首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 802 毫秒
1.
The Fish Canyon Tuff, Colorado, forms one of the largest (3000km3 known silicic eruptions in Earth history. The tuff is ahomogeneous quartz latite consisting of 40% phenocrysts (plagioclase,sanidine, biotite, hornblende, quartz, magnetite, apatite, sphene,and ilmenite) in equilibrium with a highly evolved rhyoliticmelt now represented by the matrix glass. Melt inclusions trappedin hornblende and quartz phenocrysts are identical to the newlyanalyzed matrix glass composition indicating that hornblendeand quartz crystallized from a highly evolved magma that subsequentlyexperienced little change. This study presents experimentalphase equilibrium data which are used to deduce the conditions(P, T, fO2, fH2O, etc.) in the Fish Canyon magma chamber priorto eruption. These new data indicate that sanidine and quartzare not liquidus phases until 780?C temperatures are achieved,consistent with Fe-Ti oxide geothermometry which implies thatthe magmatic temperature prior to eruption was 760?30?C. NaturalFe-Ti oxide pairs also suggest that log fO2 was -12.4 (intermediatebetween the Ni-NiO and MnO-Mn3O4 oxygen buffers) in the magmachamber. This fO2.102 is supported by the experimentally determinedvariations in hornblende and melt Mg-numbers as functions offO2 A new geobarometer based on the aluminum content of hornblendesin equilibrium with the magmatic assemblage hornblende, biotite,plagioclase, quartz, sanidine, sphene, ilmenite or magnetite,and melt is calibrated experimentally, and yields pressuresaccurate to ?0.5 kb. Total pressure in the Fish Canyon magmachamber is inferred to have been 2.4 kb (equivalent to a depthof 7.9 km) based on the Al-content of natural Fish Canyon hornblendesand this new calibration. This depth is much shallower thanhas been proposed previously for the Fish Canyon Tuff. Variationsin experimental glass (melt) composition indicate that the magmawas water-undersaturated prior to eruption. XH2O in the fluidphase that may have coexisted with the Fish Canyon magma isestimated to have been 0.5 by comparing the An-content of naturalplagioclases to experimental plagioclases synthesized at differentXH2O and Ptotals. This ratio corresponds to about 5 wt.% waterin the melt at depth. The matrix glass chemistry is reproducedexperimentally under these conditions: 760?C, 2.4 kb, XH2O=0.5,and log fo2=NNO+2 log units. The fugacity of SO2 (91 b) is calculatedfrom the coexistence of pyrrhotite and magnetite. Maximum CO2fugacity (2520 b) is inferred assuming the magma was volatilesaturated at 2.4 kb.  相似文献   

2.
The Huerto Andesite is the largest of several andesite sequences interlayered with the large-volume ash-flow tuffs of the San Juan volcanic field, Colorado. Stratigraphically this andesite is between the region's largest tuff (the 27.8 Ma, 3,000 km3 Fish Canyon Tuff) and the evolved product of the Fish Canyon Tuff (the 27.4 Ma, 1,000 km3 Carpenter Ridge Tuff), and eruption was from vents located approximately 20–30 km southwest and southeast of calderas associated with these ashflow tuffs. Olivine phenocrysts are present in the more mafic, SiO2-poor samples of andesite, hence the parent magma was most likely a mantle-derived basaltic magma. The bulk compositions of the olivine-bearing andesites compared to those containing orthopyroxene phenocrysts suggest the phenocryst assemblage equilibrated at 2–5 kbar. Two-pyroxene geothermometry yields equilibrium temperatures consistent with near-peritectic magmas at 2–5 kbar. Fractionation of phenocryst phases (olivine or orthopyroxene + clinopyroxene + plagioclase + Ti-magnetite + apatite) can explain most major and trace element variations of the andesites, although assimilation of some crustal material may explain abundances of some highly incompatible trace elements (Rb, Ba, Nb, Ta, Zr, Hf) in the most evolved lavas. Despite the great distance of the San Juan volcanic field from the inferred Oligocene destructive margin, the Huerto Andesite is similar to typical plate-margin andesites: both have relatively low abundances of Nb and Ta and similar values for trace-element ratios such as La/Yb and La/Nb.Deriving the Fish Canyon and Carpenter Ridge Tuffs by crystal fractionation from the Huerto Andesite cannot be dismissed by major-element models, although limited trace-element data indicate the tuffs may not have been derived by such direct evolution. Alternatively, heat of crystallization released as basaltic magmas evolved to andesitic compositions may have caused melting of crust to produce the felsic-ash flows. Mafic magmas may have been gravitationally trapped below lighter felsic magmas; mafic magmas which ascended to the surface probably migrated upwards around the margins of silicic chambers, as suggested by the present-day outcrops of andesitic units around the margins of recognized ash-flow calderas.  相似文献   

3.
Magmatic conditi ons inferred from the composition of the FishCanyon Tuff by Whitney &Stormer (J. Petrology, 26, 726–62(1985)) and Stormer & Whitney (Am. Miner. 70, 52–64(1985)) differ from studies of other ash-flow tuff and calderasystems, in that they consider the magma to have been unzonedand to have resided at {small tilde}9 kb pressure just priorto eruption. We find these conclusions unconvincing becauseof incomplete sampling of the Fish Canyon Tuff, alteration ofthe tuff after emplacement, and, in particular, serious limitationsof coupled Fe-Ti oxide and two-feldspar geothermobarometry.  相似文献   

