首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 614 毫秒
1.
A mafic–ultramafic intrusive belt comprising Silurian arc gabbroic rocks and Early Permian mafic–ultramafic intrusions was recently identified in the western part of the East Tianshan, NW China. This paper discusses the petrogenesis of the mafic–ultramafic rocks in this belt and intends to understand Phanerozoic crust growth through basaltic magmatism occurring in an island arc and intraplate extensional tectonic setting in the Chinese Tianshan Orogenic Belt (CTOB). The Silurian gabbroic rocks comprise troctolite, olivine gabbro, and leucogabbro enclosed by Early Permian diorites. SHRIMP II U-Pb zircon dating yields a 427 ± 7.3 Ma age for the Silurian gabbroic rocks and a 280.9 ± 3.1 Ma age for the surrounding diorite. These gabbroic rocks are direct products of mantle basaltic magmas generated by flux melting of the hydrous mantle wedge over subduction zone during Silurian subduction in the CTOB. The arc signature of the basaltic magmas receives support from incompatible trace elements in olivine gabbro and leucogabbro, which display enrichment in large ion lithophile elements and prominent depletion in Nb and Ta with higher U/Th and lower Ce/Pb and Nb/Ta ratios than MORBs and OIBs. The hydrous nature of the arc magmas are corroborated by the Silurian gabbroic rocks with a cumulate texture comprising hornblende cumulates and extremely calcic plagioclase (An up to 99 mol%). Troctolite is a hybrid rock, and its formation is related to the reaction of the hydrous basaltic magmas with a former arc olivine-diallage matrix which suggests multiple arc basaltic magmatism in the Early Paleozoic. The Early Permian mafic–ultramafic intrusions in this belt comprise ultramafic rocks and evolved hornblende gabbro resulting from differentiation of a basaltic magma underplated in an intraplate extensional tectonic setting, and this model would apply to coeval mafic–ultramafic intrusions in the CTOB. Presence of Silurian gabbroic rocks as well as pervasively distributed arc felsic plutons in the CTOB suggest active crust-mantle magmatism in the Silurian, which has contributed to crustal growth by (1) serving as heat sources that remelted former arc crust to generate arc plutons, (2) addition of a mantle component to the arc plutons by magma mixing, and (3) transport of mantle materials to form new lower or middle crust. Mafic–ultramafic intrusions and their spatiotemporal A-type granites during Early Permian to Triassic intraplate extension are intrusive counterparts of the contemporaneous bimodal volcanic rocks in the CTOB. Basaltic underplating in this temporal interval contributed to crustal growth in a vertical form, including adding mantle materials to lower or middle crust by intracrustal differentiation and remelting Early-Paleozoic formed arc crust in the CTOB.  相似文献   

2.
Xenolithic inclusions in calc-alkaline andesite from Mt. Moffettvolcano, Adak Island, Aleutian arc, reveal a nearly continuousrecord of crystallization of basaltic magmas in the crust, andpossibly upper mantle, of the arc. The record is more detailedand continuous than that obtained from study of calc-alkalinevolcanic rocks in the arc. Cumulate xenoliths form a progressiveseries in modal mineralogy from ultramafic, hornblende-bearingolivine clinopyroxenite to both hornblende-bearing and hornblende-freegabbros. The cumulate hornblende gabbro xenoliths are typicalof those found in island arc andesites worldwide. Xenolithicinclusions without cumulate textures, here termed compositexenoliths, are characterized by forsteritic olivine, zoned Cr-diopsideand hornblende, and are interpreted to have resulted from reactionand chilling upon magma mixing at depth. The olivine and clinopyroxene in both cumulate and compositexenoliths show the largest and the most complete variation trendsfor Ni, Cr, and FeO/MgO ratio yet reported in igneous xenolithsfrom island arc volcanic rocks. Variation of Ni in olivine indicatesthat the parent magmas for the xenoliths had minimum MgO contentsof 9 wt. per cent. Variation of Cr in clinopyroxene indicatesthat the magmas were basaltic rather than picritic, probablyin equilibrium with spinel lherzolite at near Moho depths. Successiveinjections of batches of primary melt into a magma chamber fractionatingolivine and clinopyroxene can reproduce observed compatibleelement depletion trends. A steady-state process of cotecticcrystallization in a magma chamber continually replenished withbasaltic magma is a possible mechanism for producing large accumulationsof olivine and clinopyroxene, suggesting that Alaskan-type ultramaficcomplexes are related to hydrous basaltic magmas in island arcs.This steady-state open-system crystallization process can alsoyield the abundant high-alumina basalt type in the Aleutianarc. Continued crystallization of high-alumina basalt in lowercrustal magma chambers, recorded in a mineralogically coherentseries of pyroxenite to hornblende gabbro xenoliths, can yieldbasaltic to andesitic magmas of the calc-alkaline series. No xenoliths with a sedimentary protolith have been found atMt Moffett, evidence that the arc crust is igneous in origin,with the lower crust formed of gabbro crystallized from mantle-derivedmelts. Ultramafic cumulates may reside in both the lower crustor upper mantle beneath the arc. A model is proposed wherebythe cumulate crystallization products of hydrous, mantle beneaththe arc. A model is define the upper mantle and lower crustof the arc over time.The net composition added to the crustof the arc is that of high-alumina basalt.  相似文献   

