首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
赵仕威  周小文  刘文辉  刘攀 《岩土力学》2015,36(Z1):602-608
为了研究颗粒棱角对颗粒材料力学行为的影响,建立了具有不同棱角度的对称多面体颗粒,采用了一种简单并适合任意颗粒形状的接触本构模型,对三维离散元开源程序YADE进行了修改,研究了颗粒棱角度在模拟直剪试验中的影响以及接触力各向异性在剪切过程中的演化规律。研究结果表明,颗粒棱角度越小,颗粒间相互咬合自锁的作用越小,颗粒受剪更易转动,致使颗粒体系的剪切强度和剪胀性下降;竖向加载力越大,颗粒棱角度的影响越明显;法向接触力的各向异性在剪切过程中表现为先增后减最后趋向稳定的趋势;法向接触力的各向异性变化程度随颗粒棱角度的增大而增大。  相似文献   

2.
This article presents a fundamental study on the role of particle breakage on the shear behavior of granular soils using the three‐dimensional (3‐D) discrete element method. The effects of particle breakage on the stress ratio, volumetric strain, plastic deformation, and shear failure behavior of dense crushable specimens undergoing plane strain shearing conditions are thoroughly investigated through a variety of micromechanical analyses and mechanism demonstrations. The simulation of a granular specimen is based on the effective modeling of realistic fracture behavior of single soil particles, which is demonstrated by the qualitative agreement between the results from platen compression simulations and those from physical laboratory tests. The simulation results show that the major effects of particle breakage include the reduction of volumetric dilation and peak stress ratio and more importantly the plastic deformation mechanisms and the shear failure modes vary as a function of soil crushability. Consistent macro‐ and micromechanical evidence demonstrates that shear banding and massive volumetric contraction depict the two end failure modes of a dense specimen, which is dominated by particle rearrangement–induced dilation and particle crushing–induced compression, respectively, with a more general case being the combination and competition of the two failure modes in the medium range of soil crushability and confining stress. However, it is further shown that a highly crushable specimen will eventually develop a shear band at a large strain because of the continuous decay of particle breakage. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
颗粒破碎对颗粒材料宏观力学行为有重要影响。 结合Hardin的破碎经验公式,将表征破碎程度的破碎参量与Cosserat连续体的内部长度参数相关联,形成一个基于Cosserat连续体且能考虑颗粒破碎的弹塑性模型。数值算例主要考察了颗粒破碎对颗粒材料承载能力、塑性应变及局部化行为的影响,数值结果表明,颗粒破碎主要发生在剪切带内,颗粒破碎使得剪切带明显变窄且剪切带内外等效塑性应变梯度明显增大。  相似文献   

4.
We formulate a discrete Lagrangian model for a set of interacting grains, which is purely elastic. The considered degrees of freedom for each grain include placement of barycenter and rotation. Further, we limit the study to the case of planar systems. A representative grain radius is introduced to express the deformation energy to be associated to relative displacements and rotations of interacting grains. We distinguish inter-grains elongation/compression energy from inter-grains shear and rotations energies, and we consider an exact finite kinematics in which grain rotations are independent of grain displacements. The equilibrium configurations of the grain assembly are calculated by minimization of deformation energy for selected imposed displacements and rotations at the boundaries. Behaviours of grain assemblies arranged in regular patterns, without and with defects, and similar mechanical properties are simulated. The values of shear, rotation, and compression elastic moduli are varied to investigate the shapes and thicknesses of the layers where deformation energy, relative displacement, and rotations are concentrated. It is found that these concentration bands are close to the boundaries and in correspondence of grain voids. The obtained results question the possibility of introducing a first gradient continuum models for granular media and justify the development of both numerical and theoretical methods for including frictional, plasticity, and damage phenomena in the proposed model.  相似文献   