4.
Highly evolved rhyolite glass plus near-solidus mineral assemblages in voluminous, dacitic, crystal-rich ignimbrites provide an opportunity to evaluate the late magmatic evolution of granodiorite batholiths. This study reports laser-ablation ICP-MS analyses of trace element concentrations in feldspars, hornblende, biotite, titanite, zircon, magnetite, and interstitial glass of the crystal-rich Fish Canyon Tuff. The high-silica rhyolite glass is characterized by relatively high concentrations of feldspar-compatible elements (e.g., 100 ppm Sr and 500 ppm Ba) and low concentrations of Y (<7 ppm) and HREE (~1 ppm Yb), hence high LREE/HREE (Ce/Yb >40) compared to many well-studied high-silica rhyolite glasses and whole-rock compositions. Most minerals record some trace element heterogeneities, with, in particular, one large hornblende phenocryst showing four- to six-fold core-to-rim increases in Sr and Ba coupled with a decrease in Sc. The depletions of Y and HREE in the Fish Canyon glass relative to the whole-rock composition (concentrations in glass ~30% of those in whole rocks) reflect late crystallization of phases wherein these elements were compatible. As garnet is not stable at the low-P conditions at which the Fish Canyon magma crystallized, we show that a combination of modally abundant hornblende (~4%) + titanite (~0.5–1%) and the highly polymerized nature of the rhyolitic liquid led to Y and HREE depletions in melt. Relatively high Sr and Ba contents in glass and rimward Sr and Ba increases in euhedral, concentrically zoned hornblende suggest partial feldspar dissolution and a late release of these elements to the melt as hornblende was crystallizing, in agreement with textural evidence for feldspar (and quartz) resorption. Both observations are consistent with thermal rejuvenation of the magma body prior to eruption, during which the proportion of melt increased via feldspar and quartz dissolution, even as hydrous and accessory phases were crystallizing. Sr/Y in Fish Canyon glass (13–18) is lower than the typical adakitic value (>40), confirming that high Sr/Y is a reliable indicator of high-pressure magma generation and/or differentiation wherein garnet is implicated.  相似文献   

5.
Locally, voluminous andesitic volcanism both preceded and followedlarge eruptions of silicic ash-flow tuff from many calderasin the San Juan volcanic field. The most voluminous post-collapselava suite of the central San Juan caldera cluster is the 28Ma Huerto Andesite, a diverse assemblage erupted from at least5–6 volcanic centres that were active around the southernmargins of the La Garita caldera shortly after eruption of theFish Canyon Tuff. These andesitic centres are inferred, in part,to represent eruptions of magma that ponded and differentiatedwithin the crust below the La Garita caldera, thereby providingthe thermal energy necessary for rejuvenation and remobilizationof the Fish Canyon magma body. The multiple Huerto eruptivecentres produced two magmatic series that differ in phenocrystmineralogy (hydrous vs anhydrous assemblages), whole-rock majorand trace element chemistry and isotopic compositions. Hornblende-bearinglavas from three volcanic centres located close to the southeasternmargin of the La Garita caldera (Eagle Mountain–FourmileCreek, West Fork of the San Juan River, Table Mountain) definea high-K calc-alkaline series (57–65 wt % SiO2) that isoxidized, hydrous and sulphur rich. Trachyandesitic lavas fromwidely separated centres at Baldy Mountain–Red Lake (westernmargin), Sugarloaf Mountain (southern margin) and Ribbon Mesa(20 km east of the La Garita caldera) are mutually indistinguishable(55–61 wt % SiO2); they are characterized by higher andmore variable concentrations of alkalis and many incompatibletrace elements (e.g. Zr, Nb, heavy rare earth elements), andthey contain anhydrous phenocryst assemblages (including olivine).These mildly alkaline magmas were less water rich and oxidizedthan the hornblende-bearing calc-alkaline suite. The same distinctionscharacterize the voluminous precaldera andesitic lavas of theConejos Formation, indicating that these contrasting suitesare long-term manifestations of San Juan volcanism. The favouredmodel for their origin involves contrasting ascent paths anddifferentiation histories through crustal columns with differentthermal and density gradients. Magmas ascending into the mainfocus of the La Garita caldera were impeded, and they evolvedat greater depths, retaining more of their primary volatileload. This model is supported by systematic differences in isotopiccompositions suggestive of crust–magma interactions withcontrasting lithologies. KEY WORDS: alkaline; calc-alkaline; petrogenesis; episodic magmatism; Fish Canyon system  相似文献   