3.
石板墩堆晶岩位于中祁连地块西段党河断裂带北侧,主要由橄榄岩、蛇纹石化橄辉岩和辉长岩组成,具有多旋回、多韵律层的产出特征。辉长岩LA ICP MS锆石U Pb年龄为(4865 ± 33) Ma。岩石地球化学结果显示,蛇纹石化橄辉岩和辉长岩配分型式十分相似,具有富集大离子亲石元素、亏损高场强元素、LREE相对富集、HREE平坦型分布以及正Eu异常(Eu/Eu*=097~304)的特点。研究结果表明,蛇纹石化橄辉岩、辉长岩为同源岩浆作用的产物,源区为被俯冲流体交代过的软流圈地幔,形成于火山弧环境,是在岩浆作用过程中不断发生堆晶作用,并在堆晶之后再次泵入混合大量新的玄武岩浆反复进行所形成。结合区域大地构造背景,认为中祁连西段是早古生代早期在残留的微陆块基础上形成的一个火山弧增生杂岩地体。  相似文献   

4.
Gabbroic intrusions of the El-Aradiya area are a part of the Neoproterozoic basement cropping out in the central Eastern Desert of Egypt. They are composed mainly of gabbroic cumulates (diopside-plagioclase cumulate and plagioclase-augite cumulate) and fine-grained noncumulate gabbro. Mineral chemistry data indicate that the plagioclase core compositions of the gabbroic cumulates range between An90 and An60, whereas fine-grained noncumulate gabbro plagioclase core compositions are An61−56 and rim compositions are An54−42. The clinopyroxenes are diopside and augite in the gabbroic cumulate, and augite in the fine-grained noncumulate gabbro. Chemical re-equilibration between pyroxenes of gabbroic cumulates vary from 1150-900°C and for fine-grained noncumulate gabbro range from 1200-1100°C. The amphiboles are calcic, varying from tschermakite and tschermakitic hornblende, and Mg-hornblende in the gabbroic cumulate and only Mg-hornblende in the fine-grained noncumulate gabbro. They indicate an island-arc tholeiitic setting for gabbroic intrusions of the El-Aradiya area. Major and trace element data suggest arc tholeiite characters, a comagmatic suite and subduction-related magma with enrichment of LILE and depletion in HFSE relative to MORB. The estimated parent magma is similar to tholeiitic Aleutian arc primary magma. The gabbroic intrusions are analogous to intrusions emplaced in an immature island-arc setting in which the oceanic crust was thin.  相似文献   

