首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
I Van der Molen   《Tectonophysics》1981,73(4):323-342
Measurements are presented of volume changes in granite during room-temperature compression to 100, 200 and 300 MPa confining pressure followed by temperature increase to 900°C. Comparison with thermal expansion and compressibility data for the constituent minerals allows changes in porosity to be estimated. Under confining pressure, porosity is found to decrease with heating to 200°C through expansion of the minerals into cracks which are thought to be related to the geological cooling history of the rock. Between 200°C and 840°C porosity increases as a result of differential thermal expansion of the constituent minerals, but crack opening is increasingly suppressed at higher confining pressures. Extrapolation of the results indicates that differential thermal expansion can no longer cause crack opening in dry granite at confining pressures in excess of 450 MPa. The quartz α-β transition temperature in granite is marked by a kink in the thermal expansion curve of the rock, and it is found to increase by 60°C–70°C per 100 MPa confining pressure, as opposed to the published value of 26°C per 100 MPa for single crystals of quartz. Equations are presented which allow calculation of the effects of confining pressure and temperature on the stresses and displacements in and around a spherical inclusion embedded in a matrix of different elasticity and thermal expansion. The theory, together with a simple self-consistent model for granite, accounts semiquantitatively for the observations of thermal expansion and the effect of confining pressure thereon, and for the observed α-β transition temperatures for quartz in granite.  相似文献   

2.
Compressional wave velocities have been measured in granite, granulite, amphibolite and peridotite specimens under conditions of high temperature up to 700°C and confining pressures up to 6 kbar. In general, velocity increases with pressure and decreases with temperature.Quartz-bearing rocks show an anomalous behavior of their compressional wave velocities. The velocity—temperature relations exhibit a velocity-“deep” due to the high—low inversion of the constituent quartz crystals. The intrinsic effect of temperature on velocities is hard to determine due to thermal expansion and consequent loosening of the structure. The opening of new cracks and the widening of old cracks causes a large decrease in compressional wave velocities. The minimum pressure to prevent damage at a given temperature should, therefore, be about 1 kbar/100°C.The values obtained at these conditions are considered to be most nearly correct as intrinsic properties of the compact aggregates. Velocity anisotropies at high confining pressures and high temperatures correlate with preferred lattice orientation of the constituent minerals. The effect of dimensional orientation and microcracks on seismic anisotropy seems to be of minor importance in dry rocks. It is the more eliminated the higher the confining pressure. The data do not support the concept of a velocity maximum in depth of 10–20 km.  相似文献   

3.
Variations in the mechanical properties (compressive strength, elastic modulus, tensile strength, and fracture toughness) of granite were analyzed as functions of temperature. It was found that above 200 °C, tensile strength and fracture toughness tended to decrease with temperature, while variations in the compressive strength and elastic modulus demonstrated decreasing trends when the heating temperature exceeded 400 °C. The temperature ranges of room temperature—200 and above 600 °C—corresponded to an undamaged state and strongly/completely damaged state, respectively. It is suggested that 400 °C might be a critical threshold of thermal damage to granite. Based on results of statistical tests, a sharp decrease in mechanical properties can be recognized, accompanied by a drastic growth in peaking strain and acoustic emission rate. This phenomenon may be associated with the α/β phase transition of quartz.  相似文献   

4.
A ductile shear zone within a metasomatic biotite band in the Ryoke granite, Teshima, SW Japan, has been studied using the scanning X-ray analytical microscope (SXAM). This enabled the quantitative distributions of major elements, such as Si, K, Fe, Al and Ca, to be determined within the shear zone. These element maps were processed to transform them into images showing the distribution of minerals such as quartz, biotite, plagioclase and K-feldspar, which form the major minerals within the biotite band and the granite protolith. Mineral profiles based on these mineral maps compared with the simple shear strain profile reveal that the shear zone is most intense where quartz and biotite have been substituted for the primary mineral assemblage of the granite protolith, suggesting that the stresses imposed on the granite caused the shear strain to localize along the biotite band to produce the observed shear zone. It appears that the rheological behavior changed around 50–60% of quartz modal composition.  相似文献   

