−6 in AT and 168.6 E−6 in WZ) than in the yellowish marly limestones (97.88 E−6 in AT and 132 E−6 in WZ). Most sites show an oblate magnetic fabric. The rock magnetic analyses indicate that the main carrier of the magnetic susceptibility for the red facies is hematite, whereas in the yellowish facies there is a dominance of paramagnetic minerals. In both basins, the magnetic lineation (long axis of the ellipsoid, kmax axes) shows a predominant E–W direction. The overlapping of the stress fields during the Atlasic basins evolution, in both compressional and extensional regimes and hinder the straightforward interpretation of the magnetic fabrics. However, a coeval N–S compression during the times of sedimentation with an E–W transtension can explain the magnetic lineation found in many of the sites analyzed in the present work. There are also other less frequent directions of kmax axes (NE–SW and NW–SE) are interpreted as the result of local change of the stress field during the early extensional stage of basin formation.  相似文献   

14.
Granitoids play an important role in deciphering both crustal growth and tectonic evolution of Earth. In the eastern end of the Yinshan–Yanshan belt of North China Craton, the Yiwulüshan massif is a typical region that presents the tectonic evolution features of this belt. Our field work on the host rocks has demonstrated two phases of opposite tectonics: compressional and extensional, however, the deformation is almost invisible in the intrusive rocks. To improve the understanding of the tectonic evolution of the Yiwulüshan massif and the Late Mesozoic tectonics of East Asia, a multidisciplinary study has been carried out. In this study, anisotropy of magnetic susceptibility (AMS) and gravity modeling have been applied on these Jurassic plutons (Lüshan, Jishilazi and Guanyindong), which intrude into the Yiwulüshan massif. According to laboratory measurements and microscopic observations on thin sections, the AMS of the Yiwulüshan massif is characterized by secondary fabrics, indicating that the intensive post solidus deformation has reset the (primary) magmatic magnetic fabrics. A relatively gentle NW dipping magnetic foliation has been identified with two distinct groups of magnetic lineations of N34°E and N335°E orientations, namely LM1 and LM2, relatively. Gravity modeling reveals a southward thinning of the massif with a possible feeding zone rooted in the northern part of the massif. Integrating all results from structural observation, geochronological investigation, AMS measurement and gravity modeling, two tectonic phases have been identified in the Yiwulüshan massif, posterior to the Jurassic (180–160 Ma) magmatism in the Yinshan–Yanshan area. The early one concerns a Late Jurassic–Early Cretaceous (~ 141 Ma) compressional event with a top-to-the-south to southwest sense of shear. The second one shows an Early Cretaceous (~ 126 Ma) NW–SE ductile extensional shearing. At that time, sedimentary basins widened and Jurassic plutons started to be deformed under post solidus conditions. In fact, the NW–SE trend of the maximum stretching direction is a general feature of East Asian continent during Late Mesozoic.  相似文献   

15.
The easternmost part of the Neoproterozoic Araçuaí belt comprises an anatectic domain that involves anatexites (the Carlos Chagas unit), leucogranites and migmatitic granulites that display a well-developed fabric. Microstructural observations support that the deformation occurred in the magmatic to submagmatic state. Structural mapping integrating field and anisotropy of magnetic susceptibility (AMS) revealed a complex, 3D structure. The northern domain displays gently dipping foliations bearing a NW-trending lineation, southward, the lineation trend progressively rotates to EW then SW and the foliation is gently folded. The eastern domain displays E–W and NE–SW trending foliations with moderate to steeply dips bearing a dominantly NS trending lineation. Magnetic mineralogy investigation suggests biotite as the main carrier of the magnetic susceptibility in the anatexites and ferromagnetic minerals in the granulites. Crystallographic preferred orientation (CPO) measurements using the electron backscatter diffraction (EBSD) technique suggest that the magnetic fabric comes from the crystalline anisotropy of biotite and feldspar grains, especially. The delineation of several structural domains with contrasted flow fabric suggests a 3D flow field involving westward thrusting orthogonal to the belt, northwestward orogen-oblique escape tectonics and NS orogen-parallel flow. This complex deformation pattern may be due to interplay of collision-driven and gravity-driven deformations.  相似文献   

16.
The Jiangshan-Shaoxing tectonic zone was the northeastern boundary between the Yangtze Block and the Cathaysia Block during the Neoproterozoic and was an intracontinental orogenic belt during late of the early Paleozoic. In this tectonic zone, there develops a lot of mylonite underwent strong ductile deformation and schist, gneiss, and amphibolite with medium and high grade metamorphism which was formed during the late of early Paleozoic. The research of geometry and kinematic of ductile deformation in Jiangshan-Shaoxing tectonic zone is very important to reveal the tectonic process of intracontinental orogeny. This paper uses the anisotropy of magnetic susceptibility (AMS) to determine the ductile deformation geometry and kinematic of Jiangshan-Shaoxing tectonic zone combing with the field survey. In this study, 190 specimens of 19 locations and 221 specimens of 23 locations from Wangjiazhai section and Lipu-Sizhai section were analyzed. The magnetic foliation over magnetic lineation in both Wangjiazhai and Lipu-Sizhai sections together with the field observations indicated a compressional deformation pattern. 3 and 4 strong ductile deformation zones can be established in the Wangjiazhai section and the Lipu-Sizhai section, respectively. According to the magnetic fabric and petro-fabric studies, the Northeastern Jiangshan-Shaoxing tectonic zone suffered two kinds of deformation patterns during the late early Paleozoic, i.e., the thrusting deformation followed by sinistral shear deformation.  相似文献   

