首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
DC and AC electrical conductivities were measured on samples of two different crystals of the mineral aegirine (NaFeSi2O6) parallel () and perpendicular () to the [001] direction of the clinopyroxene structure between 200 and 600 K. Impedance spectroscopy was applied (20 Hz–1 MHz) and the bulk DC conductivity DC was determined by extrapolating AC data to zero frequency. In both directions, the log DC – 1/T curves bend slightly. In the high- and low-temperature limits, differential activation energies were derived for measurements [001] of EA 0.45 and 0.35 eV, respectively, and the numbers [001] are very similar. The value of DC [001] with DC(300 K) 2.0 × 10–6 –1cm–1 is by a factor of 2–10 above that measured [001], depending on temperature, which means anisotropic charge transport. Below 350 K, the AC conductivity () (/2=frequency) is enhanced relative to DC for both directions with an increasing difference for rising frequencies on lowering the temperature. An approximate power law for () is noted at higher frequencies and low temperatures with () s, which is frequently observed on amorphous and disordered semiconductors. Scaling of () data is possible with reference to DC, which results in a quasi-universal curve for different temperatures. An attempt was made to discuss DC and AC results in the light of theoretical models of hopping charge transport and of a possible Fe2+ Fe3+ electron hopping mechanism. The thermopower (Seebeck effect) in the temperature range 360 K < T <770 K is negative in both directions. There is a linear – 1/T relationship above 400 K with activation energy E 0.030 eV [001] and 0.070 eV [001]. 57Fe Mössbauer spectroscopy was applied to detect Fe2+ in addition to the dominating concentration of Fe3+.  相似文献   

2.
The Mount Lofty Ranges comprises interlayered marbles, metapsammites, and metapelites that underwent regional metamorphism during the Delamarian Orogeny at 470–515 Ma. Peak metamorphic conditions increased from lowermost biotite grade (350–400°C) to migmatite grade (700°C) over 50–55 km parallel to the lithological strike of the rocks. With increasing metamorphic grade, 18O values of normal metapelites decrease from 14–16 to as low as 9.0, while 18O values of calcite in normal marbles decrease from 22–24 to as low as 13.2 These isotopic changes are far greater than can be accounted for by devolatilisation, implying widespread fluid-rock interaction. Contact metamorphism appears not to have affected the terrain, suggesting that fluid flow occurred during regional metamorphism. Down-temperature fluid flow from synmetamorphic granite plutons (18O=8.4–8.6) that occur at the highest metamorphic grades is unlikely to explain the resetting of oxygen isotopes because: (a) there is a paucity of skarns at granite-metasediment contacts; (b) the marbles generally do not contain low-XCO2 mineral assemblages; (c) there is insufficient granite to provide the required volumes of water; (d) the marbles and metapelites retain a several permil difference in 18O values, even at high metamorphic grades. The oxygen isotope resetting may be accounted for by along-strike up-temperature fluid flow during regional metamorphism with time-integrated fluid fluxes of up to 5x109 moles/m2 (105 m3/m2). If fluid flow occurred over 105–106 years, estimated intrinsic permeabilities are 10-20 to 10-16m2. Variations in 18O at individual outcrops suggest that time-integrated fluid fluxes and intrinsic permeabilities may locally have varied by at least an order of magnitude. A general increase in XCO2 values of marble assemblages with metamorphic grade is also consistent with the up-temperature fluid-flow model. Fluids in the metapelites may have been derived from these rocks by devolatilisation at low metamorphic grades; however, fluids in the marbles were probably derived in part from the surrounding siliceous rocks. The marble-metapelite boundaries preserve steep gradients in both 18O and XCO2 values, suggesting that across-strike fluid fluxes were much lower than those parallel to strike. Up-temperature fluid flow may also have formed orthoamphibole rocks and caused melting of the metapelites at high grades.This paper is a contribution to IGCP Project 304 Lower Crustal Processes  相似文献   