6.
Batholith-sized bodies of crystal-rich magmatic ‘mush’are widely inferred to represent the hidden sources of manylarge-volume high-silica rhyolite eruptive units. Occasionallythese mush bodies are ejected along with their trapped interstitialliquid, forming the distinctive crystal-rich ignimbrites knownas ‘monotonous intermediates’. These ignimbritesare notable for their combination of high crystal contents (35–55%),dacitic bulk compositions with interstitial high-silica rhyoliticglass, and general lack of compositional zonation. The 5000km3 Fish Canyon Tuff is an archetypal eruption deposit of thistype, and is the largest known silicic eruption on Earth. Ejectafrom the Fish Canyon magmatic system are notable for the limitedcompositional variation that they define on the basis of whole-rockchemistry, whereas 45 vol. % crystals in a matrix of high-silicarhyolite glass together span a large range of mineral-scaleisotopic variability (microns to millimetres). Rb/Sr isotopicanalyses of single crystals (sanidine, plagioclase, biotite,hornblende, apatite, titanite) and sampling by micromillingof selected zones within glass plus sanidine and plagioclasecrystals document widespread isotopic disequilibrium at manyscales. High and variable 87Sr/86Sri values for euhedral biotitegrains cannot be explained by any model involving closed-systemradiogenic ingrowth, and they are difficult to rationalize unlessmuch of this radiogenic Sr has been introduced at a late stagevia assimilation of local Proterozoic crust. Hornblende is theonly phase that approaches isotopic equilibrium with the surroundingmelt, but the melt (glass) was isotopically heterogeneous atthe millimetre scale, and was therefore apparently contaminatedwith radiogenic Sr shortly prior to eruption. The other mineralphases (plagioclase, sanidine, titanite, and apatite) have significantlylower 87Sr/86Sri values than whole-rock values (as much as –0·0005).Such isotopic disequilibrium implies that feldspars, titaniteand apatite are antecrysts that crystallized from less radiogenicmelt compositions at earlier stages of magma evolution, whereashighly radiogenic biotite xenocrysts and the development ofisotopic heterogeneity in matrix melt glass appear to coincidewith the final stage of the evolution of the Fish Canyon magmabody in the upper crust. Integrated petrographic and geochemicalevidence is consistent with pre-eruptive thermal rejuvenationof a near-solidus mineral assemblage from 720 to 760°C (i.e.partial dissolution of feldspars + quartz while hornblende +titanite + biotite were crystallizing). Assimilation and blendingof phenocrysts, antecrysts and xenocrysts reflects chamber-wide,low Reynolds number convection that occurred within the last10 000 years before eruption. KEY WORDS: Fish Canyon Tuff; Rb–Sr isotopes; microsampling; magmatic processes; crystal mush  相似文献   

7.
Copper–gold mineralization at the world‐class Batu Hijau porphyry deposit, Sumbawa Island, Indonesia, is closely related to the emplacement of multiple stages of tonalite porphyries. Petrographic examination indicates that at least two texturally distinct types of tonalite porphyries are currently recognized in the deposit, which are designated as “intermediate tonalite” and “young tonalite”. They are mineralogically identical, consisting of phenocrysts of plagioclase, hornblende, quartz, biotite and magnetite ± ilmenite, which are set in a medium‐coarse grained groundmass of plagioclase and quartz. The chemical composition of the rock‐forming minerals, including plagioclase, hornblende, biotite, magnetite and ilmenite in the tonalite porphyries was systematically analyzed by electron microprobe. The chemical data of these minerals were used to constrain the crystallization conditions and fluorine–chlorine fugacity of the corresponding tonalitic magma during its emplacement and crystallization. The crystallization conditions, including temperature (T), pressure (P) and oxygen fugacity (fO2), were calculated by applying the hornblende–plagioclase and magnetite–ilmenite thermometers and the Al‐in‐hornblende barometer. The thermobarometric data indicate that the tonalite porphyries were emplaced at 764 ± 22°C and 1.5 ± 0.3 × 105 kPa. If the pressure is assumed to be lithostatic, it is interpreted that the rim of hornblende and plagioclase phenocrysts crystallized at depths of approximately 5.5 km. As estimated from magnetite–ilmenite thermometry, the subsolidus conditions of the tonalite intrusion occurred at temperatures of 540–590°C and log fO2 ranging from ?20 to ?15 (between Ni‐NiO and hematite–magnetite buffers). This occurred at relatively high fO2 (oxidizing) condition. The fluorine–chlorine fugacity in the magma during crystallization was determined on the basis of the chemical composition of magmatic biotite. The calculation indicates that the fluorine–chlorine fugacity, represented by log (fH2O)/(fHF) and (fH2O)/(fHCl) in the corresponding tonalitic magma range from 4.31 to 4.63 and 3.62 to 3.79, respectively. The chlorine fugacity (HCl) to water (H2O) is relatively higher than the fluorine fugacity (HF to water), reflecting a high activity of chlorine in the tonalitic magma during crystallization. The relatively higher activity of chlorine (rather than fluorine) may indicate the significant role of chloride complexes (CuCl2? and AuCl2?) in transporting and precipitating copper and gold at the Batu Hijau deposit.  相似文献   