5.
The crustal structure beneath three seismic stations over Malaysia has been investigated with the application of the group velocity dispersion analysis of the northern Sumatra earthquake data which occurred on 06 April 2010. Eighteen crustal layer models are constructed to assess the structure. Group velocity dispersions have been computed for the recorded earthquake data using a graphical method and modified Haskell matrix method for the models. Both dispersions have been presented for the interpretation of crustal layers. Findings have shown four major crustal layers having thicknesses of 2.5–4.0, 2.0–5.5, 5.0–8.0, and 8.5–9.0 km, while in Terengganu, it has shown three layers. Density, shear, and compressional wave velocities used in models have suggested that the crustal structure of the northern part of Peninsular Malaysia is crystalline. Major crustal minerals are of quartz, plagioclase, and mica. Most layers seem to have upward directions toward Perak from Kedah and Terengganu.  相似文献   

6.
Wang  Fei  Konietzky  Heinz  Frühwirt  Thomas  Dai  Yajie 《Acta Geotechnica》2020,15(8):2259-2275

The knowledge about thermo-mechanical properties of granite is still limited to some extent. Individual measurements are necessary to obtain reliable properties for specific granite types. A reliable numerical model of thermal cracking behaviours of granite exposed to extreme high temperatures (e.g. 800–1000 °C) is missing. In this study, the impact of temperature up to 1000 °C on physical, mechanical, and thermal properties as well as thermo-mechanical coupled behaviour of Eibenstock granite was investigated by laboratory testing and numerical simulations. The physical properties including mineral composition, density, P-wave velocity, and open porosity are measured to be temperature dependent. Uniaxial compression and Brazilian tests were carried out to measure uniaxial compressive strength (UCS), Young’s modulus, stress–strain relationship, and tensile strength of Eibenstock granite before and after thermal treatment, respectively. Thermal properties including specific heat, thermal conductivity, thermal diffusivity, and linear thermal expansion coefficient are also measured and found to be temperature dependent, especially the expansion coefficient which shows a steep increase around 573 °C as well as at 870 °C. The numerical simulation code FLAC3D was used to develop a numerical scheme to simulate the thermal-induced damage of granite at high temperatures. Statistical methods combined with real mineral composition were used to characterize the heterogeneity of granite. The numerical model is featured with reliable temperature-dependent parameters obtained from laboratory tests. It can well reproduce the laboratory results in form of thermal-induced micro- and macrocracks, as well as the stress–strain behaviour and the final failure pattern of Eibenstock granite after elevated temperatures up to 1000 °C. The simulation results also reveal that the thermal-induced microcracks are randomly distributed across the whole sample. Although most thermal-induced damages are tensile failures, shear failure begins to develop quickly after 500 °C. The obvious UCS reduction in granite due to heating is mainly caused by the increase in shear failure. The simulation also shows that the dominant impact of αβ quartz transition is widening pre-existing cracks rather than the formation of new microcracks.

  相似文献   

7.
焦家式金矿形成于从韧性构造到脆性构造的转折期,金城金矿床乃至焦家金矿田控矿构造从早到晚经历了左行韧性逆冲、右行脆性张剪、右行脆性压剪和正断层四个活动阶段。成矿作用从早到晚可分为5个阶段,石英钾长石阶段发育于韧性变形前,与围岩玲珑花岗岩有较大时差而与主成矿阶段时间相近,为成矿初期;石英铁碳酸盐黄铁矿阶段、石英黄铜矿阶段和黄铁绢英岩阶段为主成矿阶段,发生于脆性构造环境,前二者形成于右行张剪环境,后者在各个阶段均不同程度发育,但以右行压剪阶段最重要;碳酸盐阶段为成矿末期。  相似文献   