3.
Hydrothermally-altered mesozonal synmetamorphic granitic rocks from Maine have whole-rock 18O (SMOW) values 10.7 to 13.8. Constituent quartz, feldspar, and muscovite have 18O in the range 12.4 to 15.2, 10.0 to 13.2, and 11.1 to 12.0, respectively. Mean values of Q–F ( 18Oquartz 18Ofeldspar)=2.4 and Q–M ( 18Oquartz 18Omuscovite)=3.3 are remarkably uniform (standard deviations of both are 0.2). Measured Q–F and Q–M values demonstrate that the isotopic compositions of the minerals are altered from primary magmatic 18O values but that the minerals closely approached oxygen isotope exchange equilibrium at subsolidus temperatures. Analyzed muscovites have D (SMOW) values in the range –65 to –82.Feldspars in the granitic rocks are mineralogically altered to either (a) muscovite+calcite, (b) muscovite+calcite+epidote, (c) muscovite+epidote, or (d) muscovite only. A consistent relation exists between the assemblage of secondary minerals and the oxygen isotope composition of whole rocks, quartz, and feldspar. Rocks with assemblage (a) have whole-rock 18O>12.1 and contain quartz and feldspar with 18O>13.8 and >11.4, respectively. Rocks with assemblages (b), (c), and (d) have whole-rock 18O<11.4 and contain quartz and feldspar with 18O< 13.1 and <11.0, respectively. The correlation suggests that the mineralogical alteration of the rocks was closely coupled to their isotopic alteration.Three mineral thermometers in altered granite suggest that the hydrothermal event occurred in the temperature range 400°–150° C, 100°–150° C below the peak metamorphic temperature inferred for country rocks immediately adjacent to the plutons. Calculations of mineral-fluid equilibria indicate that samples with assemblage (a) coexisted during the event with CO2-H2O fluids of and 18O=10.8 to 12.2 while samples with assemblages (b), (c), or (d) coexisted with fluids of and 18O=9.4 to 10.1. Compositional variations of the hydrothermal fluids were highly correlated: fluids enriched in CO2 were also enriched in 18O. Because CO2 was added to the granites during hydrothermal alteration and because fluids enriched in CO2 were enriched in 18O, some or all of the variation in 18O of altered granites may have been caused by addition of 18O to the rocks during the hydrothermal event. The source of both the CO2 and 18O could have been high-18O metasedimentary country rocks. The inferred change in isotopic composition of the granites is consistent with depletion of the metacarbonate rocks in 18O close to the plutons and with large volumes of fluid that were inferred from petrologic data to have infiltrated the metacarbonate rocks during metamorphism.A close approach of minerals to oxygen isotope exchange equilibrium in altered mesozonal rocks from Maine is in marked contrast to hydrothermally-altered epizonal granites whose mineral commonly show large departures from oxygen isotope exchange equilibrium. The difference in oxygen isotope systematics between altered epizonal granites and altered mesozonal granites closely parallels a differences between their mineralogical systematics. Both differences demonstrate the important control that depth exerts on the products of hydrothermal alteration. Deeper hydrothermal events occur at higher temperature and are longer-lived. Minerals and fluid have sufficient time to closely approach both isotope exchange and heterogeneous chemical equilibrium. Shallower hydrothermal events occur at lower temperatures and are shorter-lived. Generally there is insufficient time for fluid to closely approach equilibrium with all minerals.  相似文献   