8.
Disequilibrium phenocryst assemblages in the Younger Andesitesand Dacites of Iztacc?huatl, a major Quaternary volcano in theTrans-Mexican Volcanic Belt, provide an excellent record ofepisodic replenishment, magma mixing, and crystallization processesin calc-alkaline magma chambers. Phenocryst compositions andtextures in ‘mixed’ lavas, produced by binary mixingof primitive olivine-phyric basalt and evolved hornblende dacitemagmas, are used to evaluate the mineralogical and thermal characteristicsof end-members and the physical and chemical interactions thatattend mixing. Basaltic end-members crystallized olivine (FO90–88) andminor chrome spinel during ascent into crustal magma chambers.Resident dacite magma contained phenocrysts of andesine (An45–35),hypersthene (En67–61), edenitic-pargasitic hornblende,biotite, quartz, .titanomagnetite, and ilmenite. On reachinghigh-level reservoirs, basaltic magmas were near their liquidiat temperatures of about 1250–1200?C according to theolivine-liquid geothermometer. Application of the Fe-Ti-oxidegeothermometer-oxygen barometer indicates that hornblende dacitemagma, comprising phenocrysts (<30 vol. per cent) and coexistingrhyolitic liquid, had an ambient temperature between 940 and820?C at fO2s approximately 0?3 log units above the nickel-nickeloxide buffer assemblage. Mixing induced undercooling of hybridliquids and rapid crystallization of skeletal olivine (Fo88–73),strongly-zoned clinopyroxene (endiopside-augite), calcic plagioclase(An65–60); and orthopyroxene (bronzite), whereas low-temperaturephenocrysts derived from hornblende dacite were resorbed ordecomposed by hybrid melts. Quartz reacted to form coronas ofacicular augite and hydroxylated silicates were heated to temperaturesabove their thermal stability limit ({small tilde}940?C foramphibole, according to clinopyroxene-orthopyroxene geothermometry,and {small tilde}880?C for biotite). Calculations of phenocrystresidence times in hybrid liquids based on reaction rates suggestthat the time lapse between magma chamber recharge and eruptionwas extremely short (hours to days). It is inferred that mixing of magmas of diverse compositionis driven by convective turbulence generated by large differencesin temperature between end-members. The mixing mechanism involves:(1)rapid homogenization of contrasting residual liquid compositionsby thermal erosion and diffusive transfer (liquid blending);(2) assimilation of phenocrysts derived from the low-temperatureend-member; and (3) dynamic fractional crystallization of rapidlyevolving hybrid liquids in a turbulent boundary layer separatingbasaltic and dacitic magmas. The mixed lavas of lztacc?huatlrepresent samples of this boundary layer quenched by eruption.  相似文献   

9.
The Middle Cretaceous Cornucopia stock in the Blue Mountains of northeastern Oregon is a small composite intrusion consisting of hornblende biotite tonalite, biotite trondhjemite, and three cordierite two mica trondhjemite units. Unusual magnetite + biotite-rich tonalitic rocks are associated with the Crater Lake cordierite trondhjemite, the youngest of the intrusions. Oxide-rich tonalites are characterized by high Fe (~47-68 wt% total Fe as FeO), low SiO2 (<36 wt%), and enrichments in HFSE and REE (La(N)=361-903). Oxide-rich tonalites appear in a variety of forms, including composite dikes and sheets, in which they are associated with leucocratic tonalite. Leucotonalite is lower in SiO2 (60-72 wt%) than Crater Lake trondhjemite, and generally has DREE contents and Eu anomalies intermediate between the oxide-rich tonalite and Crater Lake compositions. Oxide-rich tonalites crosscut, and are crosscut by, shear zones in the host trondhjemite, indicating their emplacement late in the pluton's crystallization history. Granitic dikes crosscut the composite dikes in all localities. Geochemical considerations and sedimentary-like structures, such as load casts and bedding of magnetite-rich assemblages in the composite dikes and sheets, are suggestive of crystal settling from an Fe-rich parental magma. The Fe-rich liquid parental to the oxide-rich tonalite-leucotonalite pairs formed by extensive, in-situ, plagioclase + quartz-dominated crystallization of strongly peraluminous trondhjemite. Early magnetite saturation in the trondhjemite was suppressed, either because the parental trondhjemitic magma had a lower initial total Fe content or because it had a lower ferric-ferrous ratio, possibly reflecting a lower oxygen fugacity. Accumulation of magnetite from Fe-rich residual magma is a viable mechanism for the concentration of iron, and the subsequent formation of Fe-rich rocks, in calcic siliceous intrusions. Apparently, Fe-enrichment can occur locally in calcic magmas, and is not restricted to rocks of mafic tholeiitic or anorthositic affinity.  相似文献   

