首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
代文军 《甘肃地质》2013,22(2):26-32
通过对矿床矿石铅同位素组成的分析,并与矿区岩浆岩脉和围岩地层中的岩石铅同位素组成进行对比,借以示踪矿床成矿物质来源。研究表明,矿石铅与矿区岩石铅(灰岩和脉岩)的铅同位素组成具有较相近和较窄的变化范围,暗示铅可能属同一铅源。在铅同位素构造模式图及不同成因类型矿石铅的Δγ-Δβ成因分类图解中,显示出造山带铅、地壳与地幔混合的俯冲带岩浆作用铅特征,说明铅不是单一来源的正常铅,而是混合型多来源的异常铅。成矿物质是多来源的,赋矿地层和岩浆岩共同提供了铅源及成矿物质,但以岩浆为主,地层为辅,地幔铅参与了成矿。  相似文献   

2.
祁雨沟地区金矿床稳定同位素研究   总被引:4,自引:0,他引:4  
对河南嵩县祁雨沟地区角砾岩型金矿床和蚀变岩型金矿床稳定同位素研究表明,两类矿床具有同一成矿流体来源-岩浆水;在早期-主期成矿阶段成矿流体以岩浆水为主,晚期矿化流体加入了相当数量的大气水。铅同位素组成表明金矿床的成矿物质与区内钙碱性花岗岩成岩皆主要来源自上地幔,混合铅的存在指示了上地壳地矿物质加入岩浆热液中,参与了金床床的成矿作用。  相似文献   

3.
邵世才  汪东坡 《地质论评》1994,40(6):520-525
本文通过太华群,熊耳群和燕山期花岗岩等地质体的含金性评价,认为熊耳山蚀变断层岩型金矿床的的金等成矿元素大多来自太华群,且太华群是主要的矿源层,对矿床的硫,铅,氢,氧和碳同位素的研究表明,硫,铅及碳等成矿物质源于太华群,而成矿流体则主要为大气降水,可能有少量岩浆水的加入。结合晚太古代至元古宙的区域变质作用,燕山期的构造-岩浆热事件和成矿时代,作者认为该类金矿床是一种复杂的改造型矿床,燕山期的构造-岩  相似文献   

4.
邦铺铅锌矿床系邦铺钼铜矿区斑岩矿化体外围形成的矽卡岩型铅锌矿床;矿石品位较富,成矿元素以铅锌为主,基本不含铜。文章以矿床中主要金属硫化物为研究对象,采用S、Pb同位素研究方法对矿床成矿物质来源进行探讨。结果表明,矿石金属硫化物δ34S值分布范围较宽,但主要集中于-3.7‰~-0.7‰之间,具塔式分布特征,硫主要来源于岩浆;矿石铅同位素组成稳定,为正常普通铅,矿石铅的高μ值(大于9.58)及构造环境演化图解中样品点的分布特征指示矿石铅主要来源于上地壳物质。与驱龙外围知不拉、甲玛矽卡岩矿体对比研究发现,3个矿床硫均为岩浆来源;而金属物质来源空间上则显示出一定的规律,驱龙—甲玛—邦铺矿集区由南向北壳源物质的混染作用不断增加;大理岩及方解石碳-氧同位素组成特征显示矿床成矿流体中碳源主要来自于岩浆,碳酸盐岩地层提供了部分成矿物质。  相似文献   

5.
湘东北七宝山铜多金属矿床地质特征及成因探讨   总被引:8,自引:0,他引:8  
本文在论述七宝山铜金多属矿床地质特征的基础上 ,从地层、构造、岩浆岩等方面系统阐述了成矿地质条件 ,从硫同位素铅同位素及包体地球化学等方面入手探讨了成矿物质来源 ,矿床硫同位素范围窄 ,δ34 S=( 1.8~ 5.6)× 10 -3 ,硫同位素组成以重硫型为主 ,接近陨石硫同位素组成。铅同位素 2 0 6Pb/ 2 0 4 Pb=18.2 91,2 0 7Pb/ 2 0 4 Pb=15.617,2 0 8Pb/ 2 0 4 Pb=38.642 ,为幔源铅。流体包裹体成分反映出成矿热液为岩浆热液 ,矿床成因为地洼区内多位一体的岩浆高中温交代—热液矿床。  相似文献   

6.
应立娟  王阔  王开建 《岩矿测试》2016,35(3):320-328
驱龙-甲玛-邦铺铜多金属矿集区是西藏冈底斯成矿带上的重要矿集区,铜资源量超过1500万吨。前人研究认为三个矿床成矿物质来源于岩浆,但未讨论不同时代、不同矿化的岩浆岩铅同位素与矿石铅同位素组成的关系,并缺乏从矿集区尺度来分析。本文通过分析已发表的矿石、岩浆岩和地层铅同位素数据,认为驱龙、甲玛、邦铺矿床矿石铅与中新世含矿斑岩铅同位素特征基本一致,区别于与成矿无关的岩浆岩铅同位素组成。空间上,从南西的驱龙,至甲玛,至北东的邦铺,成矿年龄从老到新,铅同位素演化规律明显,放射成因铅递增(矿石206Pb/204Pb平均值18.521→18.644→18.684)。这种铅同位素地球化学特征不仅指示了成矿物质来自岩浆,并可区分与成矿有关和无关的岩浆岩,同时指示了成矿期岩浆岩与成矿关系的密切程度。  相似文献   