4.
Peak metamorphic temperatures for the coesite-pyrope-bearing whiteschists from the Dora Maira Massif, western Alps were determined with oxygen isotope thermometry. The 18O(smow) values of the quartz (after coesite) (18O=8.1 to 8.6, n=6), phengite (6.2 to 6.4, n=3), kyanite (6.1, n=2), garnet (5.5 to 5.8, n=9), ellenbergerite (6.3, n=1) and rutile (3.3 to 3.6, n=3) reflect isotopic equilibrium. Temperature estimates based on quartz-garnet-rutile fractionation are 700–750 °C. Minimum pressures are 31–32 kb based on the pressure-sensitive reaction pyrope + coesite = kyanite + enstatite. In order to stabilize pyrope and coesite by the temperature-sensitive dehydration reaction talc+kyanite=pyrope+coesite+H2O, the a(H2O) must be reduced to 0.4–0.75 at 700–750 °C. The reduced a(H2O) cannot be due to dilution by CO2, as pyrope is not stable at X(CO2)>0.02 (T=750 °C; P=30 kb). In the absence of a more exotic fluid diluent (e.g. CH4 or N2), a melt phase is required. Granite solidus temperatures are 680 °C/30 kb at a(H2O)=1.0 and are calculated to be 70°C higher at a(H2O)=0.7, consistent with this hypothesis. Kyanite-jadeite-quartz bands may represent a relict melt phase. Peak P-T-f(H2O) estimates for the whiteschist are 34±2 kb, 700–750 °C and 0.4–0.75. The oxygen isotope fractionation between quartz (18O=11.6) and garnet (18O=8.7) in the surrounding orthognesiss is identical to that in the coesitebearing unit, suggesting that the two units shared a common, final metamorphic history. Hydrogen isotope measurements were made on primary talc and phengite (D(SMOW)=-27 to-32), on secondary talc and chlorite rite after pyrope (D=-39 to -44) and on the surrounding biotite (D=-64) and phengite (D=-44) gneiss. All phases appear to be in nearequilibrium. The very high D values for the primary hydrous phases is consistent with an initial oceanicderived/connate fluid source. The fluid source for the retrograde talc+chlorite after pyrope may be fluids evolved locally during retrograde melt crystallization. The similar D, but dissimilar 18O values of the coesite bearing whiteschists and hosting orthogneiss suggest that the two were in hydrogen isotope equilibrium, but not oxygen isotope equilibrium. The unusual hydrogen and oxygen isotope compositions of the coesite-bearing unit can be explained as the result of metasomatism from slab-derived fluids at depth.  相似文献   

5.
Zusammenfassung Strontioginorit (Sr, Ca)2B14O23 8 H2O mit Sr: Ca1,3:0,7 tritt in gut ausgebildeten Kristallen im Alteren Steinsalz von Reyershausen bei Göttingen auf. Es ergaben sich folgende Daten : 0 = 12,850 Å,b 0 = 14,48 Å,c 0, = 12,855, Å, = 101° 35, RaumgruppeP 2I/a,Z = 4, Dichte=2,25 gcm–3,n = 1,512,n /b = 1,524,n //[101] = 1,577.  相似文献   

6.
Because multidimensional ARMA processes have great potential for the simulation of geological parameters such as aquifer permeability, it was important to resolve which of two proposed alternative methods should be used for determining the two-dimensional weighting parameter, , for a unilateral ARMA (1, 0) process on a square net. Practical simulations demonstrates that the correct formulation is: =10/(1+ 10 2 where r,s is the correlation between lattice points at lagsr and s. When the simulations are performed with correlations of 0.8 or more a residual bias was detected which was found to be caused by a difference in the variance between the one- and two-dimensional models. This can be rectified by modifying the two- dimensional model as follows: zij=(zi–1, j + zi, j–1) + aij where 2=1/(1 + 10 2 ).  相似文献   

7.
The Tallberg deposit is situated in the Skellefte District in northern Sweden. It is a Palaeoproterozoic equivalent of Phanerozoic poryphyry-type deposits. The mineralization is situated within the Jörn granitoid complex and is associated with intrusive quartz-feldspar porphyries. The granitoids are coeval with mainly felsic volcanic rocks hosting several massive sulphide deposits. The alteration is generally of a mixed phyllic-propylitic type, but areas or zones associated with high gold grades exhibit phyllic alteration. Ore minerals are pyrite, chalcopyrite, sphalerite, magnetite, and trace amounts of molybdenite. In this stable isotope study, quartz, sericite, and chlorite from the alteration zones were sampled. The magmatic quartz has a 18O composition of + 6.2 to +6.7 whereas the quartz in the hydrothermal alteration zones have values ranging from +7.5 to +10.6. The calculated temperatures for this fractionation range from 430° to 520°C. The sericites have 18O ranging from +4.6 to +8.2 (average +6.6) and D -31 to -54 (average -41). Chlorites range from 18O +4.2 to +7.7 and D from –34 to –44. The range of 34S of 11 pyrite samples is +3.8 to +5.5 with an average of +4.6 ± 0.5, suggesting a relatively homogeneous sulphur source, probably of magmatic origin. Modelling waters in equilibrium with the minerals indicates early magmatic fluids with 18O of 6.5. This fluid mixed with a low 18O and high D fluid, which is tentatively identified as seawater. The 18O signature of sericite and chlorite also indicates significant water-rock exchange, explaining the positive 18O values for the waters in equilibrium with the hydrated minerals.  相似文献   

