where T is temperature in degrees Celsius, δarag is the δ18O value of aragonite normalized to VPDB, and δsw is the δ18O value of water normalized to VSMOW. This calibration improves accuracy and precision of Caribbean sclerosponges for reconstructions of temperature as well as δ18O values of seawater.  相似文献   

16.
Mixing processes in hydrothermal spring systems and implications for interpreting geochemical data: a case study in the Cappadocia region of Turkey     
Mustafa Afsin  Diana M. Allen  Dirk Kirste  U. Gokcen Durukan  Ali Gurel  Ozcan Oruc 《Hydrogeology Journal》2014,22(1):7-23
Mixing is a dominant hydrogeological process in the hydrothermal spring system in the Cappadocia region of Turkey. All springs emerge along faults, which have the potential to transmit waters rapidly from great depths. However, mixing with shallow meteoric waters within the flow system results in uncertainty in the interpretation of geochemical results. The chemical compositions of cold and warm springs and geothermal waters are varied, but overall there is a trend from Ca–HCO3 dominated to Na–Cl dominated. There is little difference in the seasonal ionic compositions of the hot springs, suggesting the waters are sourced from a well-mixed reservoir. Based on δ18O and δ2H concentrations, all waters are of meteoric origin with evidence of temperature equilibration with carbonate rocks and evaporation. Seasonal isotopic variability indicates that only a small proportion of late spring and summer precipitation forms recharge and that fresh meteoric waters move rapidly into the flow system and mix with thermal waters at depth. 3H and percent modern carbon (pmC) values reflect progressively longer groundwater pathways from cold to geothermal waters; however, mixing processes and the very high dissolved inorganic carbon (DIC) of the water samples preclude the use of either isotope to gain any insight on actual groundwater ages.  相似文献   

17.
Stable isotope and geochemical evidence of formation pore fluid evolution during diagenesis of Tertiary sandstones and mudrocks of the Niger Delta     
M. A. Jubril  H. F. Shaw  A. E. Fallick 《Journal of African Earth Sciences》1998,27(3-4)
Petrological data provide evidence that framboidal pyrite, Fe-carbonates and kaolinite are the major diagenetic minerals developed during burial diagenesis in the Tertiary Niger Delta sandstones and associated mudrocks. The pyrite sulphur, carbonate carbon and oxygen and kaolinite oxygen and hydrogen isotope compositions have been determined. These data (pyrite, δ34S = −24.8 to 21.0‰; “siderite”, δ13C(PDB) = −14.7 to +5.0‰, δ18O(PDB) = −19.1 to −0.6‰; Fe-calcite, δ13C(PDB) = +17.5 to 17.9‰, δ18O(PDB) = −8.3 to −8.0‰; kaolinite, δ18O(SMOW) = +14.7 to 17.5‰, δD (SMOW) = −86 to −43‰) have been used to interpret the isotopic compositions of the precipitating pore fluids and/or the temperatures of mineral formation. The interpretation of these results indicate that in the deltaic depositional setting the syndepositional pore waters had a significant but variable marine influence that favoured the early formation of pyrite. Subsequently the subsurface influence of meteoric waters, showing varying degrees of modification involving organic and/or water-rock reactions, played an increasingly significant role in the development of later diagenetic cements in the sediments when abundant authigenic carbonates and kaolinites were formed.  相似文献   