5.
The peridotitic and gabbroic rocks described occur a) as a tectonically emplaced layered body in Piton des Neiges volcano, b) as blocks in basaltic agglomerate, Piton des Neiges, and c) as nodular inclusions in lavas of both Piton des Neiges and Piton de la Fournaise volcanoes. All are associated with the olivine basalts of the early shield-forming growth stages and not later alkaline lavas, thereby contrasting with the Hawaiian situation. Rock-types include dunite, clinopyroxenite, wehrlite, feldspathic wehrlite, olivine eucrite, allivalite, (bytownite) anorthosite and gabbro. The peridotites and most of the gabbroic rocks are inferred to be cumulates formed in floored magma chambers occurring at depths from 30 km upwards. The inclusion suite is probably derived from repetitive layered units consisting predominantly of ol + sp cumulates with sporadic development of ol + cpx±sp and ol + cpx + plag cumulate horizons.  相似文献   

6.
The Cordillera del Paine pluton in the southernmost Andes of Chile represents a deeply dissected magma chamber where mafic magma intruded into crystallizing granitic magma. Throughout much of the 10x15 km pluton, there is a sharp and continuous boundary at a remarkably constant elevation of 1,100 m that separates granitic rocks (Cordillera del Paine or CP granite: 69–77% SiO2) which make up the upper levels of the pluton from mafic and comingled rocks (Paine Mafic Complex or PMC: 45–60% SiO2) which dominate the lower exposures of the pluton. Chilled, crenulate, disrupted contacts of mafic rock against granite demonstrate that partly crystallized granite was intruded by mafic magma which solidified prior to complete crystallization of the granitic magma. The boundary at 1,100 m was a large and stable density contrast between the denser, hotter mafic magma and cooler granitic magma. The granitic magma was more solidified near the margins of the chamber when mafic intrusion occurred, and the PMC is less disrupted by granites there. Near the pluton margins, the PMC grades upward irregularly from cumulate gabbros to monzodiorites. Mafic magma differentiated largely by fractional crystallization as indicated by the presence of cumulate rocks and by the low levels of compatible elements in most PMC rocks. The compositional gap between the PMC and CP granite indicates that mixing (blending) of granitic magma into the mafic magma was less important, although it is apparent from mineral assemblages in mafic rocks. Granitic magma may have incorporated small amounts of mafic liquid that had evolved to >60% SiO2 by crystallization. Mixing was inhibited by the extent of crystallization of the granite, and by the thermal contrast and the stable density contrast between the magmas. PMC gabbros display disequilibrium mineral assemblages including early formed zoned olivine (with orthopyroxene coronas), clinopyroxene, calcic plagioclase and paragasite and later-formed amphibole, sodic plagioclase, mica and quartz. The early formed gabbroic minerals (and their coronas) are very similar to phenocrysts in late basaltic dikes that cut the upper levels of the CP granite. The inferred parental magmas of both dikes and gabbros were very similar to subalkaline basalts of the Patagonian Plateau that erupted at about the same time, 35 km to the east. Mafic and silicic magmas at Cordillera del Paine are consanguineous, as demonstrated by alkalinity and trace-element ratios. However, the contemporaneity of mafic and silicic magmas precludes a parent-daughter relationship. The granitic magma most likely was derived by differentiation of mafic magmas that were similar to those that later intruded it. Or, the granitic magma may have been contaminated by mafic magmas similar to the PMC magmas before its shallow emplacement. Mixing would be favored at deeper levels when the cooling rate was lower and the granitic magma was less solidified.  相似文献   

7.
The Mount Stuart batholith is a Late Cretaceous calc-alkaline pluton composed of rocks ranging in composition from two-pyroxene gabbro to granite. Quartz diorite is most abundant. This batholith may represent the plutonic counterpart of the high-alumina basalt association. A petrogenetic model is developed in which this intrusive series evolved from one batch of magnesian high-alumina basalt, represented by the oldest intrusive phase, by successive crystal fractionation of ascending residual magma. However, the possibility that this intrusive suite originated from an andésite (quartz diorite) parent by fractionation cannot be excluded.Computer modeling of this intrusive sequence provides a quantitative evaluation of the sequential change of magma composition. These calculations clearly indicate that the igneous suite is consanguineous, and that subtraction of early-formed crystals from the oldest rock is capable of reproducing the entire magma series with a remainder of 2–3% granitic liquid. This model requires that large amounts of gabbroic cumulate remain hidden at depth- an amount equal to approximately 8–10X the volume of the exposed batholith. Mass balances between the amounts of cumulate and residual liquid calculated compare favorably with the observed amounts of intermediate rocks exposed in the batholith, but not with the mafic rocks.Mafic magmas probably fractionated at depth by crystal settling, whereas younger quartz diorite and more granitic magmas underwent inward crystallization producing gradationally zoned plutons exposed at present erosional levels.  相似文献   