8.
Thermal treatments of anorthite carried out at up to 1,547° C show that the unit cell parameter changes as a function of the treatment temperature. The best fit curve found by non-linear least squares analysis is: =91.419-(0.327·10-6)T 2+(0.199·10-12)T 4-(0.391·10)T 6. The results obtained support significant Al,Si disorder (Al0.10, where Al=t 1(0)-1/3 [t 1(m)+t 2(0)+t 2(m)], Ribbe 1975), in anorthite equilibrated near the melting point and confirm a high temperature series differentiated from the low temperature series for calcic plagioclases in the An85–An100 range also. In the plot vs. An-content the high and low temperature curves intersect at An85 composition and progressively diverge in the An85–An100 range. The trends of the high and low temperature curves in this range are interpretable on the basis of the degree of Al, Si order in the average structures of calcic plagioclases.  相似文献   

9.
Sulfur isotope ratios have been determined in 27 selected volcanic rocks from Iceland together with their whole rock chemistry. The 34S of analyzed basalts ranges from –2.0 to +0.4 with an average value of –0.8 Tholeiitic and alkaline rocks exhibit little difference in 34S values but the intermediate and acid rocks analyzed have higher 34S values up to +4.2 It is suggested that the overall variation in sulfur isotope composition of the basalts is caused by degassing. The small range of the 34S values and its similarity to other oceanic and continental basalts, suggest that the depleted mantle is homogeneous in its sulfur isotope composition. The 34S of the depleted mantle is estimated to be within the range for undegassed oceanic basalts, –0.5 to +1.0  相似文献   

10.
Zusammenfassung 1Tc-Strontiohilgardit (Ca, Sr)2 [B5O8(OH)2,Cl] mit Ca : Sr etwa 1 : 1 ist ein neues Mineral der Hilgarditgruppe. Fundpunkt: Reyersbausen (9° 59,7 E, 51° 36,6 N), Grube Königshall-Hindenburg, Flöz Staßfurt in sylvinitischer Ausbildung.Konstanten : triklin-pedial,a 0=6,38 Å,b 0=6,480 Å,c 0=6,608 Å, =75,4°,=61,2°, =60,5°; tafelige-gestreckte Links- und Re chtskristalle, farblos, wasserunlöslich, piezoelektrisch. Härte 5–7, Dichte 2,99 g cm–3;n =1,638,n =1,639,n =1,670; 2V =19°.Neue Daten für die Hilgarditgruppe : 2 M (Cc)-Calciumhilgardit (=Hilgardit) =4 Ca2[B5O3(OH)2Cl], Raumgruppe Cc.3Tc-Calciumhilgardit (=Parahilgardit) = 3 Ca2[B5O3(OH)2Cl]; trinklin-pedial, 0=6,31 Å,b =6,484 Å,c 0=17,50 Å; =84,0°,=79,6°, =60,9°.Die Polymorphiebeziehungen sind geometrisch deutbar durch eine spezielle Art der Polytropie (Stapelung von Links- und Rechtskristallen im Elementarbereich).  相似文献   