18.
Oxygen and hydrogen isotopes for the characteristics of groundwater recharge: a case study from the Chih-Pen Creek basin,Taiwan   总被引:5,自引:2,他引:3  
Hsin-Fu Yeh  Cheng-Haw Lee  Kuo-Chin Hsu 《Environmental Earth Sciences》2011,62(2):393-402
Assessing the seasonal variation of groundwater recharge is important for effective management of groundwater resources. Stable isotopes of oxygen and hydrogen were used to estimate the sources of groundwater and seasonal contributions of precipitation to groundwater recharge in Chih-Pen Creek basin of eastern Taiwan. Based on the isotopes of precipitation (n = 177), two different local meteoric water regression lines (LMWL) can be obtained for the different seasons: δD = 8.0618O + 10.08 for wet season precipitation (May through October) and δD = 8.65δ18O + 17.09 for dry season precipitation (November through April). The slope and intercept of regression line for wet season precipitation are virtually identical to the global meteoric water line (GMWL) of Craig (1961). In contrast to during dry season precipitation due to evaporation effect the intercept of 17.09 is much higher than of the GMWL of 10. The results show the stable isotopes compositions of precipitation decrease with increasing rainfall amount and air temperature, due to the amount effect of precipitation is pronounced. The amount effect is clearly but do not show the temperature effect from January to December 2007. Using a mass-balance equation, a comparison of deuterium excess or d values of precipitation and groundwater indicates the groundwater consist of 76% wet season precipitation and 24% dry season precipitation, representing a distinct seasonal variation of groundwater recharge in study area. About 79% of the groundwater is recharged from the river water of the mountain watershed and 21% is from the rain that falls on the basin.  相似文献   

19.
The record of temperature, wind velocity and air humidity in the δD and δO of water inclusions in synthetic and Messinian halites     
Thomas Rigaudier  Véronique Gardien  François Martineau 《Geochimica et cosmochimica acta》2011,75(16):4637-4652
Deuterium and oxygen isotope fractionations between liquid and vapor water were experimentally-determined during evaporation of a NaCl solution (35 g L−1) as a function of water temperature and wind velocity. In the case of a null wind velocity, slopes of δD18O trajectories of residual waters hyperbolically decrease with increasing water temperatures in the range 23-47 °C. For wind velocities ranging from 0.8 to 2.2 m s−1, slopes of the δD18O trajectories linearly increase with increasing wind velocity at a given water temperature. These experimental results can be modeled by using Rayleigh distillation equations taking into account wind-related kinetics effects. Deuterium and oxygen isotope compositions of water inclusions trapped by the precipitated halite crystals were determined by micro-equilibration techniques.These isotopic compositions accurately reflect those of the surrounding residual waters during halite growth. Isotopic compositions of water inclusions in twenty natural halites from the Messinian Realmonte mine in Sicily suggest precipitation temperatures of that match the homogenization temperatures obtained by microthermometry (median = 34 ± 5 °C). The similarity between the measured and experimental slopes of the δD18O evaporation trajectories suggests that the effect of wind was negligible during the genesis of these halite deposits. Hydrogen and oxygen isotope compositions of water inclusions from Realmonte halite also define a linear trend whose extrapolation until intersection with the Mediterranean Meteoric Water Line allows the characterization of the water source with δD and δ18O values of −70 ± 10‰ and −11.5 ± 1.5‰, respectively. These results reveal that the huge amounts of salts deposited in Sicily result from the evaporation of seawater mixed with a dominant fraction (?50%) of meteoric waters most likely deriving from alpine fluvial discharge.  相似文献   

20.
Pleistocene paleoclimate of the arid region of Israel as recorded in calcite deposits along regional transverse faults and in veins     
A. Avigour  M. Magaritz  A. Issar 《Quaternary Research》1992,37(3)
The δ18O and δ13C values of the calcites associated with E-W and NE-SW transverse faults in the Negev, Israel, indicate that calcite was deposited from meteoric water. A regional change in the δ18O and δ13C values was observed. The 18O content in the calcite increases, from the southwestern (δ18O = −17.8‰) to the northeastern (δ18O = −2.9‰) part of the region. The δ13C values show the opposite trend of the 13C content decrease: from +2‰ in the south to −10‰ in the northeast. These trends had to reflect changes in regional paleoclimate, suggesting a change in the isotopic composition of the solution from which the calcite was deposited in different periods. The variations in the δ18O values reflect shifts in the δ18O values of precipitation and are associated with a change in the source of moist air masses which came from the equatorial Atlantic in the early Pleistocene and from the Mediterranean during a later period. Variations in δ13C values reflect changes from humid to arid conditions. Two modes of calcite deposition are suggested: (1) precipitation of calcite minerals in the unsaturated zone following the dissolution in the soil or (2) calcite deposition that occurred as CO2 was lost during emergence of paleogroundwater from Lower Cretaceous and Jurassic aquifers.  相似文献   

