首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A general approach for obtaining the consistent tangent operator for constitutive rate equations is presented. The rate equations can be solved numerically by the user's favourite time integrator. In order to obtain reliable results, the substepping in integration should be based on a control of the local error. The main ingredient of the consistent tangent operator, namely the derivative of the stress with respect to the strain increment must be computed simultaneously with the same integrator, applied to a numerical approximation of the variational equations. This information enables finite‐element packages to assemble a consistent tangent operator and thus guarantees quadratic convergence of the equilibrium iterations. Several numerical examples with a hypoplastic constitutive law are given. As numerical integrator we used a second‐order extrapolated Euler method. Quadratic convergence of the equilibrium iteration is shown. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, the onset of mechanical instability in time‐sensitive elasto‐viscoplastic solids is theoretically analyzed at the constitutive level and associated with the occurrence of ‘spontaneous accelerations’ under stationary external perturbations. For this purpose, a second‐order form of Perzyna's constitutive equations is first derived by time differentiation, and a sufficient stability condition is identified for general mixed loading programs. These loading conditions are in fact the most general in both laboratory tests and real boundary value problems, where a combination of certain stress and strain components is known/prescribed. The theoretical analysis leads to find precise stability limits in terms of material hardening modulus. In the case of constitutive relationships with isotropic strain‐hardening, no instabilities are possible while the hardening modulus is larger than the so‐called ‘controllability modulus’ defined for (inviscid) elasto‐plastic materials. It is also shown that the current stress/strain rate may also directly influence the occurrence of elasto‐viscoplastic instability, which is at variance with elasto‐plastic inviscid media. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Rate‐dependent behaviour of chalk and other porous rocks has undergone widespread study in geomechanics due to its implications on the performance of engineering structures. We present a rate‐dependent constitutive model for chalk and other porous rocks with several new features. The model formulation is based on a viscoplastic rate‐lines approach in which the axial strain rate depends on the proximity of the stress point to an elliptical reference surface. A non‐associated viscoplastic potential surface and an axial scaling algorithm are used to determine the viscoplastic strain components. The model predicts that axial yields stress varies as a power function of applied axial strain rate, as shown by published laboratory data. Comparisons with published experimental data indicate that the model is capable of reproducing observed rate‐dependent behaviour of chalk under a variety of loading conditions. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
詹云刚  袁凡凡  栾茂田 《岩土力学》2007,28(12):2619-2623
提出了基于Euler向后积分的自适应子增量本构积分算法,推导了相应的一致切线模量矩阵;通过引入伪屈服函数(塑性势函数),提出了对屈服面角点应力区进行两个方向应力投射的本构积分算法,使超出屈服面的试应力收敛到角点;推导了两个投射方向的一致切线模量矩阵;采用赋小值方法解决0应力屈服的问题。用上述方法编制了基于D-P准则的理想弹塑性模型ABAQUS-UMAT子程序,并进行了算例验证。  相似文献   

5.
This paper presents a new purely viscoplastic soil model based on the subloading surface concept with a mobile centre of homothety, enabling the occurrence of viscoplastic strains inside the yield surface and avoiding the abrupt change in stiffness of the traditional overstress viscoplastic models. This is required for overconsolidated soils. The model is formulated to reproduce the soil rate‐dependent behaviour under cyclic loading (changes in loading direction) and incorporates both initial and induced anisotropy, as well as destructuring. The model shows good qualitative response to some imposed three‐dimensional stress paths under quasi‐inviscid (elastoplastic) behaviour. Some of the main time‐dependent aspects of soil behaviour that the model is capable of reproducing were also illustrated. The capability of the model to adequately reproduce the results from an undrained triaxial test performed on stiff overconsolidated clays from the Lisbon region (Formação de Benfica), with an unloading–reloading deviatoric stress cycle at constant mean stress, that incorporates a series of staggered fast loading and creep stages, was evaluated. The model was able to reproduce well the main observed aspects of the time‐dependent stress–strain response and pore pressure evolution of a stiff overconsolidated clay under complex loading. The revised and generalised viscoplastic subloading surface concept is viable and can be applied to a consistent extension to viscoplasticity, including in the interior of the yield surface, of existing elastoplastic models formulated for soils and other materials. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
