首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
南海北部时间系列沉降颗粒的有机地球化学特征及意义   总被引:3,自引:1,他引:3  
陈建芳 Wong  HK 《地球化学》1997,26(6):47-56
通过对南海北部用大孔径沉积物捕获器采集的时间系列沉降颗粒样品中总有机碳,总氮,氨基酸与单糖组分以及叶绿素等有机组分的分析,揭示了南海颗粒物质中有机组分的主要特征,表明沉降颗粒物质中有机质主要来自近期生长的海洋浮游生物,并进一步推断季风对南海北部沉降颗粒物质通量及有机组分具有重要的控制作用。  相似文献   

2.
234Th/238U不平衡法在真光层颗粒动力学研究中的应用   总被引:6,自引:0,他引:6  
真光层是海洋浮游生物活动最为活跃的区域,其间发生的颗粒动力学过程及其机制对于海洋碳的生物地球化学循环有着重要影响,利用放射性核素示踪海洋真光层颗粒动力学过程成为近年来海洋科学的前沿课题。介绍了该领域^234Th-^238U不平衡法的原理、发展历程及其在POC输出通量的估算、沉积物捕集器捕集效率的校正、真光层层化结构的揭示、颗粒活性元素固/液界面分配机制的研究、海洋胶体性质的研究及近岸海域悬浮颗粒活  相似文献   

3.
海洋环境沉积物输运研究进展   总被引:6,自引:0,他引:6  
海洋环境中沉积物的输运涉及复杂的过程和机制。20世纪后半叶发展起来的悬沙输运数学模型已经成为海洋沉积动力学的一个有力的研究工具。悬沙输运数学模型的有效运行需要正确的数值解法和模型中所含参数的确定,包括悬沙沉降速度、扩散系数、底床糙度和切应力,以及底边界上的沉降-再悬浮通量。由于复杂的水动力条件、屏蔽效应以及海底生物扰动等因素的作用,海洋环境推移质输运的经验、半经验公式具有一定的局限性。因此,充分考虑以上各种因素是正确预测海洋环境中推移质输运的关键。海洋环境沉积物输运理论的进一步发展需要着重进行各种过程和机制的研究,而这项工作依赖于高精度、高分辨率现场观测仪器的发展和更先进的颗粒态物质运动理论的建立。  相似文献   

4.
黄渤海有机碳的分布特征及收支评估研究   总被引:4,自引:1,他引:3  
陆架边缘海是陆海相互作用研究中最为关键的区域,也是全球重要的碳储库,在区域物质循环过程中发挥着重要的作用。基于2012年5月和11月对黄渤海海域的综合调查,对该海域水体和沉积物中有机碳的含量与分布进行了分析,并结合相关文献资料对黄渤海有机碳的收支进行了估算。主要结论为:黄渤海溶解有机碳和颗粒有机碳均呈近岸河口区域高、离岸低的分布趋势;有机碳的组成以溶解有机碳为主,颗粒有机碳由海洋自生的有机碳和陆地来源的有机碳组成;黄渤海沉积物有机碳高值区主要分布在河口和泥质区,其组成也是由海洋自生和陆源混合而成,其中渤海以陆源为主,而黄海以海源为主。黄渤海有机碳收支评估表明,有机碳的主要来源为初级生产力产生的有机物,其贡献为(6 760±971)×104t/a,占有机碳输入总量的(74±10)%,沉积物再悬浮的通量为(884±200)×104t/a,东海向黄海输入的通量为(679±107)×104t/a,河流及陆源输入的通量为(643±63)×104t/a,大气干湿沉降的通量为(141±39)×104t/a,其贡献分别占有机碳输入总量的(10±2.2)%,(7.5±1.2)%,(7.0±0.7)%和(1.5±0.4)%;黄渤海有机碳的主要支出为呼吸消耗,其贡献为(5 190±746)×104t/a,占有机碳输出总量的(57±8.2)%,黄海向东海输出的通量为(2 150±370)×104t/a,有机碳沉积通量为(1 030±225)×104t/a,有机碳降解通量为(737±191)×104t/a,其贡献分别占有机碳输出总量的(24±4.1)%,(11±2.5)%和(8.0±2.1)%。有机碳收支评估表明黄渤海有机碳以海洋自生来源为主,且具有潜在碳的"汇"的特性,水体中外源输入和海洋自生有机碳的(1.6±0.3)%埋藏于该海域内。  相似文献   