  首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 69 毫秒
1.
The Qolqoleh gold deposit is located in northwestern part of the Sanandaj–Sirjan metamorphic belt, northwestern Iran. Igneous and sedimentary units exposed in the area have undergone greenschist metamorphism. The area was affected by a NE–SW trending shear zone and subsequent deformation. Two different types of mineralization are distinguished in the Qolqoleh gold deposit based on geological–structural conditions indicated by microtextural analysis: ductile and then brittle. Ore-forming processes are divided into three stages: Early (I), Middle (II) and Late (III), which include quartz–pyrite (I), sulfides and gold (II) and carbonate veinlets (III), respectively. The stage I fluids are characterized by δ18O = 15.5‰ at 440 ºC, and are thought to be deep-sourced metamorphic waters; the stage III fluids, with δ18O = 1.6‰, are shallow-sourced meteoric waters; whereas, the stage II fluids, with δ18O = 13.1‰, are a mixture of deep-sourced metamorphic and shallow-sourced meteoric fluids. Based on comparisons of the D–O–C isotopic systematics, the ore-forming fluids with characteristic high δ18O and δ13C and low δD originated from metamorphic devolatilization of Cretaceous volcano-sedimentary (felsic to mafic metavolcanic rocks–shale–carbonate–carbonaceous chert) sequences, locally rich in organic matter. During late Cretaceous continental collision of the Afro-Arabian continent and the Iranian microcontinent, a crustal slab consisting of felsic to mafic metavolcanic rocks, carbonate, shale and carbonaceous chert was underthrust northwards beneath the central Iranian microcontinent along the Zagros fault. During further contraction, deformation was localized in reverse oblique-slip structures with vergence toward south; shear zones generally follow contacts between more competent and less competent rock units. Metamorphic devolatilization of this underthrust slab is the source of the ore-forming fluids that generated the Au ore belt, which includes the Qolqoleh gold deposit.  相似文献   

2.
Large-scale atmospheric circulation patterns determine the quantity and seasonality of precipitation, the major source of water in most terrestrial ecosystems. Oxygen isotope (δ18O) dynamics of the present-day hydrologic system in the Palouse region of the northwestern U.S.A. indicate a seasonal correlation between the δ18O values of precipitation and temperature, but no seasonal trends of δ18O records in soil water and shallow groundwater. Their isotope values are close to those of winter precipitation because the Palouse receives  75% of its precipitation during winter. Palouse Loess deposits contain late Pleistocene pedogenic carbonate having ca. 2 to 3‰ higher δ18O values and up to 5‰ higher carbon isotope (δ13C) values than Holocene and modern carbonates. The late Pleistocene δ18O values are best explained by a decrease in isotopically light winter precipitation relative to the modern winter-dominated infiltration. The δ13C values are attributed to a proportional increase of atmospheric CO2 in soil CO2 due to a decrease in soil respiration rate and 13C discrimination in plants under much drier paleoclimate conditions than today. The regional climate difference was likely related to anticyclonic circulation over the Pleistocene Laurentide and Ice Sheet.  相似文献   

3.
This study presents new data on major, trace and REE element concentration of groundwaters in Lastochka spa located in the northern part of Primorye, Far East of Russia. The studied area is characterized by two types of groundwaters issued from a spring and wells: fresh waters with low mineralization (Total Dissolved Solids is up to 400 mg/l) and high pCO2 waters with high mineralization (TDS is up to 4700 mg/l). New data and previous δ13C(TIC), oxygen (δ18O) and hydrogen (δ2H) isotope data indicate that these waters result from meteoric water infiltration in the Sikhote–Alin mountain, circulating at shallow depths in sedimentary rocks. CO2 in groundwater is of mantle origin.  相似文献   