5.
In this paper, a lattice-type model to simulate the micro-mechanical behaviour of particulate/granular media is presented. In this numerical model, a particulate assembly is simulated as a lattice/truss. Nodes located at contacts between a particle and its neighbours are linked by bars to each other. Each particle is represented by a lattice within its microstructure and particle interact through load transfer at the nodes. Constraints are prescribed at the nodes to describe active, deactivated and reactivated contacts. When a particulate assembly develops into a mechanism (deformation with zero incremental load), further deformation is simulated through a framework that describes the kinematics of the particles (sliding, rolling and rotation of particles). This framework is formed by introducing nodes at the particle centroids and linking them with bars. Bars-linking particles with a non-sliding contact are assigned large stiffnesses relative to bars linking particles with a sliding contact. Numerical tests are conducted on two-dimensional assemblies of disks, arranged as very loose and very dense packing under simple shear loading conditions. The results concord with the results of numerical tests conducted using the discrete element method and with photoelastic experiments. Additionally, the model is applied to study the effects of initial imperfections caused by particles with low elastic modulus. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

6.
Shi  Danda  Cao  Dong  Xue  Jianfeng  Deng  Yibing  Liang  Yonghui 《Acta Geotechnica》2022,17(11):4865-4885
Acta Geotechnica - A number of discrete element analyses of undrained triaxial shear tests on crushable assemblies are performed using 3-dimensional particle flow code (PFC3D). The undrained shear...  相似文献   

7.
The local pore spaces in granular materials tend to be aligned parallel to the major principal stress direction upon particle mobilization. Manifestation of this response has been numerically validated in our previous studies with the aid of discrete element method modeling and image processing techniques during creep and shearing. We now extend the modeling of pore geometry, constructed with spherical particles, to assemblies of particle clumps. Two-dimensional simulations are performed for both loose and dense assemblies of spherical particles and particle clumps. Each particle packing is bound by rigid or flexible walls and subjected to biaxial compression and the particle mobilization effect on the evolution of pore orientation is explored. Randomly shaped pores surrounded by adjacent particles are geometrically quantified by Delaunay tessellation and fitted with ellipses. Results show that localization is apparent in dense assemblies, in particular for clumped particle packing, while loose assemblies exhibit diffusive failure. Small pores within well-defined shear bands tend to align either parallel to the direction of the shear band or perpendicular to the major principal stress. On the other hand, small pores within the blocks and large pores have a tendency to become elongate towards the major principal stress direction. This study reveals for the first time that pore orientation is dependent upon particle shape, pore size, and assembly conditions on the pore and global scales.  相似文献   

8.
严颖  季顺迎 《岩土力学》2009,30(Z1):225-230
自然条件下,颗粒介质大多以非规则单元形态存在。非规则几何形态对颗粒介质的宏观力学性能有很大影响。针对颗粒单元的不同几何形态,采用团颗粒单元对离散介质的直剪试验过程进行了离散元数值计算,详细地讨论了颗粒形态对离散介质剪切强度的影响。该非规则颗粒由不同形态、不同数目、镶嵌尺寸、组合方位和颗粒大小的球形颗粒进行随机构造,其在局部与整体坐标之间的转动、力矩和方位关系通过4元素方法进行确定,基本球体颗粒之间的作用力采用具有Mohr-Coulomb摩擦定侓的Hertz-Mindlin非线性接触模型,并考虑了非线性法向粘滞力的影响。通过构造7种具有相同的质量概率分布的不同形态的团颗粒,在不同法向应力下,对团颗粒的直剪试验进行了离散元模拟,分析了不同形态颗粒的剪切强度。通过对不同形态颗粒介质剪切强度的数值分析,进一步揭示了非规则颗粒间的咬合互锁效应,为分析非规则颗粒的宏观动力特性提供了依据。  相似文献   

9.
We study the development of microstructure inside the shear band in granular media consisting of elliptical‐shaped particles. Plane strain biaxial compression test was simulated using two‐dimensional distinct element method. The generation of large voids and concentration of excessive particle rotation inside a shear band are found in a quite similar manner to those observed in natural soils. Evolution of the microstructure inside and outside the shear band is studied. The magnitude and direction of particle rotation inside the shear band is influenced by orientation of long axes of elliptical particles. Because of such particle rotations inside the shear band, the preferred alignment of particles becomes horizontal in the residual state, which results in a more anisotropic contact normal distribution oriented along the major principal stress axis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Biaxial compressional tests with two types of stress paths were carried out on an assembly of round bars, which can be crushed to investigate the breakage and deformation mechanisms of granular materials at the mesoscale. The following was found experimentally: (1) upon loading, the crushable rods slide, rotate and break, and finally the breakage band forms for the two types of stress paths and different stress states; and (2) for the axial loading stress path, the round rods mainly fail in the vertically split mode and laterally crushed mode. However, for the lateral unloading stress path, the round rods fail with the combination mode of locally crushed and vertically split.  相似文献   