5.
南海北部1987年9月~1988年10月沉积物捕获器中颗粒物质和硅藻通量的季节性变化受到季风气候的控制.颗粒物质与硅藻在东北和西南季风盛行期增加,在季风转变期减少.浅层和深层的颗粒总通量、蛋白石通量、碳酸钙通量、蛋白石/颗粒总通量比值、碳酸钙/颗粒总通量比值、有机碳/磷的比值以及浅层硅藻Thalassionema nitzschioides、Coscinodiscus excentricus、Coscinodiscus nodulifer、Nitzschia marina和Rhizosolenia bergonii的通量在东北季风期间明显地增加了,这些变化可能与1987年~1988年发生的EINino事件相关.  相似文献   

6.
河流碳通量与陆地侵蚀研究   总被引:29,自引:2,他引:29  
河流碳通量系陆地侵蚀产物,它构成全球碳循环的一个重要环节。河流碳通量在数量上远小于全球碳循环的其他环节,但由于与陆地生态系统联系密切,故对它的研究尤为重要。全球每年河流碳通量约为1GtC(109t碳),其中约60%为无机碳、40%为有机碳。溶解态有机碳和颗粒状有机碳主要来源于土壤侵蚀,另有一部分有机碳来源于河湖中的浮游植物;溶解态无机碳主要源于大气中CO2和碳酸盐;颗粒无机碳主要指未溶解的碳酸盐。亚洲季风区河流对全球河流碳通量具有较大贡献,而对其研究程度较低。河流碳通量研究既可为流域治理提供基础资料,也是进一步了解人为CO2“未知汇”的途径之一。  相似文献   

7.
海洋沉积物中色素生物标志物研究进展   总被引:1,自引:0,他引:1  
海洋沉积物中的光合色素包含着水体、沉积物中浮游和底栖植物以及微生物群落的丰富信息,能表征特定生物来源,在埋藏到沉积物甚至发生某些改变之后仍然保留其源信息,是一类重要的化学生物标志物.结合总有机碳、总氮等其他海洋地球化学参数,沉积色素可用来研究海洋浮游植物和光合细菌的群落组成和丰度,反演海洋初级生产、水体富营养化水平及其历史趋势,指示水体和沉积物氧化还原条件,揭示海域气候条件等现状及其历史变化.沉积色素的研究,对于掌握海洋中碳的生物地球化学循环过程,回溯古环境、古海洋、古生态以及古气候记录,制定合理的海洋管理政策具有十分重要的意义.阐述了沉积物中色素的分类、来源、性质和分析方法,分析了色素在沉积物中的保存和变化规律,探讨总结了沉积色素作为化学生物标志物在海洋学研究中的应用.  相似文献   

8.
南海北部1987年9月~1988年10月沉积物捕获器中颗粒物质和硅藻通量的季节性 变化受到季风气候的控制。颗粒物质与硅藻在东北和西南季风盛行期增加,在季风转变期减 少。浅层和深层的颗粒总通量、蛋白石通量、碳酸钙通量、蛋白石/颗粒总通量比值、碳酸钙/颗 粒总通量比值、有机碳/磷的比值以及浅层硅藻Thalassionema nitzschioides、Coscinodiscus excentricus、Coscinodiscus nodulifer、Nitzschia marina和Rhizosolenia bergonii的通量在东北 季风期间明显地增加了,这些变化可能与1987年~1988年发生的EI Mi o事件相关。  相似文献   

9.
为了探索水合物背景下沉积物中自生矿物响应,对采自综合大洋钻探计划(IODP)311航次沉积物中自生碳酸盐岩颗粒进行了矿物组成、形貌特征和碳、氧稳定同位素特征等研究。X光粉晶衍射(XRD)和扫描电镜(SEM)结果显示碳酸盐岩颗粒的主要矿物成分是铁白云石和方解石,呈多孔状结核和不规则状集合体产出。碳酸盐岩颗粒的碳稳定同位素δ13CPDB低至-41.50‰,证实其碳源源自甲烷,其成因与甲烷厌氧氧化过程有关,印证了研究区存在海底甲烷渗漏现象,是甲烷水合物赋存区重要的识别标志之一。碳酸盐岩颗粒的氧稳定同位素δ18OPDB总体上随着沉积物深度增加而减小,可能指示沉积物的背景温度由下而上(从早到晚)逐渐降低。研究结果提供了现代海洋天然气水合物背景下沉积物中自生碳酸盐岩的碳、氧稳定同位素记录,对于寻找我国海域天然气水合物资源,探索地史时期古海洋沉积物中类似的甲烷事件记录具有重要的理论和实践指导意义。  相似文献   