This paper develops a novel return mapping algorithm for the numerical integration of general isotropic finite strain elastoplastic constitutive models for geomaterials. The constitutive formulation is founded on multiplicative decomposition of the deformation gradient. The logarithmic strain measure as well as the exponential approximation of the plastic flow rule is utilized to restore the standard infinitesimal format return mapping algorithm. Central to the algorithm is the exploitation of a set of three mutually orthogonal unit base tensors for the representation of constitutive relations and the corresponding integration of the rate form of the constitutive equations. The base tensors constitute a local cylindrical coordinate system in the principal space, which allows to formulate the return mapping algorithm in the three‐dimensional space and reduce the dimension of the problem to be analyzed from six down to three. With the proposed approach, direct determination of the principal axes and the transformation procedure between the general space and the principal space, as required in traditional spectral decomposition, are avoided. Furthermore, the matrices that are involved in the inversion evaluation take simple forms, leading to extremely easy inverse computation. As a result, the consistent tangent operator can be streamlined into a form simpler and more compact than those by conventional integration methods. Following the formulation of the integration procedure, a numerical experiment is performed to assess the accuracy and efficiency of the proposed algorithm. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
A comprehensive numerical study on finite element implementation of hypoplastic models is presented. Two crucial aspects, local integration of the constitutive equations (the local problem) and forming tangent operators for Newton–Raphson iteration (the global problem), are investigated. For solving the local problem, different integration algorithms, including explicit and implicit methods, are examined using tri-axial compression tests and incremental stress response envelopes, as well as typical boundary value problems. For solving global problems, three different ways of generating the tangent operator are compared. The numerical evidences indicate that, in terms of accuracy, efficiency and robustness, explicit methods with substepping and error control are the best choices for constitutive integration of hypoplastic models while the so-called continuum tangent operators have certain advantages over two other types of numerically-generated consistent tangent operators.  相似文献   

8.
Predicting the deformations of deep reservoirs due to fluid withdrawal/injection is a challenging task that could have important environmental, social, and economical impacts. Finite element models, if endowed with an appropriate constitutive law, represent a useful tool for computing the displacements, the deformations, and the stress distributions in reservoir applications. Several studies show that hypoelastic laws, based on a stress‐dependent vertical compressibility, are able to provide accurate results, confirmed by in situ and satellite measurements. On the other hand, such laws present some weaknesses related to the numerical implementation, in particular due to the nonsymmetry of the tangent operator. This paper presents a new constitutive model based on 2 invariants (the mean normal and deviatoric stresses), characterized by a variable pressure‐dependent bulk modulus K. This constitutive law allows for overcoming most shortcomings of the hypoelastic law, although preserving the same accuracy, reliability, and ease of use and calibration. This paper presents a procedure to identify the parameters of the new model, starting from the typically available data on the vertical compressibility. Numerical results show a good agreement between the 2 laws, suggesting the proposed approach as a valid alternative in reservoir applications.  相似文献   

9.
The phenomenon of excess pore water pressure increase or stagnation and continuing large ground deformation in soft sensitive clay following the completion of construction of embankment is simulated for a case study at Saint Alban, Quebec, Canada. The present model employs an updated Lagrangian finite element framework and is combined with an automatic time increment selection scheme. The simulation based on an elasto‐viscoplastic constitutive model considers soil‐structure degradation effect. It is shown that without consideration for the microstructural degradation effect, it is not possible to reproduce the field responses of soft sensitive clay even during the construction of the embankment. When the soil‐structure degradation effect is considered, the present model can offer reasonably accurate prediction for the consolidation behavior of soft sensitive clay, including the so‐called anomalous pore water pressure generation and continuing large deformation even after the end of construction, which has been posing numerous uncertainties on the long‐term performance of earth structures. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