11.
Zusammenfassung Mikrosondenanalysen und die Verfeinerung der Kristallstruktur zeigen, daß Sylvanit, AuAgTe4, aus Baia de Arie (=Offenbánya), Rumänien, eine stöchiometrische Zusammensetzung und eine geordnete Kristallstruktur besitzt (a=8,95(1) Å,b=4,478(5) Å,c=14,62(2) Å; =145,35(5)°;Z=2; RaumgruppeP2/c–C 2h 4 ). Das Au-Atom ist von sechs Te-Atomen in einer für die Oxidationszahl III charakteristischen [4+2]-Koordination umgeben. Um das Ag-Atom (Oxidationszahl I) sind ebenfalls sechs Te-Atome, jedoch in einer [2+2+2]-Koordination, angeordnet. Über gemeinsame Kanten bauen AuTe6- und AgTe6-Polyeder Schichten parallel (100) auf. Diese Schichten werden über Te2-Hanteln (Te–Te=2,82 Å) zu einem Gerüst verknüpft.
Crystal chemistry of natural tellurides. I: Refinement of the crystal structure of sylvanite, AuAgTe4
Summary Electron microprobe analyses and the refinement of the crystal structure indicate, that sylvanite, AuAgTe4, from Baia de Arie (=Offenbánya), Romania, has a stoichiometric composition and an ordered crystal structure (a=8.95(1) Å,b=4.478(5) Å,c=14.62(2) Å; =145.35(5)°;Z=2; space groupP2/c–C 2h 4 ). The Au atom is surrounded by six Te atoms in a [4+2] coordination as characteristic for oxidation state III. Around the Ag atom (oxidation state I) are also six Te atoms, but arranged in a [2+2+2] coordination. Via common edges the AuTe6 and AgTe6 polyhedra build up sheets parallel to (100). These sheets are combined to a network of Te2 dumbbells (Te–Te=2.82 Å).


Mit 2 Abbildungen  相似文献   

12.
Iron- and vanadium-bearing kyanites have been synthesized at 900 and 1100° C/20 kb in a piston-cylinder apparatus using Mn2O3/Mn3O4- and MnO/Mn-mixtures, respectively, as oxygen buffers. Solid solubility on the pseudobinary section Al2SiO5-Fe2SiO5(-V2SiO5) of the system Al2O3-Fe2O3(V2O3)-SiO2 extends up to 6.5 mole% (14mole %) of the theoretical end member FeSiO5(V2SiO5) at 900°C/20 kb. For bulk compositions with higher Fe2SiO5 (V2SiO5) contents the corundum type phases M2O3(M = Fe3+, V3+) are found to coexist with the Fe3+(V3+)-saturated kyanite solid solution plus quartz. The extent of solid solubility on the join Al2SiO5-Fe2SiO5 at 1 100°C was not found to be significantly higher than at 900° C. Microprobe analyses of iron bearing kyanites gave no significant indication of ternary solid solubility in these mixed crystals. Lattice constants a 0, b 0, c 0, and V0 of the kyanite solid solutions increase with increasing Fe2SiO5- and V2SiO5-contents proportionally to the ionic radii of Fe3+ and V3+, respectively, the triclinic angles ,, remain constant. Iron kyanites are light yellowish-green, vanadium kyanites are light green. Iron kyanites, (Al1.87 Fe 0.13 3+ )SiO5, were obtained as crystals up to 700 m in length.  相似文献   

13.
Zusammenfassung Rb/Sr-Altersbestimmungen an Biotiten aus Gneisen und Graniten des Moldanubikums lieferten übereinstimmende Alterswerte von 330–345 Millionen Jahren. Das Biotitalter eines vormoldanubischen Granat-Disthen-Gneises ergab sich zu 440 Millionen Jahren, das eines Metagranodiorits der Münchberger Gneismasse zu 385 Millionen Jahren. Zirkone aus einem moldamibischen Gneis zeigen nahezu konkordante Alter um 450 Millionen Jahre.Diese Ergebnisse deuten darauf hin, daß die Münchberger Masse sowie weite Teile des Moldanubikums eine frühvaristische Aufheizung, wahrscheinlich im Zuge regionaler Metamorphose, erlebt haben. Die Beziehungen dieser beiden stark metamorphen Komplexe zu den benachbarten weniger beanspruchten Sedimenten des Saxothuringikums (im Falle der Münchberger Masse) und des Barrandiums (im Falle des Moldanubikums) werden im Sinne einer varistischen Stockwerkstektonik erklärt. Die höheren Alterswerte scheinen wenigstens teilweise auf kaledonische Intrusionen hinzuweisen.
Rb/Sr biotite ages of Moldanubian gneisses and granites fall in the range of 330–345 million years (m.y.). The biotite age of a pre-Moldanubian garnetkyanite gneiss was found to be 440 m.y., that of a metagranodiorite of the Münchberg Mass 385 m.y. Zircons from a Moldanubian gneiss yielded nearly concordant ages of approximately 450 m.y.These results indicate that both the Münchberg Mass and large parts of the Moldanubicum have undergone considerable heating during early Variscan (=early Hercynian) time, probably in the course of regional metamorphism. The relations of these strongly metamorphosed complexes with the neighboring less affected sediments of the Saxothuringicum (in the case of the Münchberg Mass) and the Barrandium (in the case of the Moldanubicum) are presumed to be caused by different depths of metamorphism in Variscan time. Higher ages seem to be related at least partly to Caledonian intrusions.