4.
Empirical datasets provide the constraints on the variability and causes of variability in stable isotope compositions (δD or δ18O) of surface water and precipitation that are essential not only for models of modern and past climate but also for investigations of paleoelevation. This study presents stable isotope data for 76 samples from four elevation transects and three IAEA GNIP stations in the Eastern Cordillera of Colombia and the northern Andean foreland. These data are largely consistent with theories of stable isotope variability developed based on a global dataset. On a monthly basis, the precipitation-amount effect exerts the dominant control on δDp and δ18Op values at the IAEA GNIP stations. At the Bogotá station (2547 m), the δDp and δ18Op values vary seasonally, with isotopic minima correlating with maxima in precipitation-amount. Although surface water samples from Eastern Cordilleran streams and rivers fall on the Global Meteoric Water Line, samples from three of four lakes (2842–3459 m) have evaporatively elevated δDsw and δ18Osw values. The IAEA GNIP station data averaged over multiple years, combined with stream and river water data, define vertical lapse rates of −1.8‰ km−1 for Δδ18O and −14.6‰ km−1 for ΔδD, and are a close fit to a common thermodynamically based Rayleigh distillation model. Elevation uncertainties for these relationships are also evaluated. Comparison of this Colombian dataset with the elevation uncertainties generated by the thermodynamically based model shows that the model underestimates uncertainty at high Δδ18O and ΔδD values while overestimating it for low Δδ18O and ΔδD values. This study presents an independent, empirical assessment of stable isotope-based elevation uncertainties for the northern Andes based on a dataset of sufficient size to ensure statistical integrity. These vertical lapse rates and associated uncertainties form the basis for stable isotope paleoelevation studies in the northern Andes.  相似文献   

5.
The genesis of Lower Eocene calcite-cemented columns, “pisoid”-covered structures and horizontal interbeds, clustered in dispersed outcrops in the Pobiti Kamani area (Varna, Bulgaria) is related to fossil processes of hydrocarbon migration. Field observations, petrography and stable isotope geochemistry of the cemented structures and associated early-diagenetic veins, revealed that varying seepage rates of a single, warm hydrocarbon-bearing fluid, probably ascending along active faults, controlled the type of structure formed and its geochemical signature. Slow seepage allowed methane to oxidize within the sediment under ambient seafloor conditions (δ18O = − 1 ± 0.5‰ V-PDB), explaining columns' depleted δ13C ratios of − 43‰. Increasing seepage rates caused methane to emanate into the water column (δ13C = − 8‰) and raised precipitation temperatures (δ18O = − 8‰). Calcite-cemented conduits formed and upward migrating fluids also affected interbed cementation. Even higher-energy fluid flow and temperatures likely controlled the formation of “pisoids”, whereby sediment was whirled up and cemented.  相似文献   