It is shown how modern concepts to integrate the elasto‐plastic rate equations of standard plasticity via an implicit algorithm can be generalized to plasticity without an explicitly defined yield surface and to overstress‐type models of viscoplasticity, where the stress point can be located outside the loading surface. For completeness, a tangent operator is derived that is consistent with the update algorithm. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
The purpose of the present paper is to clarify the effects of permeability and initial heterogeneity on the strain localization of fluid‐saturated cohesive soil modelled by a strain gradient‐dependent poro‐viscoplastic constitutive model. The effects of permeability and gradient parameters on the growth rate of the fluctuation were obtained by a linear instability analysis. Deformation behaviour of clay specimens modelled as a viscoplastic model with a second order strain gradient during shear was numerically analysed by a soil–water coupled FEM under both globally undrained and partially drained conditions. It was found that the deformation pattern and the stress–strain curve greatly depend on the permeability, the drainage conditions and the initial non‐homogeneous properties. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
钦亚洲  李宁  许建聪 《岩土力学》2012,33(4):1240-1246
通过将Perzyna过应力理论与临界状态理论相结合,并引入Wheeler旋转硬化法则,提出一个能描述土体初始各向异性及应力诱发各向异性的三维弹黏塑性本构模型。模型考虑流变发生的下限,在三维应力空间,模型存在形状相似的静屈服面及动态加载面。采用缩放形式的幂函数。本构模型数值算法采用回映算法,借助ABAQUS软件UMAT子程序接口实现。并通过对三轴不排水蠕变试验的模拟,确定合适的积分步长。此后,分别对三轴不排水蠕变试验及常应变率三轴不排水剪切试验进行了模拟。模拟中通过设置不同参数值,可将模型退化为各向同性模型,并对这两种模拟结果进行了比较。模拟结果表明:(1) 对于三轴不排水蠕变,在低剪应力水平下,各向同性模型和各向异性模型模拟的结果相差不大,而在高剪应力水平下,各向异性模型模拟结果更接近试验结果;(2) 对于常应变率加载试验的模拟,模型合理反映了土体不排水强度随着加载速率的增大而增大现象。  相似文献   

13.
A computational framework is presented for dynamic strain localization and deformation analyses of water‐saturated clay by using a cyclic elasto‐viscoplastic constitutive model. In the model, the nonlinear kinematic hardening rule and softening due to the structural degradation of soil particles are considered. In order to appropriately simulate the large deformation phenomenon in strain localization analysis, the dynamic finite element formulation for a two‐phase mixture is derived in the updated Lagrangian framework. The shear band development is shown through the distributions of viscoplastic shear strain, the axial strain, the mean effective stress, and the pore water pressure in a normally consolidated clay specimen. From the local stress–strain relations, more brittleness is found inside the shear bands than outside of them. The effects of partially drained conditions and mesh‐size dependency on the shear banding are also investigated. The effect of a partially drained boundary is found to be insignificant on the dynamic shear band propagation because of the rapid rate of applied loading and low permeability of the clay. Using the finer mesh results in slightly narrower shear bands; nonetheless, the results manifest convergency through the mesh refinement in terms of the overall shape of shear banding and stress–strain relations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
An elasto‐viscoplastic constitutive model for asphaltic materials is presented within the context of bounding surface plasticity theory, taking into account the effects of the stress state, void binder degree of saturation, temperature and strain rate on the material behaviour. A stress state dependent non‐linear elasticity model is introduced to represent time‐independent recoverable portion of the deformation. The consistent visco‐plasticity framework is utilised to capture the rate‐dependent, non‐recoverable strain components. The material parameters introduced in the model are identified, and their determination from conventional laboratory tests is discussed. The capability of the model to reproduce experimentally observed response of asphaltic materials is demonstrated through numerical simulations of several laboratory test data from the literature. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
This paper presents a three-dimensional elastic viscoplastic model that can describe the time-dependent behaviors of soft clays. The constitutive model is formulated based on the nonstationary flow surface theory and incorporates new developments, including (i) an improved definition of the nonstationary flow surface that is capable of capturing the stress–strain behaviors under different loading paths, (ii) a unique stress–strain—viscoplastic-strain-rate equation that is able to explicitly describe the nonstationary flow surface, and (iii) a final stable state concept that identifies the final equilibrium state at the end of creep and stress relaxation, which is also used to simplify the loading criteria. The consistency condition is validated for the proposed model, and the viscoplastic multipliers are calculated by solving the consistency equations. The model performance is investigated and validated via simulation of both oedometer and triaxial tests. The numerical results demonstrate that the proposed model is able to reproduce the main viscoplastic behaviors of soils, including creep, undrained creep rupture, stress relaxation, rate effect and accumulated effect.  相似文献   

16.