11.
Under the proportional strain loading path, particle assemblies may exhibit various failure modes. Besides the strain localization, the diffuse failure may also occur under certain conditions. The diffuse failure mode corresponds to a homogeneous occurrence of failure with stress states strictly included within the plastic limit condition. This paper emphasizes the influences of the density degree and the rolling resistance under the strain path. A contact model considering rolling friction is adopted in a discrete element method analysis as an approximate means to account for the effects of particle shape. Mechanical responses indicate that loose assemblies without the rolling resistance are more vulnerable to static liquefaction. A sample with a smaller initial void ratio or larger rolling friction coefficient will reinforce the stability of the structure and reduce the likelihood of failure. For microscopic properties, the evolution of coordination numbers, contact forces, force chains and the anisotropies of the assemblies are explored and discussed. Rotational resistance helps increase the shear stress of the granular material, and the microscopic parameters indicate that the assembly has a strong anisotropy and a stable structure to resist the increasing loading.  相似文献   

12.
This paper investigates the existence of the critical force chain length and the buckling of unconfined grain columns in dense granular materials. Tests on assemblies of flat pentagon photoelastic particles were first carried out to demonstrate the maximum length of force chains. Then, the theoretical buckling analysis and distinct element method (DEM) simulations for grain columns composed of mono-sized elliptical particles were performed. The results revealed the existence of critical column length, which is generally affected by the particle shapes, the rotational resistance at particle contact points and the end constraints to the grain columns. The interparticle friction does not have explicit effect on the critical force chain length, but it has significant influence on the grain column’s curvature when collapse takes place. The thickness of shear band in granular soils can be determined as the critical length of grain columns by appropriately imposing the constraints on the boundaries, as confirmed by DEM simulations and experimental results.  相似文献   

13.
A new method is proposed for the development of a class of elastoplastic thermomicromechanical constitutive laws for granular materials. The method engenders physical transparency in the constitutive formulation of multiscale phenomena from the particle to bulk. We demonstrate this approach for dense, cohesionless granular media under quasi-static loading conditions. The resulting constitutive law—expressed solely in terms of particle scale properties—is the first of its kind. Micromechanical relations for the internal variables, tied to nonaffine deformation, and their evolution laws, are derived from a structural mechanical analysis of a particular mesoscopic event: confined, elastoplastic buckling of a force chain. It is shown that the constitutive law can reproduce the defining behavior of strain-softening under dilatation in both the mesoscopic and macroscopic scales, and reliably predict the formation and evolution of shear bands. The thickness and angle of the shear band, the distribution of particle rotation and the evolution of the normal contact force anisotropy inside the band, are consistent with those observed in discrete element simulations and physical experiments.  相似文献   

14.
This study investigates the influence of the intermediate principle stress on the particle breakage of granular materials. The crushable agglomerate method is applied to model soil particles and numerical true triaxial tests were carried out. The results show that particle breakage increases with increasing b value, the relationship of which follows an exponential function and agrees well with previous experimental results. More importantly, the study found that the relationship between particle breakage and total energy input is independent of the intermediate principle stress, which provides a good basis for the constitutive modeling of granular materials.  相似文献   

15.
A generalized stress-strain relationship is derived for a randomly packed particle assembly taking into account the effect of particle rotation. A second-order polynomial function is assumed for the field of particle displacement. From the principle of virtual work, stress measures for a granular solid are expressed in terms of contact forces, contact moments, and geometric measures for the particle structure. An explicit stress-strain relationship is derived for isotropic packing with equal-sized particles. Examples of a representative element under torsion and bending are given to demonstrate the applicability of the presently derived higher-order stress-strain relationship.  相似文献   