8.
The Longwoods Complex of Southland, New Zealand is part of an extensive terrane consisting of intrusives, volcanics, and sediments, which outcrops in the southern and north-western portions of the South Island. This terrane represents a volcanic arc which was active from Permian to Jurassic times (Grindley, 1958; Challis, 1968, 1969; Coombs et al., 1976). Between Pahia Point and Oraka Point on the southern coast of the South Island a section across the Longwoods Complex is well exposed and intrusives ranging in composition from ultrabasic cumulate rock, high-Al gabbro and gabbroic diorite to quartz diorite and granite outcrop. Two models have been considered for the origin of the rocks of the Pahia Point-Oraka Point section: (a) the rocks constitute one suite, the members of which are related by a crystal fractionation process; (b) the rocks constitute two suites which are not directly related. The ultrabasic rocks, and quartz diorites are complementary and are derived from a high-Al gabbro parent by crystal fractionation involving pyroxene, olivine, plagioclase and hornblende, but considerations of viscosity and the geochemistry of the granite preclude derivation of the high-Si rocks by continuation of the crystal fractionation model. Furthermore, the quartz-diorites are of two types: xenolith bearing foliated quartz-diorites and xenolith deficient unfoliated types. The latter rock type appears to group with the gabbros on variation diagrams and partitioning of Ti between mica and amphibole supports the view that two distinct suites of rocks are involved: (a) a suite derived by fractional crystallization from a high-Al gabbro parent and consisting of cumulate ultramafic rocks, high-Al gabbro, gabbroic diorite and quartz-diorite; (b) a suite of foliated quartz diorites, formed by partial melting of lower crustal igneous rocks. The xenoliths in the foliated quartz-diorites represent modified residue left after partial melting. Melt and residue have unmixed to varying degrees during diapiric rise and a range of compositions has resulted. The association of the two suites is tectonic. Gabbroic melts are generated in the lithosphere during plate subduction beneath a continental margin and rise of these melts into the lower continental crust results in partial melting and generation of quartz-diorite magmas.  相似文献   

9.
The Mersin ophiolite, represented by approximately 6-km-thick oceanic lithospheric section on the southern flank of the Taurus calcareous axis, formed in the Mesozoic Neo-Tethyan ocean some time during Late Cretaceous in southern Turkey. The ultramafic and mafic cumulates having over 3 km thickness consist of dunite ± chromite, wehrlite, clinopyroxenite at the bottom and pass into gabbroic cumulates in which leucogabbro, olivine-gabbro and anorthosite are seen. Crystallization order is olivine (Fo91−80) ± chromian spinel (Cr# 60-80), clinopyroxene (Mg#95−77), plagioclase (An95.6−91.6) and orthopyroxene (Mg#68−77). Mineral chemistry of ultramafic and mafic cumulates suggest that highly magnesian olivines, clinopyroxenes and absence of plagioclase in the basal ultramafic cumulates are in good agreement with products of high-pressure crystal fractionation of primary basaltic melts beneath an island-arc environment. Major, trace element geochemistry of the cumulative rocks also indicate that Mersin ophiolite was formed in an arc environment. Coexisting Ca-rich plagioclase and Forich olivine in the gabbroic cumulates show arc cumulate gabbro characteristics. Field relations as well as the geochemical data support that Mersin ophiolite formed in a supra-subduction zone tectonic setting in the southern branch of the Neo-Tethys in southern Turkey.  相似文献   