Résumé Des déterminations de la teneur Rb/Sr dans les biotites des gneiss et des granites du Moldanubique ont fourni les indications d'un âge de 330 à 345 millions années. La biotite d'un gneiss à grenat et disthène prémoldanubique a donné l'âge de 440 m.a.; celle d'une métagranodiorite du massif gneissique de Münchberg a fourni l'âge de 450 m.a. Les zircons d'un gneiss moldanubique montrent l'âge approximatif de 450 m.a.Ces résultats indiquent que le gneiss de Münchberg ainsi qu'une grande partie du Moldanubique ont subi une métamorphose varisque ancienne. Les relations entre ces deux ensembles très métamorphiques et les sédiments moins affectés du Saxothuringien et du Barrandien s'expliquent par une tectonique varisque à plusieurs étages structuraux de nature différente. On suppose que les valeurs donnant un âge plus ancien indiquent des intrusions calédoniennes.

/, 330–345 . . -- 440, 385 . . 450 . . , . . .
  相似文献   

14.
Divariant oxide plus metal assemblages potentially make useful redox sensors for use in hydrothermal and other high pressure experiments. Here we report the calibration of the (Ni, Mn)O/Ni redox sensor in which the Ni/NiO (NNO) oxygen buffer is displaced to lower oxygen chemical potentials (O2), by the solid solution of MnO in the oxide phase. This assemblage was chosen because: (1) it covers a useful range of O2; (2) the system can be calibrated very accurately. Values of O2 defined by the (Ni, Mn)O/Ni assemblage were determined electrochemically, from 900 to 1300 K, using calcia-stabilized zirconia solid electrolytes. The oxide compositions (8 in total, ranging from 0.1X NiO0.8) were analysed afterwards by electron microprobe, and were checked for internal consistency by measuring the lattice parameters (a0), using powder XRD. The accuracies of the measurements, both assessed theoretically and established empirically, are (1): ±80J/mol in O2, ±0.0002 Å in a0 and ±0.002 to 0.005 in X NiO. Activity-composition relations were fitted to the Redlich-Kister formalism. There is a slight asymmetry (corresponding to a subregular model) across the solution with A 0 G =9577(±45) J/mol, and A 1 G =–477(±80) J/mol. The experimental data were also used to derive the parameters Vex, Hex and Sex. There is no obvious relationship between excess volumes and enthalpies of mixing, nor between excess volumes and excess entropies. The experimental data from this study have been used to formulate the (Ni, Mn)O/Ni redox sensor expression: O2 = 2(NNO) + 2RTlnX NiO + 2(1 – X NiO)2[11483 – 1.697T] – 477(4X NiO – 1)(900 < T(K) < 1300) where O2(NNO)=–478967+248.514T–9.7961 T In T, from O'Neill and Pownceby(1993a).  相似文献   