16.
颗粒形状是影响粗粒土密实度、力学与渗流等特性的主要因素之一。为了分析颗粒形状对粗粒土剪切特性的影响,采用离散元法生成4种不同形状的颗粒组,进行粗粒土直剪试验模拟与剪切宏细观响应研究,得出了颗粒形状对剪应力-剪位移、体应变-剪位移的影响,分析了粗粒土剪切应力、应变特性与剪胀特性。通过分析剪切带厚度、颗粒旋转量值、平均接触数、孔隙率及接触力系等宏细观参量的演化规律,研究颗粒形状在宏细观尺度上对粗粒土的影响。研究表明:异形颗粒间的咬合自锁作用大于纯圆颗粒,试样的抗剪强度有随形状系数的减小而增大的趋势。试样颗粒在外荷载作用下发生运动,应变主要表现在颗粒运动剧烈、剪胀幅度较大的剪切带内。颗粒形状系数F减小,试样的初始平均接触数增加,内摩擦角φ增大,剪切带内孔隙率增量越大,剪胀幅度越大。剪切过程中强力链聚集于剪切带内并起骨架作用,随着形状系数的减小,力链长度在0~5所占百分比呈增大趋势;剪切带内强力链的数目随着形状系数的减小而增加,峰值含量在30%~35%之间。  相似文献   

17.
A practical combined finite–discrete element method was developed to simulate the breakage of irregularly shaped particles in granular geomaterials, e.g., rockfill. Using this method, each particle is discretized into a finite element mesh. The potential fracture paths are represented by pre-inserted cohesive interface elements (CIEs) with a progressive damage model. The Mohr–Coulomb model with a tension cut-off is employed as the damage initiation criterion to rupture the predominant failure mode occurs at the particle scale. Two series of biaxial tests were simulated for both the breakable and unbreakable particle assemblies. The two assemblies have identical configurations, with the exception that the former is inserted with CIEs and is breakable. The simulated stress–strain–dilation responses obtained for both assemblies are in agreement with experimental observations. We present a comprehensive study of the role of particle breakage on the mechanical behavior of rockfill materials at both the macroscopic and microscopic scales. The underlying mechanism of particle breakage can be explained by the force chain in the assemblies.  相似文献   

18.
This study proposed a novel approach for generating crushable agglomerates with realistic particle shapes in discrete element modeling (DEM). The morphologies of sand particles were obtained by X-ray micro-computed tomography scanning and image processing. Based on the particle surface reconstructed by spherical harmonic analysis, the crushable agglomerates with realistic particle shapes can be generated in DEM simulations. The results of single particle crushing tests showed that particle shapes significantly influence the fracture patterns and crushing strengths of sand particles. Furthermore, two one-dimensional compression tests were conducted to investigate the particle shape effect on micro- and macro-mechanical behaviors of crushable sands.  相似文献   

19.
冯德銮  房营光 《岩土力学》2015,36(Z2):81-88
土体是一种颗粒物质,其强度与变形特性具有显著的颗粒尺度效应。根据土体颗粒间的连结性状和微重比,将土颗粒划分为基体颗粒与加强颗粒。构建了反映土体内部材料信息和颗粒特征信息的土体胞元,基于应变梯度理论建立可以描述土体颗粒尺度效应的土体胞元模型。设计一系列饱和重塑土的直接快剪试验以研究土体直剪力学特性的颗粒尺度效应,并定量计算了土体胞元模型的应变梯度和內禀尺度等微细观计算参数。试验结果表明,土体的剪切屈服应力随加强颗粒体积比和平均应变梯度的增加而增加,且与加强颗粒体积比呈近似线性关系,与平均应变梯度呈抛物线关系;加强颗粒粒径对土体的剪切屈服应力影响不明显。土体剪切屈服应力的试验结果与土体胞元模型的预测结果一致。  相似文献   

20.
Irani  Nazanin  Lashkari  Ali  Tafili  Merita  Wichtmann  Torsten 《Acta Geotechnica》2022,17(11):5275-5298
Acta Geotechnica - An elastic–plastic constitutive model considering particle breakage for simulation of crushable granular soils behavior is proposed. In the model, elastic strain rates are...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号