6.
Oxygen and carbon stable isotope ratios in carbonates from the HDP-04 drill core from Lake Hovsgol, NW Mongolia, show an overall covariant relationship suggesting that for the most of the past 1 Ma Hovsgol remained a closed-basin lake. Carbonate δ18O ratio is responsive to regional climate change: a ca. +1.5‰ basinwide δ18O shift has occurred with the onset of Bølling–Allerød warming (sensu lato), followed by a ca. 0.8‰ depletion during the Younger Dryas. The post-glacial δ18O shift of the same magnitude is recorded in bulk carbonates, shells of two ostracod species and in wet-sieved fine fraction <63 μm. Associated with the lake-level rise and correlative with the post-glacial warming in the northern hemisphere, the observed δ18O shift is nevertheless positive. This argues against changes in local temperature and hydrology as key driving mechanisms. Most likely, Lake Hovsgol δ18O reflects a climate-driven shift in the composition of regional precipitation. Tied into a distinct lithologic succession, the radiocarbon-dated late glacial δ18O shift apparently represents a ‘template’ of the lake's response to glacial–interglacial transitions: a similar pattern of parallel changes in lithology and carbonate stable isotope composition is observed in at least 10 more intervals in the 1-Ma record, including the MIS 20/MIS19 transition at the Brunhes/Matuyama paleomagnetic reversal boundary. The comparison of carbon stable isotope ratios of untreated and in vacuo roasted bulk sediment with those of detrital carbonates suggests that clastic input of carbonates by lake tributaries does not affect the geochemistry of bulk carbonates in the HDP-04 section. The profiles of bulk carbonate δ18O and δ13C in the Pleistocene section of the HDP-04 drill core suggest at ca. 15.4 ka, at ca. 100 m below today's level, Lake Hovsgol still stood relatively high as compared with prior extended periods of time during late Matuyama and early Brunhes. Isotopically heavy δ18O and δ13C ratios during the mid–late Brunhes, particularly, in carbonate crusts and oolites, are suggestive of past episodes of dramatic evaporative 18O-enrichment of lake waters. Despite the expectation of muted amplitudes of temperature- and precipitation-related isotope signals, the sedimentary record from the sensitive ‘water gauge’ basin of Lake Hovsgol has high potential for providing important constraints on past hydrologic evolution of continental interior Asia during the Pleistocene.  相似文献   

7.
This paper reviews the geochemical, isotopic (2H, 18O, 13C, 3H and 14C) and numerical modelling approaches to evaluate possible geological sources of the high pH (11.5)/Na–Cl/Ca–OH mineral waters from the Cabeço de Vide region (Central-Portugal). Water–rock interaction studies have greatly contributed to a conceptual hydrogeological circulation model of the Cabeço de Vide mineral waters, which was corroborated by numerical modelling approaches. The local shallow groundwaters belong to the Mg–HCO3 type, and are derived by interaction with the local serpentinized rocks. At depth, these type waters evolve into the high pH/Na–Cl/Ca–OH mineral waters of Cabeço de Vide spas, issuing from the intrusive contact between mafic/ultramafic rocks and an older carbonate sequence. The Cabeço de Vide mineral waters are supersaturated with respect to serpentine indicating that they may cause serpentinization. Magnesium silicate phases (brucite and serpentine) seem to control Mg concentrations in Cabeço de Vide mineral waters. Similar δ2H and δ18O suggest a common meteoric origin and that the Mg–HCO3 type waters have evolved towards Cabeço de Vide mineral waters. The reaction path simulations show that the progressive evolution of the Ca–HCO3 to Mg–HCO3 waters can be attributed to the interaction of meteoric waters with serpentinites. The sequential dissolution at CO2 (g) closed system conditions leads to the precipitation of calcite, magnesite, amorphous silica, chrysotile and brucite, indicating that the waters would be responsible for the serpentinization of fresh ultramafic rocks (dunites) present at depth. The apparent age of Cabeço de Vide mineral waters was determined as 2790 ± 40 a BP, on the basis of 14C and 13C values, which is in agreement with the 3H concentrations being below the detection limit.  相似文献   