10.
The late Pleistocene Calabozos ash-flow and caldera complexlies in central Chile in a section of the Andean cordillerathat is transitional between dominantly andesitic-to-rhyoliticvolcanism to the north and mafic andesitic and high-aluminabasaltic volcanism to the south. The Calabozos rocks range incomposition from basaltic andesite to rhyodacite and definea high-K calcalkalic suite. They contain 2–25% phenocrystsof plagioclase, clinopyroxene, orthopyroxene, Fe-Ti oxides,and apatite, ? minor biotite or amphibole. More than 1000km3 of rhyodacitic to dacitic magma erupted atthe Calabozos caldera complex as three major compositionallyzoned ash-flow sheets, Unit L (0?8 Ma), Unit V (0? 30Ma), andUnit S (0?15 Ma) of the Loma Seca Tuff. Phenocryst modes, trace-elementcontents, inferred magmatic volatile contents, and oxygen fugacitiesvary systematically with major-element composition in the tuffs.In the cases of Units V and S, it is possible to reconstructcompositional, thermal, and volatile gradients that existedin density-stratified magma chambers shortly prior to theireruption. The magma graded from crystal-poor, water-rich, andbiotite-bearing rhyodacite in the upper reaches of the chamberto more crystal-rich, water-poor, and amphibole-bearing daciteat deeper levels. Fe-Ti oxide equilibration temperatures are800 to 900?C for rhyodacite and 900 to 950?C for dacite. Magmathat erupted as Unit S was slightly hotter and more oxidizedthan magma that gave rise to Unit V. More mafic magmas wereassociated with the voluminous rhyodacitic to dacitic magmareservoir, as indicated by the presence of andesite and basalticandesite lava flows and by scoria inclusions in Unit V. The compositional suite from basaltic andesite to rhyodacitecan be simulated satisfactorily by crystal-fractionation calculationsbased on major-element phenocryst and rock compositions, andis consistent with modes of the Calabozos rocks. Rhyodacitesof Units V and S, however, are enriched in elements such asRb, Ba, and Zr relative to trace-element contents predictedby crystal-fractionation models. The enrichment can be achievedby assimilation of wall rock or a partial melt of the wall rock.The latter requires that the ratio of assimilation rates tocrystallization rates be between 0?1 and 0?3. Rates of assimilationversus crystallization were greater for Unit S than for UnitV, which is consistent with the lower Fe-Ti oxide temperaturesand less oxidized state of the latter. The Loma Seca Tuff is similar in bulk composition to sanidine-bearingash-flow sheets erupted on ‘mature’ continentalcrust, but it is mineralogically akin to ash-flow tuffs eruptedon ‘immature’ crust. The difference is attributed,in part, to the effect of the density of the crust on the rateof magma ascent at shallow levels. The ascent of large bodiesof silicic magma is slower in silicic (less dense) crust thanin mafic crust, causing the magmas to be erupted at a laterpoint in the crystallization history.  相似文献   

11.
Crystallization experiments at 400 MPa, oxidized condition (logfO2= NNO + 1, where NNO is nickel–nickel oxide buffer) andover a range of temperatures (850–950°C) and fluidcomposition (XH2Oin = 0·3–1) have been carriedout to constrain the storage conditions of the sulphur-richmagma of the Huerto Andesite (an anhydrite, pyrrhotite, andS-rich apatite-bearing, post-Fish Canyon Tuff mafic lava). Theresults are used to evaluate the role of fluids released fromthe crystallization of magmas such as the Huerto Andesite onthe remobilization of the largely crystallized dacitic FishCanyon magma body. Experiments were performed using the naturalandesitic bulk composition with and without added sulphur. Thepresence of sulphur slightly affects the phase equilibria bychanging the phase proportions, stability fields of plagioclase,pyroxenes and ilmenite, and also affects the plagioclase composition.Phase equilibria and mineral composition data indicate thatthe magma may have contained 4·5 wt % water in the meltand that the pre-eruptive temperature was 875 ± 25°C.Assuming that the magma was in equilibrium with a fluid phase,the CO2 concentration of the melt is estimated to be in therange 2000–4000 ppm (at 400 MPa). Before eruption, theandesite had an oxidation state very close to, or slightly within,the co-stability field of anhydrite–pyrrhotite at NNO+ 1·1. At these conditions, the sulphur content in themelt is 500 ppm. Assuming open-system degassing resulting fromcontinuing crystallization at depth, most of the CO2 dissolvedin the andesitic melt should be released after the crystallizationof <10 vol. % of the magma, corresponding to a cooling from875 to 825–850°C. Thus, the fluids released owingto crystallization processes should be mainly composed of waterat temperatures below 825°C. KEY WORDS: experimental study; andesite; volatile; Fish Canyon Tuff; Huerto Andesite  相似文献   

12.
对西昆仑普鲁新生代火山岩的矿物学进行了系统的研究。结果表明:该地区火山岩主要由橄榄石、单斜辉石和斜长石组成,并有少量的斜方辉石、黑云母、角闪石、碱性长石和铁钛氧化物。其矿物学特征指示了岩浆的性质有点类似于碱性岩浆,但与典型的碱性玄武岩又有明显的区别,属于橄榄安粗岩系列。利用橄榄石-熔体平衡原理估算了进入高位岩浆房中的熔体的MgO含量约为6.2%,Mg^#为0.57,说明其不是地幔熔融形成的原始岩浆,而是经历了深部岩浆房的分离结晶过程。由单斜辉石估算的高位岩浆房的深度约7~9km。岩浆在高位岩浆房中发生了较长时间的强烈分离结晶作用,分离结晶相主要为橄榄石、单斜辉石和斜长石以及少量的斜方辉石、黑云母、角闪石、碱性长石和铁钛氧化物。不同时期形成的铁钛氧化物指示了分离结晶过程由相对高温高氧逸度向相对低温低氧逸度演化。与此相对照的是岩浆在深部岩浆房中可能只发生了橄榄石和辉石等铁镁矿物的分离结晶作用,且分异作用时间较短。深部岩浆房可能存在于岩石圈地幔或壳幔过渡带中,岩浆由深部岩浆房上升到高位岩浆房中的过程是近绝热的,从浅部岩浆房到地表是快速上升的过程。  相似文献   