17.
The Ardara pluton as part of the Donegal batholith was intruded into Neoproterozoic metasediments and metadolerites at mid-crustal levels. The emplacement mechanism of the Ardara granite is very controversial, and mechanisms ranging from diapirism, ballooning and stoping followed by nested diapirism have been proposed. Magnetic fabrics, rock fabrics and K/Ar dating of micas are used here to constrain the emplacement history. The compositional zoning of the Ardara pluton is clearly reflected in the different bulk magnetic susceptibilities between the outer quartz monzodiorite and the central granodiorite, whereas the intervening tonalite is of intermediate nature. The magnetic carriers are characterized by the anisotropy of the magnetic susceptibility (AMS), thermomagnetic measurements and through high field analyses (HFA). The separation of the ferrimagnetic and paramagnetic contributions revealed that biotite and magnetite control the AMS in the quartz monzodiorite. Both minerals are oriented in such a way that their summed contribution is constructive and originates from the shape fabric of magnetite and the texture of biotite. Biotite is responsible mainly for the AMS in the tonalite and granodiorite. The magnetic foliation can be directly related to the macroscopic foliation and also to the D4 structures in the country rocks. The foliation is consistent with the geometry of the roughly circular shape and has a mostly steep to vertical dip. Towards the central granodiorite the magnetic foliation dies out, although plagioclase texture measurements indicate a weak magmatic shape fabric. With the exception of the tail, the Kmax axes (magnetic lineation) vary from steeply to gently plunging. The so-called lineation factor is approximately 1.01 and therefore points to a less significant axial symmetry. These observations coincide with strain estimates on mafic enclaves that show a very consistent pattern of K ∼0 flattening strain. Texture analyses of biotite and quartz additionally support the observations made by the strain analyses and the magnetic fabric data. Microstructural investigations give evidence that the fabrics are associated with the emplacement over a range of temperatures from truly magmatic to high-temperature solid-state conditions. The age of the intrusion is still under discussion, but a new cooling age was determined by K/Ar dating of biotite at 403.7±8 Ma corresponding to a temperature range between 450 and 300°C. For a mylonite along the southern contact between the Ardara pluton and the country rock a K/Ar muscovite age of 378.8±7 Ma indicates a minimum age for the shear zone when the Ardara pluton must have already been cooled down below 350±50°C. Received: 28 January 1999 / Accepted: 28 December 1999  相似文献   

18.
North Norfolk is a classic area for the study of glacial sediments with a complex glaciotectonic deformational history, but the processes leading to the formation of some structures can be ambiguous. Anisotropy of magnetic susceptibility (AMS) analyses, providing quantitative fabric data, have been combined with the analysis of visible structures and applied to the Bacton Green Till Member, exposed at Bacton, Norfolk. Thermomagnetic curves, low temperature susceptibility and acquisition of isothermal remanent magnetism (IRM) reveal that the magnetic mineralogy is dominated by paramagnetic phases. The magnetic foliation is parallel to fold axial planes and weakly inclined to bedding, whilst the magnetic lineation is orientated parallel to stretching, indicated by the presence of stretching lineations and the trend of sheath folds. Variations in the orientation of the magnetic lineation suggest that the Bacton section has been subject to polyphase deformation. After subaqueous deposition, the sequence was overridden by ice and glaciotectonically deformed which involved stretching initially north–south, then east–west. These results show that AMS can be used to detect strain in three dimensions through a glaciotectonite where paramagnetic mineralogy is dominant. This approach therefore provides further support to the use of AMS as a fast, objective and accurate method of examining strain within deformed glacial sediments.  相似文献   

19.
Anisotropy of magnetic susceptibility (AMS) applied to an alkaline granite from Meruoca (NE Brazil) recorded weak anisotropies, typically below 4%, and a considerable dispersion of the AMS axes. Red-clouded feldspars and clots of metasomatic minerals enclosed in magmatic crystals indicate that hydrothermal fluids altered the granite. U–Pb isotopic data show high-common Pb on zircons but allowed the calculation of a mean SHRIMP age of 523 ± 9 Ma attributed to the magmatic crystallization. Growth of fine oxides by late fluid–rock interactions was responsible for the scattering of AMS. Rock magnetic data indicate they consist mainly of an oxidized magnetite and (titano)hematite. Shape preferred orientation of mafic aggregates measured in granite quarries shows that the pluton preserves a gently dipping magmatic foliation. AMS in some quarries with a well-defined magmatic fabric, however, remains highly dispersed. When AMS mimics the mafic shape fabric, only magnetic foliations share a common orientation. Locally, AMS grounded in coarse Ti-poor magnetite associated with titanite develops a consistent subhorizontal oblate fabric that agrees with tectonic models suggesting that the cupola of the pluton has been exposed by erosion.  相似文献   

20.
通过野外观察、室内显微构造分析和磁组构测量方法,在桂北四堡地区浅变质地层中厘定出一条NE30°走向,南东倾,倾角约40°的大型左旋斜冲韧性剪切带——四堡韧性剪切带;该韧性剪切带内发育糜棱岩系列、糜棱面理、拉伸线理、A型褶皱、S-C组构、亚颗粒、显微分层及石英条带等宏观和微观构造特征;磁各向异性度测量结果显示四堡韧性剪切带由一宽约4 km的强应变带及边缘弱带组成,全带宽达10 km,长度超30 km;在对韧性剪切带运动学、构造年代学研究的基础上,结合区域地质资料,认为四堡韧性剪切带是华南加里东晚期华夏地块由南东向北西作低角度斜冲到扬子地块的产物。这一发现揭示了扬子地块与华夏地块碰撞拼合的方式,为深化华南构造演化提供了新资料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号