8.
Sulfur and O isotope analyses of dissolved SO4 were used to constrain a hydrogeological model for the area overlying the Gorleben–Rambow Salt Structure, Northern Germany. Samples were collected from 80 wells screened at different depth-intervals. The study area consists of a set of two vertically stacked aquifer systems. Generally, the isotope data show a good spatial correlation, outlining well-defined groundwater zones containing SO4 of characteristic isotopic composition. Highly saline waters from deeper parts of the lower aquifer system are characterized by rather constant SO4 isotopic compositions, which are typical of Permian Zechstein evaporites (δ34S=9.6–11.9‰; δ18O=9.5–12.1‰). Above this is a transition zone containing ground waters of intermediate salinity and slightly higher isotopic values (average δ34S=16.6‰; δ18O=15.3‰). The confined groundwater horizon on the top of the lower aquifer system below the low permeable Hamburg Clays is low in total dissolved solids and is characterized by an extreme 34S enrichment (average δ34S=39.1‰; δ18O=18.4‰), suggesting that bacterially mediated SO4 reduction is a dominant geochemical process in this zone. Two areas of distinct isotopic composition can be identified in the shallow ground water horizons of the upper hydrogeological system. Sulfate in groundwaters adjacent to the river Elbe and Löcknitz has a typical meteoric isotopic signature (δ34S=5.2‰; δ18O=8.2‰), whereas the central part of the area is characterized by more elevated isotopic ratios (δ34S=12.7‰; δ18O=15.6‰). The two major SO4 pools in the area are represented by Permian seawater SO4 and a SO4 of meteoric origin that has been mixed with SO4 resulting from the oxidation of pyrite. It is suggested that the S-isotope compositions observed reflect the nature of the SO4 source that have been modified to various extent by bacterial SO4 reduction. Groundwaters with transitional salinity have resulted from mixing between brines and low-mineralized waters affected by bacterial SO4 reduction.  相似文献   

9.
Groundwaters and surface water in the Shihongtan sandstone-hosted U ore district, Xinjiang, NW China, were sampled and analyzed for their major-, and trace element concentrations and oxygen, hydrogen, boron and strontium isotope compositions in order to assess the possible origins of the waters and water–rock interactions that occurred in the deep aquifer system. The waters in the study district have been grouped into three hydrochemical facies: Facies 1, potable spring-water, is a pH neutral (7.0), Na–Ca–HCO3 type water with low total dissolved solids (TDS; 0.2 g/l, fresh) and has δ18O of − 8.3‰, δD of − 48.2‰,δ11B of 1.5‰, and 87Sr/86Sr of 0.70627. Facies 2 groundwaters are mildly acidic to mildly alkaline (pH of 6.5–8.0, mean 7.3), Na–Ca–Mg–Cl–SO4 type waters with moderate TDS (8.2 g/l–17.2 g/l, mean 9.3 g/l, brackish) and haveδ18O values in the − 5.8‰ to − 9.3‰ range (mean − 8.1‰), δD values in the − 20.8‰ to − 85.5‰ range (mean − 47.0‰),δ11B values in the + 9.5‰ to + 39.1‰ range (mean + 17.1‰), and 87Sr/86Sr values in the 0.70595 to 0.70975 range (mean 0.70826). Facies 3, Aiting Lake water, is a mildly alkaline (pH = 7.4), Na–Ca–Mg–Cl–SO4 type water with the highest TDS (249.1 g/l, brine) and has δ18O of − 2.8‰, δD of − 45.8‰,δ11B of 21.2‰, and 87Sr/86Sr of 0.70840. The waters from the study district show a systematic increase in major, trace element and TDS concentrations and δ11B values along the pathway of groundwater migration which can only be interpreted in terms of water–rock interaction at depth and strong surface evaporation. The hydrochemical and isotopic data presented here confirm that the groundwaters in the Shihongtan ore district are the combined result of migration, water–rock interaction and mixing of meteoric water with connate waters contained in sediments.  相似文献   