13.
Calcic schists in the andalusite-type regional metamorphic terrainin the Panamint Mountains, California, contain the low-varianceassemblage quartz+epidote+muscovite+biotite+calcic amphibole+chlorite+plagioclase+spheneat low grade. Near the sillimanite isograd, chlorite in thisassemblage is replaced by garnet. The low variance in many calcicschists allows the determination of the nature of the reactionthat resulted in the coexistence of garnet+hornblende. A graphicalanalysis of the mineral assemblages shows that the reactioncan not be of the form biotite+epidote+chlorite+plagioclase+quartz=garnet+hornblende+muscovite+sphene+H2Obecause garnet+chlorite never coexisted during metamorphismand the chlorite-bearing and garnet-bearing phase volumes donot overlap. The compositions of the minerals show that withincreasing grade amphibole changed from actinolite to pargasitichornblende with no apparent miscibility gap, the partitioningof Fe and Mg between chlorite and hornblende changed from KD(Mg/Fe, chl&amp) < 1 to KD > 1, the partitioning betweenbiotite and hornblende changed from KD (Mg/Fe, bio/amp) <1 in chlorite-zone samples to KD > 1 in garnet + hornblende-zonesamples, and the transition to the garnet-bearing assemblageoccurred when the composition of plagioclase was between An55and An80. Both the graphical analysis and an analytical analysisof the compositions of the minerals using simplified componentsderived from the natural mineral compositions indicate thatat the garnet+hornblende isograd the composition of hornblendewas colinear with that of plagioclase and biotite, as projectedfrom quartz, epidote, muscovite, and H2O. During progressivemetamorphism, chlorite+biotite+epidote+quartz continuously brokedown to form hornblende+muscovite+sphene until the degeneracywas reached. At that point, tie lines from hornblende couldextend to garnet without allowing garnet to coexist with chlorite.Thus, the garnet+hornblende isograd was established throughcontinuous reactions within the chlorite-grade assemblage ratherthan through a discontinuous reaction. In this type of isograd,the low-grade diagnostic assemblage occurs only in Mg-rich rocks;whereas the high-grade assemblage occurs only in Fe-rich rocks.This relation accounts for the restricted occurrence of garnet+hornblendeassemblage in low-pressure terrains. In Barrovian terrains,garnet+chlorite commonly occurs, and the first appearana ofgarnet+hornblende can simply result from the continuous shiftof the garnet+chlorite tie line to Mg-rich compositions.  相似文献   

14.
Determining the mechanisms involved in generating large-volume eruptions (>100 km3) of silicic magma with crystallinities approaching rheological lock-up (~50 vol% crystals) remains a challenge for volcanologists. The Cenozoic Southern Rocky Mountain volcanic field, in Colorado and northernmost New Mexico, USA, produced ten such crystal-rich ignimbrites within 3 m.y. This work focuses on the 28.7 Ma Masonic Park Tuff, a dacitic (~62–65 wt% SiO2) ignimbrite with an estimated erupted volume of ~500 km3 and an average of ~45 vol% crystals. Near-absence of quartz, titanite, and sanidine, pronounced An-rich spikes near the rims of plagioclase, and reverse zoning in clinopyroxene record the reheating (from ~750 to >800?°C) of an upper crustal mush in response to hotter recharge from below. Zircon U–Pb ages suggest prolonged magmatic residence, while Yb/Dy vs temperature trends indicate co-crystallization with titanite which was later resorbed. High Sr, Ba, and Ti concentrations in plagioclase microlites and phenocryst rims require in-situ feldspar melting and concurrent, but limited, mass addition provided by the recharge, likely in the form of a melt-gas mixture. The larger Fish Canyon Tuff, which erupted from the same location ~0.7 m.y. later, also underwent pre-eruptive reheating and partial melting of quartz, titanite, and feldspars in a long-lived upper crustal mush following the underplating of hotter magma. The Fish Canyon Tuff, however, records cooler pre-eruptive temperatures (~710–760?°C) and a mineral assemblage indicative of higher magmatic water contents (abundant resorbed sanidine and quartz, euhedral amphibole and titanite, and absence of pyroxene). These similar pre-eruptive mush-reactivation histories, despite differing mineral assemblages and pre-eruptive temperatures, indicate that thermal rejuvenation is a key step in the eruption of crystal-rich silicic volcanics over a wide range of conditions.  相似文献   

15.
A. Audtat  T. Pettke  D. Dolej 《Lithos》2004,72(3-4):147-161
A quartz-monzodioritic dike associated with the porphyry-Cu mineralized stock at Santa Rita, NM, has been studied to constrain physico-chemical factors (P, T, fO2, and volatile content) responsible for mineralization. The dike contains a low-variance mineral assemblage of amphibole, plagioclase (An30–50), quartz, biotite, sphene, magnetite, and apatite, plus anhydrite and calcite preserved as primary inclusions within the major phenocryst phases. Petrographic relationships demonstrate that anhydrite originally was abundant in the form of phenocrysts (1–2 vol.%), but later was replaced by either quartz or calcite. Hornblende–plagioclase thermobarometry suggests that several magmas were involved in the formation of the quartz-monzodiorite, with one magma having ascended directly from ≥14 km depth. Rapid magma ascent is supported by the presence of intact calcite inclusions within quartz phenocrysts.