10.
Late Quaternary andesitic magmas in New Zealand contain complexly zoned antecrysts and glomerocrysts that are not in equilibrium with either the host whole rock compositions or siliceous groundmass glass and glass inclusions. Glass inclusions represent partial melts of mafic to gabbroic cumulates in the lower crust that mix with restite crystals, or cumulates from earlier magma batches. Assimilation of partial melts of mid-crustal rocks, represented by glass in crustal xenoliths, contributes a crustal component to the andesites. Magmas at Egmont are stored at about the brittle/ductile transition at about 10 km depth and variability in the composition of erupted material is a function of the composition of the recharging magma, and which parts of the storage system are tapped during the eruption. At Taranaki recharge occurs on a c. 1400 year cycle while interactions within the storage give rise to shorter period events. A similar process on a less well constrained timescale operates at Ruapehu. Andesites are therefore complex mixtures of fractionated mantle basalts, siliceous partial melts of both the lower crust and underplated cumulates, restite and cumulate crystals. Further modification occurs by interaction with partial melts of lower to middle crustal basement as geotherms increase with time.  相似文献   

11.
Wadi El-Markh gabbro–diorite complex is composed of pyroxene hornblende gabbros, hornblende gabbros, diorites and quartz diorites. According to their bulk rock geochemistry and mineral chemistry, the gabbroic and dioritic rocks represent fractionates along a single line of descent and crystallized from a calc-alkaline mafic magma. When compared to the primitive mantle, all members of the gabbroic–dioritic rock suite are enriched in the large ion lithophile elements relative to the high field strength elements and display distinctive negative Nb and P2O5 anomalies. This signals an arc setting. Fractionation modeling involving the major elements reveals that the hornblende gabbros were generated from the parent pyroxene hornblende gabbros by 61.86% fractional crystallization. The diorites were produced from the hornblende gabbros by fractional crystallization with a 58.97% residual liquid, whereas the quartz diorites were formed from the diorites by 26.58% fractional crystallization. According to geothermobarometry based on amphibole mineral chemistry, the most primitive pyroxene hornblende gabbros crystallized at ~830 °C/~5 kbar. The crystallization conditions of the quartz diorites were estimated at ~570 °C/~2 kbar. In consequence the Wadi El-Markh gabbro–diorite complex represents a single magmatic suite of which fractionates crystallized in progressively shallower levels of an arc crust.  相似文献   

12.
Gabbro inclusions from Tindfjallajökull are divided into two types: I. Panidiomorphic gabbros of non-cumulative origin composed of plagioclase + olivine ± clinopyroxene and interstitil vesicular glass. They have formed in equilibrium with the host magma and may either represent a marginal facies or a highly solidified magma body. In the latter case the host magma or part of it could be mobilized interstitial liquid. II. Allotriomorphic-hypidiomorphic tholeiitic olivine gabbro and diorite xenoliths with scarce Ti-pargasite which have undergone less than 10% partial melting in the host magma forming melts of alkali basaltic or Hekla andesite-like compositions dependent on the original mineral assemblage. Such liquids, enriched in K2O and possibly other incompatible elements, may contaminate basaltic magmas rising slowly through a gabbroic lower crust. Large scale production of andesites by partial melting of such rocks is not possible but would need more hydrous or differentiated source rocks.  相似文献   