10.
Lime mortar and plaster were sampled from Roman, medieval and early modern buildings in Styria. The historical lime mortar and plaster consist of calcite formed in the matrix during setting and various aggregates. The stable C and O isotopic composition of the calcite matrix was analyzed to get knowledge about the environmental conditions during calcite formation. The δ13Cmatrix and δ18Omatrix values range from −31 to 0‰ and −26 to −3‰(VPDB), respectively. Obviously, such a range of isotope values does not represent the local natural limestone assumed to be used for producing the mortar and plaster. In an ideal case, the calcite matrix in lime mortar and plaster is isotopically lighter in the exterior vs. the interior mortar layer according to the relationship δ18Omatrix = 0.61 · δ13Cmatrix − 3.3 (VPDB). Calcite precipitation by uptake of gaseous CO2 into alkaline Ca(OH)2 solutions shows a similar relationship, δ18Ocalcite = 0.67 · δ13Ccalcite − 6.4 (VPDB). Both relationships indicate that the 13C/12C and 18O/16O values of the calcite reflect the setting behaviour of the lime mortar and plaster. Initially, CO2 from the atmosphere is fixed as calcite, which is accompanied by kinetic isotope fractionation mostly due to the hydroxylation of CO2 (δ13Cmatrix ≈  −25‰ and δ18Omatrix ≈ −20‰). As calcite formation continued the remaining gaseous CO2 is subsequently enriched in 13C and 18O causing later formed calcite to be isotopically heavier along the setting path in the matrix. Deviations from such an ideal isotopic behaviour may be due to the evolution of H2O, e.g. evaporation, the source of CO2, e.g. from biogenic origin, relicts of the natural limestone, and secondary effects, such as recrystallization of calcite. The results of the field and experimental study suggest that isotope values can be used as overall proxies to decipher the origin of carbonate and the formation conditions of calcite in the matrix of ancient and recent lime mortar and plaster. Moreover, these proxies can be used to select calcite matrix from historical lime mortar and plaster for 14C dating.  相似文献   

11.
The crustal structure of the Dabie orogen was reconstructed by a combined study of U–Pb ages, Hf and O isotope compositions of zircons from granitic gneiss from North Dabie, the largest lithotectonic unit in the orogen. The results were deciphered from metamorphic history to protolith origin with respect to continental subduction and exhumation. Zircon U–Pb dating provides consistent ages of 751 ± 7 Ma for protolith crystallization, and two group ages of 213 ± 4 to 245 ± 17 Ma and 126 ± 4 to 131 ± 36 Ma for regional metamorphism. Majority of zircon Hf isotope analyses displays negative εHf(t) values of − 5.1 to − 2.9 with crust Hf model ages of 1.84 to 1.99 Ga, indicating protolith origin from reworking of middle Paleoproterozoic crust. The remaining analyses exhibit positive εHf(t) values of 5.3 to 14.5 with mantle Hf model ages of 0.74 to 1.11 Ga, suggesting prompt reworking of Late Mesoproterozoic to Early Neoproterozoic juvenile crust. Zircon O isotope analyses yield δ18O values of − 3.26 to 2.79‰, indicating differential involvement of meteoric water in protolith magma by remelting of hydrothermally altered low δ18O rocks. North Dabie shares the same age of Neoproterozoic low δ18O protolith with Central Dabie experiencing the Triassic UHP metamorphism, but it was significantly reworked at Early Cretaceous in association with contemporaneous magma emplacement. The Rodinia breakup at about 750 Ma would lead to not only the reworking of juvenile crust in an active rift zone for bimodal protolith of Central Dabie, but also reworking of ancient crust in an arc-continent collision zone for the North Dabie protolith. The spatial difference in the metamorphic age (Triassic vs. Cretaceous) between the northern and southern parts of North Dabie suggests intra-crustal detachment during the continental subduction. Furthermore, the Dabie orogen would have a three-layer structure prior to the Early Cretaceous magmatism: Central Dabie in the upper, North Dabie in the middle, and the source region of Cretaceous magmas in the lower.  相似文献   