The assemblage quartz+sphene+magnetite+Mg-rich amphibole in the quartz-monzodiorite constrains magmatic oxygen fugacity at logfO2>NNO+1, in agreement with the presence of magmatic anhydrite and a lack of magmatic sulfides. The same reasoning generally applies for rocks hosting porphyry-Cu deposits, seemingly speaking against a major role of magmatic sulfides in the formation of such mineralizations. There is increasing evidence, however, that magmatic sulfides play an important role in earlier stages of porphyry-Cu evolution, the record of which is often obliterated by later processes.  相似文献   


16.
The igneous complex of Ballachulish is a composite calc-alkalinepluton of Caledonian age (412 ? 28 Ma), emplaced in Dalradianmetasediments at a pressure of 3 ? 0–5 kb (c. 10 km depth).The 4 by 7 km intrusion is composed of a zoned monzodiorite-quartzdiorite envelope with a distinct flowand deformation-foliation,surrounding a younger core of porphyritic granite. Two-pyroxene thermometry, Fe-Ti oxide thermobarometry, and stabilityrelationships of ternary feldspars, biotite, and amphibolesare used to calibrate the 3 kb isobaric crystallization sequencewith respect to the following parameters: the fractionationstage of the host rocks, the water content of the magmas, phasecompositions, and oxygen fugacity. Plagioclase, augite, andoxides generally yielded submagmatic temperatures due to theextensive recrystallization and re-equilibration of these phasesin the 900–l550?C subsolidus range. The ‘dry’monzodiorites apparently contained less than 1 wt. % initialmagmatic water, and remained H2O-deficient and vapor-absentthroughout their entire crystallization range. In contrast,2.5–3 wt.% initial H2O is estimated for the more fractionatedquartz diorites and the younger granites. The main crystallizationinterval for Opx–Cpx–Plg primocrysts in the dioritescovers c. 1100–950?C. Late-magmatic biotite and alkalifeldspar join the paragenetic sequence below 980?860?C, at fO2near NNO. A solidus temperature of c. 900?C is inferred forthis ‘dry’ system, in which amphiboles are entirelysubsolidus. At the present level of emplacement, crystallizationintervals of {small tilde} 1050–690?C and{small tilde}900–680?C are suggested for the quartz diorites and thegranites, which probably terminated crystallization in the presenceof a hydrous fluid.  相似文献   

17.
罗卜岭斑岩铜钼矿床是紫金山Cu-Au-Mo浅成低温-斑岩矿田内新近发现的大型斑岩铜钼矿床,本文在岩芯及光薄片系统观察的基础上,分析了矿化斑岩锆石LA-ICP-MS U-Pb年龄及锆石Ce4/Ce3+比值.罗卜岭赋矿斑岩体可分为两期,早期为角闪黑云母花岗闪长斑岩及黑云母花岗闪长斑岩,晚期为黑云母花岗闪长斑岩.早期角闪黑云母花岗闪长斑岩和黑云母花岗闪长斑岩锆石LA-ICP-MS U-Pb年龄分别为103.7±1.2Ma,MSWD=0.33和103.0±0.9Ma,MSWD=1.00;晚期黑云母花岗闪长斑岩锆石LA-ICP-MS U-Pb年龄为97.6±2.1Ma,MSWD=6.00.罗卜岭成矿斑岩基质普遍发育硬石膏,两期成矿斑岩锆石都具较高的Ce4 +/Ce3平均值,在630 ~770之间,高于区内非成矿花岗岩锆石的Ce4+/Ce3+平均值(182 ~577),显示罗卜岭斑岩矿床成矿岩浆具有高氧逸度的特征.据罗卜岭斑岩矿床的形成时代、高氧逸度岩浆特征,结合华南地区中生代构造背景,我们初步认为罗卜岭斑岩矿床的形成可能和中生代古太平洋向北西西方向俯冲有关.  相似文献   