10.
海洋中的微塑料是指通过各种途径进入海洋中的直径小于5 mm的塑料颗粒。在过去60年中全球塑料生产量增加了560倍,海洋环境中微塑料的积累在不断增加。微塑料或悬浮于海水中,或沉积到海底成为沉积物的组分,对海洋生态系统的潜在风险引起了研究人员的广泛关注。综述了海洋环境中微塑料的生态风险研究进展,包括微塑料在近海水体、沉积物以及大洋中的分布和浓度;底栖动物与浮游动物对微塑料的摄食作用;微塑料本身、微塑料添加剂以及微塑料吸附的污染物质对海洋生物的毒性效应研究进展。对未来需重点研究的领域进行了展望,包括微塑料采样与测定方法的优化,微塑料在不同海洋生境中的观测,微塑料的生态毒理学效应及食物链传递效应,微塑料生态风险评估方法学研究,期望能够为系统评估微塑料对我国近海生态系统的影响提供依据。  相似文献   

11.
Plankton studies in Kachemak Bay, Alaska were combined with short-term sediment trap deployments in order to show the relationships of fluxes of Cu and Mn in organic particulate matter with biological processes occurring in the overlying water column. A large spring bloom decrease throughout the summer, due to decreasing nutrient levels and increasing grazing pressure by zooplankton. The concentration of organically bound Cu and Mn in the sediment trap particulate material increased throughout the summer reaching a maximum in August while fecal pellet production exhibited a similar increase. The fluxes of total particulate matter and organic carbon reached a maximum in June and represented a 30% increase over the corresponding fluxes in May. In contrast, the fluxes of organically bound Cu and Mn and fecal pellets in August represented 200%, 360% and 760% increases, respectively, over their respective fluxes in May. These results suggest that the enrichment of Cu and Mn in the organic particulate matter during August was a result of bioaccumulation of these metals into fecal material. The increase in the flux of the organically bound metals indicates a strong coupling between biological processes in the water column and their vertical transport. Thus, the production and subsequent sinking of fecal pellets may govern the transport of trace metals to the underlying water column and may also govern the transfer of a primary source of food and its associated trace metals to benthic communities.  相似文献   

12.
This work focuses on the direct measurement of the vertical flux of appendicularian houses in order to assess their importance as a component of vertical carbon flux in coastal areas. For this purpose, arrays of cylindrical sediment traps were deployed for 5 to 8 days at two depths in a coastal area of the northern Aegean Sea (inner Thermaikos Gulf) during spring. The data support the contention that resuspension was minimal. Fecal pellet (FP) production and grazing experiments with the dominant copepods (Acartia clausi) were conducted to provide additional information on the potential FP contribution to the total carbon flux. The magnitude of the vertical flux of particulate organic carbon (POC) ranged between 310 and 724 mg C m?2 day?1. The proportion of phytoplankton carbon in the POC vertical flux was up to 45 %. The contribution of zooplankton FPs to the total carbon never exceeded 5 %. On the contrary, appendicularian houses were an essential component of the biogenic carbon flux contributing up to 55.3 % of the total vertical carbon flux. Consequently, both phytoplankton and appendicularian houses contributed equally to the biogenic carbon flux exceeding 80 % of the total sinking POC. Taking into account the sinking speed of the particles and the environment in the area, all this carbon probably reaches the seafloor, thus indicating a strong pelagic–benthic coupling.  相似文献   