15.
Summary A detailed electron microprobe study of P, F, Ge and Ga-contents in rock-forming topaz was performed on a suite of Variscan granites at Podlesí in the western Kruné Hory Mts., Czech Republic. Topaz crystals from the relatively less evolved biotite- and protolithionite granites display homogeneous cathodo-luminescence (CL) intensities, whereas topaz from the marginal pegmatite, highly fractionated zinnwaldite granite and greisens show intense oscillatory zoning. Phosphorus contents reach 1.15wt% P2O5 in topaz from the zinnwaldite granite. Many topaz crystals are distinctly zoned with a maximum P content in the transition zone between core and rim. Phosphorus is incorporated into the topaz lattice by berlinite substitution: Al3++P5+=Si4++Si4+. The majority of analysed topazes are highly saturated in F, reaching 90–97% of the theoretical maximum saturation. Topaz from the marginal pegmatite only reaches 87–90% of F-saturation. There is a positive correlation between Ptopaz and Pwhole rock, but no correlation between Ftopaz and Fwhole rock. No difference has been found in P and F contents between magmatic and the hydrothermal (=greisen stage) topaz. Contents of Ge and Ga vary from around the detection limit (50ppm) up to 200ppm Ge and 100ppm Ga, respectively.  相似文献   

16.
Sulfur and carbon isotope data are presented of 15 granulite samples from the Furua Complex, southern Tanzania, in which scapolite is a primary and major rock-forming constituent (up to 30 vol%). From these data, the isotopic composition is deduced of the sulfate and carbonate group in the scapolite structure. Subsequently, the composition and origin is discussed of the volatile species that are present in the deep crustal environment in which these scapolites formed.The 34S-values show a narrow range from 0.3 to 3.6, consistent with a deep-seated (mantle) origin of the sulfur; the mean value of 1.9 is slightly higher than usually found in rocks of assumed mantle provenance. The results of the carbon isotope analyses are more difficult to interpret; they suggest that the granulites contain two different carbon components with different isotopic compositions. Firstly, one component, liberated by phosphoric acid at room temperature, has 13Cvalues between –3.8 and –11.2 and a mean value of –6.7. This carbon component is assumed to occur as finely dispersed, submicroscopic carbonate inclusions. The second carbon fraction is liberated by phosphoric acid treatment at temperatures between 200 and 400° C and has considerably lower 13Cvalues with a mean value of –14.1 This seems to represent the carbon isotope composition in the scapolite structure. Such low 13C-values do not agree with the generally accepted value of –7 for juvenile carbon, but they are comparable to those found in early, primary carbonic inclusions from various granulite regions. It is argued that these low 13C-values are typical for granulite-facies metamorphism and that they may characterize an important fluid phase of the lower crust.  相似文献   

17.
Diffusion rates of18O tracer in quartz ( c, 1 Kb H2O) and Amelia albite ( 001, 2 Kb H2O) have been measured, using Secondary Ion Mass Spectrometry (SIMS). A new technique involving hydrothermal deposition of labelled materials has removed the possibility of pressure solution-reprecipitation processes adversely affecting the experiments. Reported diffusion constants are:-quartz ( c), ,Q=98±7 KJ mol–1 (600–825° C, 1 Kb); Amelia albite ( 001), ,Q=85±7 KJ mol–1, (400–600° C, 2 Kb). Measured quartz18O diffusivities decrease discontinuously at the- transition, reflecting strong structural influences. The reported albite data agree with previously recorded studies, but-quartz data indicate significantly lower activation energies. Possible causes of this discrepancy, and some geological consequences, are noted.  相似文献   

18.
Late Hercynian U-bearing carbonate veins within the metamorphic complex of La Lauzière are characterized by two parageneses. The first is dominated by dolomite or ankerite and the second by calcite and pitchblende. Fluids trapped in the dolomites and ankerites at 350–400° C are saline waters (20 to 15 wt % eq. NaCl) with D –34 to –49. In the calcite they are less saline (17 to 8 wt % eq. NaCl) and trapped at 300–350° C with D –50 to –65. All fluids contain trace N2, CO2 and probably CH4. The carbonates have 13C –8 to –14. and derived their carbon from organic matter. Evolution of the physico-chemical conditions from dolomite (ankerite) to calcite deposition was progressive.H and O-isotope studies indicate the involvement of two externally derived fluids during vein development. A D-rich ( –35) low fO2, saline fluid is interpreted to have come from underlying sediments and entered the hotter overlying metamorphic slab and mixed with more oxidizing and less saline U bearing meteoric waters during regional uplift. This evidence for a sedimentary formation water source for the deep fluid implies that the metamorphic complex overthrusted sedimentary formations during the Late-Hercynian.  相似文献   