13.
The Newark Island layered intrusion is a composite layered intrusion within the Nain anorthosite complex, Labrador. The intrusion comprises a lower layered series (LS) dominated by troctolites, olivine gabbros and oxide-rich cumulates and an upper hybrid series (HS) characterized by a wide range of mafic, granitic and hybrid cumulates and discontinuous layers of chilled mafic rocks (Wiebe 1988). The HS crystallized from a series of replenishments of both silicic and basic magmas. The LS crystallized from periodically replenished basic magmas. The LS has a lower zone that consists mainly of olivine-plagioclase cumulates and contains minor cryptic reversals in mineral compositions that resulted from replenishments of relatively primitive magma. An upper zone is dominated by olivine-plagioclaseaugite-ilmenite cumulates. Cumulus titanomagnetite and pyrrhotite occur within some oxide-rich cumulates, and the stratigraphically highest layers contain cumulus apatite. At intermediate levels in the sequence, cumulus inverted pigeonite occurs in place of olivine. Several prominent regressions in the stratigraphy of the upper zone are marked by fine-grained troctolitic layers with much higher Mg no. [100 MgO/(MgO+FeO)] and anorthite than underlying cumulates. These layers coarsen upward and grade back to oxide-bearing olivine gabbros within thicknesses ranging from 10 cm to 15 m. Dikes that cut the LS have major- and trace-element compositions that strongly suggest that they are feeders for the replenishments. In the lower zone when olivine and plagioclase were the only cumulus phases, replenishments were less dense than the resident magma and rose as plumes and mixed with it. Precipitation of cumulus oxides in the upper zone lowered the density of resident magma so that subsequent replenishments were more dense than resident magma. Replenishments that occurred after oxides began to precipitate had small injection velocities. These post-oxide injections flowed along the interface between resident magma and the cumulate pile and precipitated flow-banded, fine-grained troctolites.  相似文献   

14.
《International Geology Review》2012,54(11):1401-1417
The high-pressure (HP) Piaxtla Suite at Tehuitzingo contains peridotites, gabbros, and serpentinized peridotites, as well as granitoids and metasedimentary rocks. The HP mafic rocks are characterized by low SiO2 (38–52 wt.%) and high Mg# (~48–70), Ni (100–470 ppm), and Cr (180–1750 ppm), typical of cumulate compositions. Trace elements and rare earth element (REE) primitive mantle-normalized patterns display generally flat profiles, indicative of derivation from a primitive mantle with two distinct patterns: (1) gabbroic patterns are characterized by a positive Eu anomaly, low REE abundances, and slightly depleted high REE (HREE) relative to low REE (LREE), typical of cumulus olivine, pyroxene, and plagioclase; and (2) mafic-intermediate gabbroic patterns exhibit very flat profiles characteristic of olivine and clinopyroxene as cumulus minerals. Their Nb/Y and Zr/TiO2 ratios suggest a subalkaline character, whereas low Ti/V ratios indicate that the Tehuitzingo cumulates are island arc tholeiitic basalts that resemble modern, immature oceanic, forearc magmas. These cumulates have high values of ? Nd(t) = 5.3–8.5 and 147Sm/144Nd = 0.18–0.23, which renders calculations of model ages meaningless. Our data are consistent with the Tehuitzingo arc rocks being part of a tectonically extruded Devonian–early Carboniferous arc developed along the west margin of Gondwana.  相似文献   

15.
The Chilas Complex in the Kohistan Terrane, Pakistan, is a huge basic intrusion, about 300 km long and up to 40 km wide, which is regarded as tilted island-arc type crust. It has been interpreted as the magma chamber root zone of the Kohistan Island Arc. The Chilas Complex is composed mainly of gabbronorite (main facies) and several masses of ultramafic–mafic–anorthosite (UMA) association. The UMA association consists mainly of olivine-dominant cumulate (dunite, wehrlite, lherzolite) and plagioclase-dominant cumulate (troctolite, olivine gabbro, gabbronorite, anorthosite), with minor amount of pyroxene-dominant cumulate (clinopyroxenite, websterite).The major element geochemistry of the gabbronorite (main facies) and rocks of the UMA association, plotted on Harker diagrams, are explained by a cumulate and a non-cumulate model, respectively. Namely, the UMA association is explained as variable crystal cumulates from a primary magma and the gabbronorite of the main facies is explained as due to the fractionation of the residual melt. Chemical variations of major, trace and rare earth elements for the gabbronorite of the main facies in the Chilas Complex are explained by fractional crystallization and accumulation of plagioclase, orthopyroxene and clinopyroxene from the residual melt of the primary magma.  相似文献   