8.
We have measured P- and S-wave velocities on two amphibolite and two gneiss samples from the Kola superdeep borehole as a function of pressure (up to 600 MPa) and temperature (up to 600 °C). The velocity measurements include compressional (Vp) and shear wave velocities (Vs1, Vs2) propagating in three orthogonal directions which were in general not parallel to inherent rock symmetry axes or planes. The measurements are accompanied by 3D-velocities calculations based on lattice preferred orientation (LPO) obtained by TOF (Time Of Flight) neutron diffraction analysis which allows the investigation of bulk volumes up to several cubic centimetres due to the high penetration depth of neutrons. The LPO-based numerical velocity calculations give important information on the different contribution of the various rock-forming minerals to bulk elastic anisotropy and on the relations of seismic anisotropy, shear wave splitting, and shear wave polarization to the structural reference frame (foliation and lineation). Comparison with measured velocities obtained for the three propagation directions that were not in accordance with the structural frame of the rocks (foliation and lineation) demonstrate that for shear waves propagating through anisotropic rocks the vibration directions are as important as the propagation directions. The study demonstrates that proper measurement of shear wave splitting by means of two orthogonal polarized sending and receiving shear wave transducers is only possible when their propagation and polarization directions are parallel and normal to foliation and lineation, respectively.  相似文献   

9.
为了研究二氧化碳基增强型地热系统核心及邻近区域中超临界二氧化碳(ScCO2)作用对岩石力学性能的影响,设计了纯ScCO2与干燥花岗岩作用,ScCO2、水蒸气与干燥花岗岩作用,ScCO2与在水中浸泡了24 h后的花岗岩作用3种试验条件,每种试验条件下均开展了210、240、270℃温度下的试验。对ScCO2作用后的岩样以及一个未经处理的对比样先后开展纵波波速测试以及单轴压缩试验,获得了岩石的纵波波速、单轴抗压强度以及弹性模量。纵波波速试验结果表明,在上述3种试验条件下,花岗岩样的波速会都会发生一定程度的降低。单轴压缩试验结果表明,ScCO2作用后的岩石单轴抗压强度及弹性模量都几乎没有受到影响,但是从破坏模式看,未经处理的岩石以张拉破坏为主,处理后的岩石以剪切破坏为主,并且随着温度的升高剪切破坏越明显。试验结果说明,在不存在水或者仅有微量水存在的情况下,ScCO2的作用对岩石产生轻微损伤,岩样的刚性减弱、塑性增强,导致其纵波波速有少量的下...  相似文献   

10.
Biot theory predicts wave velocities in a saturated granular medium using the pore geometry, viscosity, densities, and elastic moduli of the solid skeleton and pore fluid, neglecting the interaction between constituent particles and local flow, which becomes essential as the wavelength decreases. Here, a hydro-micromechanical model, for direct numerical simulations of wave propagation in saturated granular media, is implemented by two-way coupling the lattice Boltzmann method (LBM) and the discrete element method (DEM), which resolve the pore-scale hydrodynamics and intergranular behavior, respectively. The coupling scheme is benchmarked with the terminal velocity of a single sphere settling in a fluid. In order to mimic a small amplitude pressure wave entering a saturated granular medium, an oscillating pressure boundary on the fluid is implemented and benchmarked with the one-dimensional wave equation. The effects of input waveforms and frequencies on the dispersion relations in 3D saturated poroelastic media are investigated with granular face-centered-cubic crystals. Finally, the pressure and shear wave velocities predicted by the numerical model at various effective confining pressures are found to be in excellent agreement with Biot analytical solutions, including his prediction for slow compressional waves.  相似文献   

11.
Variations in elastic wave velocity, low-frequency internal friction and acous-tic emission in granite were experimentally studied as a function of temperature.It is found that the wave velocity and Young‘s modulus tend to decrease with temperature.In association with the α-β transition of quartz a sharp internal friction peak can be recognized accompanied by a drastic drop in wave velocity and modulus and by a second peak of acoustic emission rate.  相似文献   

12.
花岗岩样品高温后损伤的试验研究   总被引:9,自引:0,他引:9  
邱一平  林卓英 《岩土力学》2006,27(6):1005-1010
对河南省某地产25块花岗岩样品进行高温预热处理,测量了加温前后弹性纵波波速,并对样品进行单轴压缩应力-应变全过程试验。通过以上试验,给出如下结果:温度对岩石损伤变化的作用;温度对岩石裂隙密度和损伤应变能释放率的影响。实验结果验证了花岗岩的塑性应变主要与偏斜应力产生的形状改变比能有关,而与体积改变比能的关系不大。  相似文献   