19.
Thirteen energy-dispersive x-ray diffraction spectra for -Fe2SiO4 (spinel) collected in situ at 400° C and pressures to 24 GPa constitute the basis for an elevated-temperature static compression isotherm for this important high-pressure phase. A Murnaghan regression of these molar volume measurements yields 177.3 (±17.4) GPa and 5.4(±2.5) for the 400° C, room pressure values of the isothermal bulk modulus (K P 0) and its first pressure derivative (K P 0), respectively. When compared to the room-Tdeterminations of K P 0 available in the literature, our 400° C K P 0 yields -4.1 (±6.2)×10-2 GPa/degree for the average value of (K/T) P 0 over the temperature interval 25° C<><400°>A five-parameter V(P, T) equation for -Fe2SiO4 based on simultaneous regression of our data combined with the elevated P-Tdata of Yagi et al. (1987) and the extrapolated thermal expansion values from Suzuki et al. (1979) yields isochores which have very little curvature [(2 T/P 2) v 0], in marked contrast to the isochores for fayalite (Plymate and Stout 1990) which exhibit pronounced negative curvature [(T/P 2) v <0]. along=" the=">-Fe2SiO4 reaction boundary VRvaries from a minimum of approximately 8.3% at approximately 450° C to approximately 8.9% at 1200° C. Extrapolation of the fayalite and -Fe2SiO4 V(P, T) relationships to the temperature and pressure of the 400 km discontinuity suggests a V R of approximately 8.4% at that depth, approximately 10% less than the 9.3% V R at ambient conditions.  相似文献   

20.
New sulphur and sulphate-oxygen isotope measurements for the main discordant and stratiform lead-zinc-barite orebodies at Silvermines Co. Tipperary, allow reappraisal of previously offered differing interpretations (Graham, 1970; Greig et al., 1971) of the bearing of sulphur isotopes on the genesis of this important Irish deposit. The following aspects of the data are confirmed: barite 34 S-values range from 17–21, similar to lower Carboniferous seawater sulphate: stratiform sulphide lens pyrites have 34 S-values ranging from –13 to –36; vein sulphide 34 S-values range from –8 to 4; sulphide 34 S-values increase upwards and outwards respectively in the related discordant and stratiform G orebodies; galena-sphalerite isotope palaeotemperatures are not too consistent, ranging from 40 to 430°C (using the calibration of Czamanske and Rye (1974). New facts are as follows: barite 18O-values range from –13 to –17, stratiform barites ranging from 13 to 14.5; sulphides separated from a single stratiform ore lens hand specimen usually have 34 Ssl > 34 Sga > 34 Spy; the outward decrease in 34 S-values in the stratiform G orebody is confined to the first few hundred feet only; pyrite 34 S-values progressively increase downwards through one stratiform sulphide orebody; yet variations of 13 occur within a single colloform pyrite structure from another stratiform orebody. It is concluded that there were at least two sources of sulphur, seawater sulphate and deep-seated sulphur. The former was the dominant source of all sulphate and, via biogenic reduction, of the sulphur in the bulk of the stratiform sulphide. The latter was the source of the sulphur in the vein sulphides. There was minimal isotopic interaction between the cool seawater sulphate and the warm unwelling ore fluid sulphur species, even though the latter precipitated under near isotopic equilibrium conditions when the temperature dropped and/or the pH and Eh increased. The lack of isotopic equilibrium between pyrite and ore sulphides in the stratiform ore lenses may result from the latter having precipitated slightly later than the former because of solubility relationships. Overall the present isotopic evidence supports considerable geological evidence favoring a syngenetic origin for the stratiform Silvermines orebodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号