16.
New major and trace element data on the Proterozoic Chimalpahad layered anorthositic Complex and associated basaltic amphibolites of the Nellore Schist Belt of South India provide new constraints on their petrogenesis and geodynamic setting. The Complex consists of layered anorthosites, leucogabbros, gabbros, ultramafic rocks and is spatially associated with basaltic amphibolites. Despite deformation and metamorphism, primary cumulate textures and igneous layering are locally well preserved throughout the Complex. Whereas the amphibolites display diverse REE systematics, the Chimalpahad anorthositic–gabbroic rocks are characterized by moderately depleted to strongly enriched LREE patterns and by flat to depleted HREE patterns. The field relations, major and trace element compositions of the basaltic amphibolites suggest that they are petrogenetically related to the anorthositic–gabbroic rocks by fractional crystallization. The anorthositic rocks and the basaltic amphibolites share the depletion of Nb relative to Th and La on primitive mantle-normalized diagrams. They exhibit signatures of arc magmatic rocks, such as high LILE and LREE relative to the HFSE and HREE, as well as high Ba/Nb, Ba/Zr, Sr/Y, La/Yb ratios that mimic chondrite-normalized REE and primitive mantle-normalized trace element patterns of arc magmas. Similarly, on log-transformed tectonic discrimination diagrams, the Chimalpahad rocks plot within the field of Phanerozoic magmatic arcs, consistent with a subduction zone origin. On the basis of field relations and geochemical characteristics, the Chimalpahad Complex is interpreted as a fragment of a magma chamber of an island arc, which is tectonically juxtaposed against its original volcanic cover. A new preliminary Sm–Nd date of anorthosite from the Chimalpahad Complex indicates a model age of 1170 Ma.  相似文献   

17.
The Upper Proterozoic ophiolite complex of Bou Azzer, Morocco, includes ultramafic rocks, cumulate gabbros, sheeted dykes, pillow lavas and diorite-quartz diorite intrusions and an overlying volcano-sedimentary sequence. The gabbroic cumulates, basaltic flows and dykes have compositions similar to recent ocean-floor rocks (N- and/or T-type). Among other features, they have comparable light REE-depleted patterns and relations of Ti-Zr and La-Nb. Although fractional crystallization played an important role in the evolution of these rocks, the large variations in their chemical compositions require generation from a heterogeneous upper mantle source and/or by a dynamic partial melting process. Diorites, quartz diorites and the volcanic rocks of the overlying sequence are calc-alkaline, genetically unrelated to the tholeiitic suite and indicative of an island arc setting. A possible tectonic model for the ophiolite complex is a marginal basin just behind a still active island arc.  相似文献   

18.
The Pleasant Bay layered gabbro–diorite intrusion, locatedon the coast of Maine between Bar Harbor and Machias, is roughlyoval in plan, measuring 12 km by 20 km. Gravity data, contactrelations, and internal layering suggest that it is basinformin structure with a maximum thickness of {small tilde}3 km.Its roof and upper parts have been lost through erosion. Whereit is in contact with underlying granite, the base of the intrusiontypically consists of strongly chilled gabbro with convex-downwardlobate forms, suggesting that the granite was incompletely solidifiedwhen the gabbro was emplaced. Roughly 90% of the exposed rocksare weakly layered gabbro and mafic diorite, both of which varywidely in grain-size and texture. Layers and lenses of medium-grainedleucocratic diorite to granodiorite are widely intercalatedwith the chilled mafic rocks and commonly contain partly digestedmafic inclusions; they also commonly contain zones of pillow-likebodies of gabbro chilled on all margins. The dioritic rocksare consistently topped by gabbroic layers with chilled lobatebases and commonly appear to feed granitic pipes and diapirsinto overlying gabbro. Much of the intrusion can be subdividedinto hundreds of macrorhythmic units (from 1 to 100 m thick)consisting of basally chilled gabbro that grades upward to dioriteor highly evolved leucocratic silicic cumulates. Basaltic dikesare abundant both in the underlying granite and in the layeredgabbro–diorites; they have appropriate compositions tobe feeders for chilled gabbroic layers in the Pleasant Bay intrusion. The layered rocks of the Pleasant Bay intrusion record hundredsof basaltic injections into a chamber with resident silicicmagma. Small injections produced chilled gabbroic layers andpillows within silicic cumulates. Larger infusions of basalticmagma produced temporary compositional stratification and episodesof double-diffusive convection within the chamber. Althoughfractional crystallization produced compositional variationin much of the gabbro, units that grade from chilled gabbroat the base to highly silicic cumulates at the top provide cumulaterecords of magma stratification and hybridization along a double-diffusiveinterface between basaltic and silicic magmas. The intrusionprovides a superb plutonic record of events that have oftenbeen inferred for silicic eruptive centers. Mafic–siliciclayered intrusions comparable with the Pleasant Bay are morewidespread than has generally been appreciated.  相似文献   