7.
冬瓜山铜(金)矿床中主矿体成层状,受石炭系层位控制,对于其物质来源尚存在较大分歧。为了查明冬瓜山铜(金)矿床成矿物质来源,本文对冬瓜山铜(金)矿床不同类型矿体的氢、氧、硫、铅同位素进行了系统地测定。并将冬瓜山铜(金)矿床与铜陵矿集区内典型矽卡岩型矿床的硫、铅同位素组成进行了对比研究。结果表明:冬瓜山铜(金)矿床不同类型矿体之间具有相同的物质成分来源,不同类型矿体的成矿流体主要来源于岩浆水,硫源均为岩浆硫,且与区域上典型矽卡岩型矿床的硫同位素组成一致,铅同位素特征表明,不同类型矿体铅的来源主要为与岩浆作用有关的幔源铅。  相似文献   

8.
甲玛铜多金属矿是西藏冈底斯成矿带中东段勘查程度最高、成矿元素与矿体类型复杂的超大型斑岩-矽卡岩型矿床。前人在控岩-控矿构造、矿床地质、地球化学、矿床模型等方面已经完成了大量的研究工作,但对于矿床成矿机制研究方面尚存不足,特别是流体、成矿物质的来源方面欠缺系统的研究工作和对资料的全面梳理。文章在大量阅研和总结前人研究资料的基础上,以矿区16号勘探线作为典型剖面开展了氧同位素填图,同时对硫同位素进行了必要的样品补充采集。通过综合研究,有证据表明甲玛矿区深部隐伏斑岩体存在岩浆流体的出溶,在此基础上,氢、氧同位素组成表明矿化由早到晚演化过程中,流体由岩浆水向大气降水增加方向演化;同时,氧同位素填图以及流体包裹体平面均一温度分布确定成矿流体源位于矿区zk1616~zk3216一带。此外,S、Si同位素组成均表明了矿区成矿物质主要来源于成矿岩浆岩,而铅同位素的研究进一步说明成矿物质主要来源于冈底斯后碰撞环境下因地壳减薄、地幔上涌导致的壳幔混合作用。文章依据地球化学的研究成果,探讨矿床流体、成矿物质的来源,为甲玛矿床成因、成矿机制研究夯实基础。  相似文献   

9.
粤东嵩溪银矿形成的区域地质背景、成矿特征及成因   总被引:1,自引:1,他引:0  
嵩溪银矿位于粤东晚古生代梅县-惠阳坳陷带的北段,晚侏罗世陆相火山岩盆地的边缘。区域成矿地质背景研究表明,晚侏罗世是粤东构造岩浆活动最强烈时期,火山岩的原始成岩物质来源于下地壳。地质勘探表明矿体在空间上呈脉状分布于早、中侏罗世的地层中,受断裂构造控制,矿石的结构构造和蚀变的分带性说明矿床具典型的热液矿床特征。矿石的铅同位素组成具壳幔混合铅特征,成矿物质来源于深部岩浆;矿石硫同位素组成和与成矿有关的石英脉的氢氧同位素、方解石脉的碳同位素组成特征,说明成矿热液以岩浆热液为主。根据矿床的矿化蚀变特征和成矿物质、成矿热液来源,结合区域成矿地质背景、矿区周边岩浆岩分布特征和岩浆岩成份及其来源的综合分析,认为嵩溪大型银矿床的形成与晚侏罗世陆相火山作用有关,矿床成因类型为陆相火山岩浆期后热液脉状矿床。  相似文献   

10.
辽东庄河金矿同位素地球化学特征及成矿时代   总被引:1,自引:0,他引:1  
到目前为止,对辽宁庄河金矿尚没有做过系统的矿床地球化学和同位素年代学的研究。本文在成矿地质条件分析的基础上,对庄河金矿床的氢、氧同位素、硫同位素、铅同位素、碳同位素以及Rb-Sr同位素的组成特征进行了分析研究。氢、氧同位素组成表明成矿流体主要来源于岩浆热液,并与围岩发生了同位素交换;硫同位素和碳同位素组成表明成矿物质主要来源于地壳深部;矿石和花岗斑岩脉具有非常相似的铅同位素组成,暗示该矿床的形成和物质来源与此岩浆活动有密切的成因联系;石英流体包裹体Rb-Sr等时线年龄为143.0±5.8Ma,表明金的成矿期为燕山期。  相似文献   