13.
Polycyclic aromatic hydrocarbon (PAH) compositions were determined in plankton, sediment-trap-collected particulate material and sediment cores from Dabob Bay using a high performance liquid Chromatographie (HPLC)/fluorescence technique. The annual flux of individual PAH measured in a series of sediment traps was compared with the flux of corresponding compounds determined from 210Pb dated bottom sediments. Systematic seasonal variations in the fluxes and concentrations of PAH, Al and organic carbon in the trap-collected particulates and seasonally collected plankton were also investigated to determine whether or not PAH are associated with either terrestrial or marine-derived materials.Concentrations of all PAH studied increased tenfold within the last 80–100 yr of sediment deposition, except for perylene which displayed a reasonably constant concentration profile. This suggests at least two sources contribute to the observed sedimentary PAH compositions in Dabob Bay, i.e., anthropogenic combustion and a natural source. Plankton and sediment trap-collected particulates contained PAH mixtures qualitatively similar to underlying surface sediments. Microscopic examination indicated fecal pellets were the major form of particulate material in the sediment traps. The fecal pellets collected in the sediment trap time series quantitatively account for essentially 100% of the PAH fluxes measured in the 210Pb dated sediments, implying Zooplankton fecal pellets control the removal of PAH to Dabob Bay sediments. These measurements provide clear evidence that the PAH studied are not produced after sediment deposition. The observed seasonal covariations of PAH and Al in both sediment trap and plankton samples further indicate that PAH originate from terrestrially-based sources, are introduced into the marine environment by runoff and erosion or atmospheric deposition and are not produced by marine plankton.  相似文献   

14.
Biodeposition rates were studied for a fouling community with a biomass of 6–10 kg per m2 dry wt including shells in which the barnacle Balanus eburneus was a dominant species. The fouling community filtered Indian River lagoon water containing 2–15 mg per 1 mud-size particles and deposited them as sand-size fecal pellets. Measurements of the fecal pellet flux by sediment traps indicated seasonal variations between 16.7 and 74.8 g per m2 per day. A significant correlation was found between fecal pellet flux and temperature (r=0.90; p<0.001). The average flux of fecal pellet deposition was four times greater than the average flux of suspended particle settling without biological influence. Suspended sediment concentration did not significantly affect the rate of biodeposition. Annual biodeposition was 18 kg per m2.  相似文献   

15.
Fecal pellets from the pelagic crab Pleuroncodes planipes were a substantial portion of the particulate organic matter in a sediment trap deployed at the bottom of the mixed layer in the eastern tropical North Pacific Ocean. The lipids of fresh P. planipes feces were compared to lipids of the sediment trap material, of mixed zooplankton which may comprise part of the diet of the crab, and of the crab itself in order to elucidate the source of organic compounds found in the trap. Hydrocarbons, wax esters, triacylglycerols, steroidal alcohols, steroidal ketones, and fatty acids were determined by capillary gas chromatography and gas chromatography/mass spectrometry. Significant input of lipids via sedimentation of crab fecal material is indicated, and modification of dietary lipid within the gut of the crab is inferred. Labile dietary fatty acids are depleted and sterols enriched in the fecal pellets and trap material relative to the zooplankton and crab. Nuclear saturated and unsaturated 3-ketosteroids and unsaturated steroidal hydrocarbons were detected in the crab, its feces, and in the sediment trap particulate material.  相似文献   

16.
The ocean off NW Africa is the second most important coastal upwelling system with a total annual primary production of 0.33 Gt of carbon per year (Carr in Deep Sea Res II 49:59–80, 2002). Deep ocean organic carbon fluxes measured by sediment traps are also fairly high despite low biogenic opal fluxes. Due to a low supply of dissolved silicate from subsurface waters, the ocean off NW Africa is characterized by predominantly carbonate-secreting primary producers, i.e. coccolithophorids. These algae which are key primary producers since millions of years are found in organic- and chlorophyll-rich zooplankton fecal pellets, which sink rapidly through the water column within a few days. Particle flux studies in the Mauretanian upwelling area (Cape Blanc) confirm the hypothesis of Armstrong et al. (Deep Sea Res II 49:219–236, 2002) who proposed that ballast availability, e.g. of carbonate particles, is essential to predict deep ocean organic carbon fluxes. The role of dust as ballast mineral for organic carbon, however, must be also taken into consideration in the coastal settings off NW Africa. There, high settling rates of larger particles approach 400 m day−1, which may be due to a particular composition of mineral ballast. An assessment of particle settling rates from opal-production systems in the Southern Ocean of the Atlantic Sector, in contrast, provides lower values, consistent with the assumptions of Francois et al. (Global Biogeochem Cycles 16(4):1087, 2002). Satellite chlorophyll distributions, particle distributions and fluxes in the water column off NW Africa as well as modelling studies suggest a significant lateral flux component and export of particles from coastal shelf waters into the open ocean. These transport processes have implications for paleo-reconstructions from sediment cores retrieved at continental margin settings.  相似文献   