Wheeler, Sharma and Buisson proposed an elasto‐plastic constitutive model for unsaturated soils that couples the mechanical and water retention behaviours. The model was formulated for isotropic stress states and adopts the mean Bishop's stress and modified suction as stress state variables. This paper deals with the extension of this constitutive model to general three‐dimensional stress conditions, proposing the generalized stress–strain relationships required for the numerical integration of the constitutive model. A characteristic of the original model is the consideration of a number of elasto‐plastic mechanisms to describe the complex behaviour of unsaturated soils. This work presents the three‐dimensional formulation of these coupled irreversible mechanisms in a generalized way including anisotropic loading. The paper also compares the results from the model with published experiments performed under different loading conditions. The response of the model is very satisfactory in terms of both mechanical and water retention behaviours. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
A constitutive model for crushed salt is presented in this paper. A creep constitutive model is developed first and compared with test results. The constitutive model presented here concentrates on creep deformation because saline media behave basically in a ductile and time‐dependent way. An idealized geometry is used as a common framework to obtain stress–strain macroscopic laws based on two deformation mechanisms: fluid‐assisted diffusional transfer creep and dislocation creep. The model is able to predict strain rates that compare well with results from laboratory tests under isotropic and oedometric conditions. Macroscopic laws are written using a non‐linear viscous approach, which incorporates also a viscoplastic component, based on critical state theory. The viscoplastic term is intended for non‐creep deformation mechanisms such as grain reorganization and crushing. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
Analysis of large deformation of geomaterials subjected to time‐varying load poses a very difficult problem for the geotechnical profession. Conventional finite element schemes using the updated Lagrangian formulation may suffer from serious numerical difficulties when the deformation of geomaterials is significantly large such that the discretized elements are severely distorted. In this paper, an operator‐split arbitrary Lagrangian–Eulerian (ALE) finite element model is proposed for large deformation analysis of a soil mass subjected to either static or dynamic loading, where the soil is modelled as a saturated porous material with solid–fluid coupling and strong material non‐linearity. Each time step of the operator‐split ALE algorithm consists of a Lagrangian step and an Eulerian step. In the Lagrangian step, the equilibrium equation and continuity equation of the saturated soil are solved by the updated Lagrangian method. In the Eulerian step, mesh smoothing is performed for the deformed body and the state variables obtained in the updated Lagrangian step are then transferred to the new mesh system. The accuracy and efficiency of the proposed ALE method are verified by comparison of its results with the results produced by an analytical solution for one‐dimensional finite elastic consolidation of a soil column and with the results from the small strain finite element analysis and the updated Lagrangian analysis. Its performance is further illustrated by simulation of a complex problem involving the transient response of an embankment subjected to earthquake loading. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
The problem of predicting the evolution of liquefied ground, modelled as a viscoplastic material, is addressed by combining a minimum principle for the velocity field, which characterizes such an evolution, and a time step integration procedure. Two different numerical schemes are then presented for the finite element implementation of this minimum principle, namely, the regularization technique and the decomposition‐co‐ordination method by augmented Lagrangian. The second method, which proves more accurate and efficient than the first, is finally applied to simulate the incipient flow failure and subsequent spreading of a liquefied soil embankment subject to gravity. The strong influence of liquefied soil residual shear strength on reducing the maximum amplitude of the ground displacement is particularly emphasized in such an analysis. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
This paper presents a new constitutive model for the time dependent mechanical behaviour of rock which takes into account both viscoplastic behaviour and evolution of damage with respect to time. This model is built by associating a viscoplastic constitutive law to the damage theory. The main characteristics of this model are the account of a viscoplastic volumetric strain (i.e. contractancy and dilatancy) as well as the anisotropy of damage. The latter is described by a second rank tensor. Using this model, it is possible to predict delayed rupture by determining time to failure, in creep tests for example. The identification of the model parameters is based on experiments such as creep tests, relaxation tests and quasi‐static tests. The physical meaning of these parameters is discussed and comparisons with lab tests are presented. The ability of the model to reproduce the delayed failure observed in tertiary creep is demonstrated as well as the sensitivity of the mechanical response to the rate of loading. The model could be used to simulate the evolution of the excavated damage zone around underground openings. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号