18.
SEN  GAUTAM 《Journal of Petrology》1986,27(3):627-663
Electron microprobe analyses of minerals of thirteen DeccanTrap lava flows at Mahabaleshwar have been carried out in thepresent study. All of these flows have tholeiitic bulk compositionsand all, except one (represented by MB-81-17 of Mahoney et al.,1982) contain olivine, plagioclase, two pyroxenes, and Fe-Tioxide minerals. Olivine and plagioclase appear as distinct phenocrystsin all but one flow, and Ca-rich pyroxene joins as a phenocrystphase in the younger flows. Pigeonite and Fe-Ti oxide minerals(titanomagnetite and ilmenite) occur in the groundmass. Olivineoccurs as both groundmass and phenocryst phase in MB-81-17 (whichis the only flow without low-Ca pyroxene phase); in all otherflows olivine appears only as phenocryst phase. In all but one(MB-81-17) flow olivine is completely altered. MB-81-17 olivinegrains are only partly altered, and in this rock the cores ofphenocrysts are rounded and have a composition of Fo77 whereastheir euhedral rims have a composition around Fo67. The groundmassolivine grains in MB-81-17 are Fo41–32. Substantial Fe-enrichmentand zoning trends are shown by the pyroxenes in individual rocks.The cores of Ca-rich pyroxene phenocrysts of some of the flowshave as much as 4 wt. per cent A12O3 and may have crystallizedat higher (crustal) pressures. Pigeonite thermometry (Ishii,1975) suggests an average of 1050?C for crystallization of thegroundmass pigeonite (eruption temperature?). Fe-Ti oxide mineralsare mostly altered in the older flows. In the younger flows,coexisting unaltered titanomagnetite and ilmenite yield maximumtemperature estimates for the crystallization of these phaseof about 1025?C and an oxygen fugacity of 10–11.5 atm.The T-fo2 path followed by these flows seems to have been consistentlysomewhat lower than that defined by the 1 atm. fayalite-magnetitequartz curve. All of the lavas examined have experienced extensivefractional crystallization of olivine and some clinopyroxeneat relatively higher pressures. These lavas were saturated orclose to being saturated with olivine+plagioclase+clinopyroxeneduring eruption. Plagioclase accumulation, although it appearsto have occurred, has not been significant. It is suggestedthat MB-81-17 magma was contaminated by a calcite-rich rock(limestone?) whereas the lower Group 1 magmas may have beenselectively contaminated by quartz-bearing contaminant. Alternately,parental magma of MB-81-1 (with the highest Mg-number and 8= -16) may have been produced in the upper mantle into whichminor masses of old crust was well mixed. Magma mixing, crystalfractionation, and contamination processes of Mahabaleshwarbasalts and possible genetic relationships with other DeccanTrap lavas are discussed.  相似文献   

19.
The mid-Jurassic calcalkaline Russian Peak intrusive complex,located in the Klamath Mountains of northern California, consistsof an elliptical peridotite-to-quartz diorite suite intrudedby two plutons of granodiorite. Several techniques were usedto decipher the crystallization conditions for ultramafic rocks,quartz diorite, and granodiorite, including comparison of parageneseswith crystallization experiments, application of geothermometersand barometers, and evaluation of phase equilibria. Contactmetamorphic assemblages, hornblende barometry, and amphibolesubstitution schemes indicate that pressures of intrusion were{small tilde}3 kbar. Plagioclase and pyroxene thermometry indicateintrusion temperatures of {small tilde}1000C for quartz dioriteand 900C for granodiorite. Phase equilibrium analysis for thereaction phlogopite+quartz=K-feldspar+enstatite+H2O, coupledwith an estimate of the water-saturated quartz diorite solidus,suggests that the solidus of two-pyroxene quartz diorite wasat {small tilde}780C with a mole fraction of water of {smalltilde}0•55. The composition of granodiorite is very similarto that used in several crystallization experiments and indicatesa solidus of 70025C. Estimates of oxygen fugacity, obtainedfrom equilibrium relations of olivine, orthopyroxene, and spinelin ultramafic rocks, magnetite and ilmenite in quartz diorite,and magnetite, K-feldspar, and biotite in quartz diorite andgranodiorite are 2•1–2•5 and 1•0–1•3log units above the quartz-fayalite-magnetite (QFM) buffer forgranodiorite and quartz diorite at their respective solidustemperatures; and 1•0–4•0 log units above QFMfor ultramafic rocks and quartz diorite at subsolidus temperatures.Thus, the quartz diorite magma was hotter, drier, and slightlyreduced relative to the grandiorite magma, differences thatset important constraints on the genesis of the Russian Peakmagmas. These results also indicate that quartz diorite wasundersaturated with respect to H2O as it reached its solidus,a condition that is consistent with the absence of deutericalteration in this unit. In contrast, granodiorite shows extensivedeuteric alteration and features pegmatites, quartz pods, andradial dikes as might be expected for H2O-saturated conditions. Although calcalkaline plutonic complexes present serious difficultiesin estimating the intensive parameters of crystallization, judiciousapplication of appropriate methods may result in the successfulevaluation of the conditions of crystallization of such complexes.  相似文献   

20.
The Late Permian Fe-Ti oxide ore-bearing Baima igneous complex (BIC) is one of three gabbro-granitoid complexes with the Emeishan large igneous province. Mineral compositions are determined for the BIC layered gabbro in order to constrain subsolidus and magma chamber processes. The averaged compositions of cumulus olivine, clinopyroxene and plagioclase within individual samples range from Fo65-76, Mg# = 75 to 82 and An49-64 but they are not correlative. The observed mineral compositions are consistent with those modeled using the pHMELTS program. Highly variable magnetite compositions are consistent with extensive subsolidus re-equilibration and exsolution. The occurrence of reversely-zoned granular olivine in Fe-Ti oxide ores is a manifestation of Mg transfer between Fe-Ti oxides and olivine at relatively high (<1150?°C) subsolidus temperatures. The primary oxide is inferred to be an aluminous titanomagnetite. Similar to other layered intrusions in the region, the gabbroic unit of the BIC displays Zr depletion which is consistent with loss of a residual liquid during magma differentiation. If the most Zr-rich syenites of the complex are taken into account, the Zr budgets between the combined gabbro-syenite and the basalts are similar. This indicates that the BIC most likely represents a closed system in terms of magma extraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号