11.
Lithostratigraphy, physicochemical stratigraphy, biostratigraphy, and geochronology of the 77–70 Ma old series bracketing the Campanian–Maastrichtian boundary have been investigated by 70 experts. For the first time, direct relationships between macro- and microfossils have been established, as well as direct and indirect relationships between chemo-physical and biostratigraphical tools. A combination of criteria for selecting the boundary level, duration estimates, uncertainties on durations and on the location of biohorizons have been considered; new chronostratigraphic units are proposed. The geological site at Tercis is accepted by the Commission on Stratigraphy as the international reference for the stratigraphy of the studied interval. To cite this article: G.S. Odin, C. R. Geoscience 334 (2002) 409–414.  相似文献   

12.
Well investigated platforms have been selected in each continent, and the history of Cretaceous transgressions and regressions there is concisely reviewed from the available evidence. The factual records have been summarized into a diagram and the timing of the events correlated between distant as well as adjoining areas.On a global scale, major transgressions were stepwise enlarged in space and time from the Neocomian, via Aptian-Albian, to the Late Cretaceous, and the post-Cretaceous regression was very remarkable. Minor cycles of transgression-regression were not always synchronous between different areas. Some of them were, however, nearly synchronous between the areas facing the same ocean.Tectono-eustasy may have been the main cause of the phenomena of transgression-regression, but certain kinds of other tectonic movements which affected even the so-called stable platforms were also responsible for the phenomena. The combined effects of various causes may have been unusual in the Cretaceous, since it was a period of global tectonic activity. The slowing down of this activity followed by readjustments may have been the cause of the global regression at the end of the Cretaceous.  相似文献   

13.
The Afyon stratovolcano exhibits lamprophyric rocks, emplaced as hydrovolcanic products, aphanitic lava flows and dyke intrusions, during the final stages of volcanic activity. Most of the Afyon volcanics belong to the silica-saturated alkaline suite, as potassic trachyandesites and trachytes, while the products of the latest activity are lamproitic lamprophyres (jumillite, orendite, verite, fitztroyite) and alkaline lamprophyres (campto-sannaite, sannaite, hyalo-monchiquite, analcime–monchiquite). Afyon lamprophyres exhibit LILE and Zr enrichments, related to mantle metasomatism.  相似文献   

14.
正20140751 Guo Xincheng(Geological Party,BGMRED of Xinjiang,Changji 831100,China);Zheng Yuzhuang Determination and Geological Significance of the Mesoarchean Craton in Western Kunlun Mountains,Xinjiang,China(Geological Review,ISSN0371-5736,CN11-1952/P,59(3),2013,p.401-412,8  相似文献   

15.
正20141058 Chen Ling(Key Laboratory of Mathematical Geology of Sichuan Province,Chengdu University of Technology,Chengdu610059,China);Guo Ke Study of Geochemical Ore-Forming Anomaly Identification Based on the Theory of Blind Source Separation(Geosci-  相似文献   

16.
SEISMIC GEOLOGY     
正20141334 Chen Kun(Institute of Geophysics,China Earthquake Administration,Beijing100081,China);Yu Yanxiang Shakemap of Peak Ground Acceleration with Bias Correction for the Lushan,Sichuan Earthquake on April20,2013(Seismology and Geology,ISSN0253-4967,CN11-2192/P,35(3),2013,p.627-633,2 illus.,1 table,9 refs.)Key words:great earthquakes,Sichuan Province  相似文献   

17.
正20141624 Cai Xiongfei(Key Laboratory of Geobiology and Environmental Geology,Ministry of Education,China University of Geosciences,Wuhan 430074,China);Yang Jie A Restudy of the Upper Sinian Zhengmuguan and Tuerkeng Formations in the Helan Mountains(Journal of Stratigraphy,ISSN0253-4959CN32-1187/P,37(3),2013,p.377-386,5 illus.,2 tables,10 refs.)  相似文献   

18.
PALEONTOLOGY     
正20142263Lü Shaojun(Geological Survey of Jiangxi Province,Nanchang 330030,China)Early-Middle Permian Biostratigraphical Characteristics in Qiangduo Area,Tibet(Resources SurveyEnvironment,ISSN1671-4814,CN32-1640/N,34(4),2013,p.221-227,2illus.,2tables,22refs.)Key words:biostratigraphy,Lower Permian,Middle Permian,Tibet  相似文献   

19.
正20142560Hu Hongxia(Regional Geological and Mineral Resources Survey of Jilin Province,Changchun 130022,China);Dai Lixia Application of GIS Map Projection Transformation in Geological Work(Jilin Geology,ISSN1001-2427,CN22-1099/P,32(4),2013,p.160-163,4illus.,2refs.)  相似文献   

20.
GEOCHEMISTRY     
正20140692 Duo Tianhui(No.402 Geological Team,Exploration of Geology and Mineral Resources of Sichuan Authority,Chengdu611730,China);Wang Yongli Computer Simulation of Neptunium Existing Forms in the Groundwater(Computing Techniques for Geophysical and Geochemical Exploration,ISSN1001-1749,CN51-1242/P,35(3),  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号