12.
It is important to understand the history and dynamics of climate in a transitional region between areas with different atmospheric circulation patterns, where the vegetation and ecosystems are vulnerable to environmental change. We investigated variations in the long-term oxygen isotope composition (δ18O) in tree rings of Qinghai spruce (Picea crassifolia) and their relationships to climatic parameters in the arid Qilian Mountains of northwestern China from 1870 to 2006. We found that the mean temperature from the previous November to the current February was significantly and positively correlated with the tree-ring δ18O values. The temperature effect, (the positive relationship between the temperature and the precipitation δ18O value) can explain the connection between temperature and the tree-ring δ18O values. Due to pooling of the earlywood and latewood into yearly tree-ring samples, it appears that the cellulose δ18O may be influenced by isotopically nonhomogeneous water sources and climatic conditions during the previous and current growing seasons. Subtle shifts and amplitude deviations in cellulose δ18O, which abruptly became more positive around 1977–1978, may be attributed to the shifting climatic regime in China and to temperature variations, respectively. Our results illustrated the potential for investigating climatic or atmospheric circulation patterns based on oxygen isotope records in tree rings in regions near the interface between different large-scale synoptic circulations.  相似文献   

13.
Chemical and isotope studies of natural CO2 accumulations aid in assessing the chemical effects of CO2 on rock and thus provide a potential for understanding the long-term geochemical processes involved in CO2 geological storage. Several natural CO2 accumulations were discovered during gas and oil exploration in France’s carbogaseous peri-Alpine province (south-eastern France) in the 1960s. One of these, the Montmiral accumulation at a depth of more than 2400 m, is currently being exploited. The chemical composition of the water collected at the wellhead has changed in time and the final salinity exceeds 75 g/L. These changes in time can be explained by assuming that the fraction of the reservoir brine in the recovered brine–CO2–H2O mixture varies, resulting in variable proportions of H2O and brine in the sampled water. The proportions can be estimated in selected samples due to the availability of gas and water flowrate data. These data enabled the reconstruction of the chemical and isotope composition of the brine. The proportions of H2O and brine can also be estimated from isotope (δ2H, δ18O) composition of collected water and δ18O of the sulfates or CO2. The reconstituted brine has a salinity of more than 85 g/L and, according to its Br content and isotope (δ2H, δ18O, δ34S) composition, originates from an evaporated Triassic seawater that underwent dilution by meteoric water. The reconstitution of the brine’s chemical composition enabled an evaluation of the CO2–water–rock interactions based on: (1) mineral saturation indices; and (2) comparison with initial evaporated Triassic seawater. Dissolution of K- and SO4-containing minerals such as K-feldspar and anhydrite, and precipitation of Ca and Mg containing minerals that are able to trap CO2 (carbonates) are highlighted. The changes in concentration of these elements in the brine, which are attributed to CO2 interactions, illustrate the relevance of monitoring the water quality at future industrial CO2 storage sites.  相似文献   

14.
We report here a 30 W CO2 laser heating protocol for analyzing oxygen isotope composition (δ18O in ‰ vs. V-SMOW) of quartz and amorphous silica grains lower than 50 and 2 μm with a good external precision (1σ < 0.15‰). This technique is used to investigate δ18O composition of macro-, micro- and crypto-crystalline quartz cements of quartzite levels occurring in a sand sequence from the South of France (Apt Series), after a physical separation of the quartz cements. δ18O data obtained from this technique are compared with δ18O data obtained from in situ ion microprobe analyses. This study also presents promising results on δ18O analysis of phytoliths obtained with the laser heating protocol (1σ < 0.1‰).  相似文献   

15.
A revised calibration is presented relating the oxygen isotope composition of the aragonite-secreting sclerosponge Ceratoporella nicholsoni, oxygen isotope composition of seawater, and ambient water temperature. This new relationship has been obtained using high-resolution δ18O data measured in sclerosponges from the Bahamas and Jamaica compared to ambient temperature measurements and δ18O values of seawater from the two locations, both measured and published. New data improve an existing calibration which was determined using measurements of salinity rather than directly measured δ18O values of the seawater and was composed of measurements from different species of sclerosponge and other aragonite-secreting organisms. The updated calibration (n = 12, r2 = 0.95) is:
T(°C)=16.1(±3.1)-[6.5(±1.1)](δaragsw),
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号