17.
This work presents models of the vertical distribution and flux of phytoplankton aggregates, including changes with time in the distribution of aggregate sizes and sinking speeds. The distribution of sizes is described by two parameters, the mass and number of aggregates, which greatly reduces the computational cost of the models. Simple experiments demonstrate the effects of aggregation on the timing and depth distribution of primary production and export. A more detailed ecological model is applied to sites in the Arabian Sea; it demonstrates that aggregation can be important for deep sedimentation even when its effect on surface concentrations is small, and it presents the difference in timing between settlement of aggregates and fecal pellets.  相似文献   

18.
Observations of the composition and rate of input of organic matter to the sea floor were made at three locations in lower Cook Inlet, Alaska, during five cruises taken in the spring and summer of 1978. Total particulate, plant pigment, carbon, nitrogen, fecal pellet, and phytoplankton cell fluxes, inferred from sediment trap samples, were related to algal biomass and production in overlying waters. A daily average of 7.5% of the phytoplankton biomass was lost to the bottom. Of this loss, 83% was attributable to zooplankton grazing and fecal pellet production. At the three sampling sites, an average of 39 g C m?2 (range of 17–60 g C m?2, was sedimented to the bottom between May and August. This carbon flux represented an average of 12% of the total primary production measured for that time period. Kachemak Bay eastern arm of the inlet, is identified as an extremely productive embayment in which large amounts of organic matter were transferred to the sea floor.  相似文献   

19.
Sediments, sediment trap material, dominant surface plankton and collected fecal material were sampled concurrently with surface seawater in a coastal Mediterranean ecosystem and analyzed for non-volatile hydrocarbons and chlorinated hydrocarbons. Results showed consistent partitioning of hydrocarbon classes between dissolved and particulate phases of surface waters which appeared to be related to component solubility and particle availability. Analysis of biological materials showed the biota were important not only in packaging residues into large, fast sinking particles, but also in modifying the composition of components through metabolism and selective incorporation into body tissues and feces. Apparent sedimentation rate was calculated by analysis of 210Pb in sediment core samples and used to estimate average deposition rates of organics to the sea/sediment interface. The flux of particles through 100 m, as measured in the trap material in this sampling interval, was sufficient to balance most of the petroleum input to the sediments but accounted for only 17% of the average flux of PCBs to the sediments, and virtually none of the more soluble chlorinated hydrocarbon flux. Vertical transport via large fecal material compared to average background particles was seasonally low corresponding to a seasonal minimum in plankton biomass in late summer. Results show that hydrocarbon residues transported long distances away from input sources are highly modified, pointing to the geochemical significance of physical-chemical partitioning between seawater phases, incorporation into organisms and fecal material and biological/chemical degradation.  相似文献   

20.
The goal of this paper is to find out whether suspended mussel culture affects the vertical fluxes of biogenic particles in the Ría de Vigo on a seasonal scale. With this aim, vertical fluxes of particulate organic carbon (POC) and the magnitude and composition of vertical export of phytoplankton carbon (Cphyto) collected in sediment traps were examined by comparing data obtained inside a mussel farming area (RaS) with those found at a reference station (ReS) not affected by mussels. Our results indicate that mussel farming has a strong impact on sedimentation fluxes under the rafts, not only increasing POC flux but also altering the magnitude and composition of Cphyto fluxes. Average POC flux at RaS (2564?±?1936 mg m?2 day?1) was four times higher than at ReS (731?±?276 mg m?2 day?1), and much of this increase was due to biodeposit fluxes (Cbiodep) which accounted for large proportion of POC flux (35–60 %). Indeed, because of this high Cbiodep flux, only a small proportion of the POC flux was due to Cphyto flux (3–12 %). At the same time, we observed an increased sedimentation of phytoplankton cells at RaS that could be explained by a combination of mechanisms: less energetic hydrodynamic conditions under mussel rafts, ballast effect by sinking mussel feces, and diatom aggregates. Moreover, mussel farming also altered the quality of the Cphyto flux by removing part of the predatory pressure of zooplankton and thus matching diatom composition in water column and sediment traps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号