19.
The assembly of Late Neoproterozoice Cambrian supercontinent Gondwana involved prolonged subduction and accretion generating arc magmatic and accretionary complexes, culminating in collision and formation of high grade metamorphic orogens. Here we report evidence for mafic magmatism associated with post-collisional extension from a suite of gabbroic rocks in the Trivandrum Block of southern Indian Gondwana fragment. Our petrological and geochemical data on these gabbroic suite show that they are analogous to high Fe tholeiitic basalts with evolution of the parental melts dominantly controlled by fractional crystallization. They display enrichment of LILE and LREE and depletion of HFSE with negative anomalies at Zre Hf and Ti corresponding to subduction zone magmatic regime. The tectonic affinity of the gabbros coupled with their geochemical features endorse a heterogeneous mantle source with collective melt contributions from sub-slab asthenospheric mantle upwelling through slab break-off and arc-related metasomatized mantle wedge, with magma emplacement in subduction to post-collisional intraplate settings. The high Nb contents and positive Nbe Ta anomalies of the rocks are attributed to inflow of asthenospheric melts containing ancient recycled subducted slab components and/or fusion of subducted slab materials owing to upwelling of hot asthenosphere. Zircon grains from the gabbros show magmatic crystallization texture with low U and Pb content. The LA-ICPMS analyses show 206 Pb/238 U mean ages in the range of 507-494 Ma suggesting Cambrian mafic magmatism. The post-collisional mafic magmatism identified in our study provides new insights into mantle dynamics during the waning stage of the birth of a supercontinent.  相似文献   

20.
Cliff S.J. Shaw   《Lithos》1997,40(2-4):243-259
The Coldwell alkaline complex is a large (> 350 km2) gabbro and syenite intrusion on the north shore of Lake Superior. It was emplaced at 1108 Ma during early magmatic activity associated with the formation of the Mid-Continent Rift of North America. The eastern gabbro forms a partial ring dyke on the outer margin of the complex and consists of at least three discrete intrusions. The largest of these is the layered gabbro that comprises a 300 m thick fine- to medium-grained basal unit overlain by up to 1100 m of variably massive to layered gabbroic cumulates which vary from olivine gabbro to anorthosite. Several xenoliths of Archaean metamorphic rocks that range in size from 10's to 100's of meters are present in the central part of the intrusion. Within discrete horizons in the layered gabbro are many centimeter- to meter-scale, gabbroic xenoliths. The main cumulus minerals, in order of crystallization, are plagioclase, olivine and clinopyroxene ± Fe-Ti oxides. Biotite and Fe-Ti-oxide are the dominant intercumulus phases. Orthopyroxene occurs not as a cumulus phase but as peritectic overgrowths on cumulus olivine. A detailed petrographic and mineral chemical study of samples from two stratigraphically controlled traverses through the layered gabbro indicates that the stratigraphy cannot be correlated along the 33 km strike of the ring dyke. Mineral compositions show both normal and reversed fractionation trends. These patterns are interpreted to record at least three separate intrusions of magma into restricted dilatant zones within the ring dyke possibly associated with ongoing caldera collapse. Calculations of parental melt composition using mineral — melt equilibria show that even the most primitive gabbros crystallized from an evolved magma with mg# of 0.42-0.49. The presence of orthopyroxene overgrowths on cumulus olivine suggests rising silica activity in the melt during crystallization and implies a subalkaline parentage for the layered gabbro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号