13.
The bowing of natural stone panels is especially known for marble slabs. The bowing of granite is mainly known from tombstones in subtropical humid climate. Field inspections in combination with laboratory investigations with respect to the thermal expansion and the bowing potential was performed on two different granitoids (Cezlak granodiorite and Flossenbürg granite) which differ in the composition and rock fabrics. In addition, to describe and explain the effect of bowing of granitoid facade panels, neutron time-of-flight diffraction was applied to determine residual macro- and microstrain. The measurements were combined with investigations of the crystallographic preferred orientation of quartz and biotite. Both samples show a significant bowing as a function of panel thickness and destination temperature. In comparison to marbles the effect of bowing is more pronounced in granitoids at temperatures of 120°C. The bowing as well as the thermal expansion of the Cezlak sample is also anisotropic with respect to the rock fabrics. A quantitative estimate was performed based on the observed textures. The effect of the locked-in stresses may also have a control on the bowing together with the thermal stresses related to the different volume expansion of the rock-forming minerals.  相似文献   

14.
为探究注采参数对松辽盆地干热岩物理力学及波动特征的影响,对不同注采参数下高温遇水冷却后花岗岩进行纵、横波波速测试试验和抗压强度试验。分别考虑注采参数(岩样温度、水温、高温遇水循环次数) 与岩样物理力学特征(外观形态、峰值强度、弹性模量、泊松比)、波动特征(纵、横波波速) 的关联性,建立不同注采参数下力学特征与波动特征拟合曲线,并研究搁置过程中不同岩样温度、不同水温条件下岩体物理力学及波动特征变化规律。研究发现:(1) 搁置初期,岩样温度越高,质量、纵、横波波速、弹性模量降幅越大;水温升高,质量、纵、横波波速、弹性模量降幅先增大后减小。(2) 对采热过程中岩体物理力学及波动特征影响由大到小的注采参数依次为靶区温度、注水循环次数、注水温度。提升岩样温度、增加注水循环次数,岩样力学与波动特征均逐渐下降,提高注水温度变化规律与其相反;经历600℃高温,岩样纵波波速、横波波速、峰值强度、弹性模量降幅分别达到53.44%、58.02%、66.56%、79.84%,高温遇水循环5 次 后降幅依次达到33.61%、33.63%、34.22%、56%。(3) 影响岩样力学与波动特征关联性的注采参数由大到小依次为岩样温度、高温遇水循环次数、水温。此研究能够为松辽盆地热采注采参数的选取提供一定参考。  相似文献   

15.
Details are presented of site investigations carried out for the Kalyani Dam, Chittoor District, Andhra Pradesh, India. Geologically, the dam-site region forms a triple junction of the Dharwar, Easternghat and Cuddapah orogenies and it is tectonically disturbed; the course of the Kalyani river is guided by a major strike-slip fault. The geophysical studies reveal the presence of several fault and shear zones in the area. Laboratory studies on the physical and engineering properties of the rocks disclose distinct differences in the sheared (Zone I) rocks as against those that are relatively undisturbed (Zone III). Zone I samples, in general, show high porosity and elastic an isotropy, low values of density, elastic wave velocity, elastic moduli, fracture strength and high absorption, while the reverse is noticed in the undisturbed samples of Zone III. Samples from the shear zone further show large variations in compressional velocity and amplitude, as a function of compressive stress. The laboratory velocities are in good agreement with the field seismic refraction results. These studies helped in estimating the soundness of the rock formations, delineating the structurally weak zones and suggesting remedial measures.  相似文献   

16.
M.G. Kopylova  J. Lo  N.I. Christensen 《Lithos》2004,77(1-4):493-510
Modes and compositions of minerals in Slave mantle xenoliths, together with their pressures and temperatures of equilibrium were used to derive model depth profiles of P- and S-wave velocities (Vp, Vs) for composites equivalent to peridotite, pyroxenite and eclogite. The rocks were modeled as isotropic aggregates with uniform distribution of crystal orientations, based on single-crystal elastic moduli and volume fractions of constituent minerals. Calculated seismic wave velocities are adjusted for in situ pressure and temperature conditions using (1) experimental P- and T- derivatives for bulk rocks' Vp and Vs, and (2) calculated P- and T- derivatives for bulk rocks' elastic moduli and densities. The peridotite seismic profiles match well with the globally averaged IASP91 model and with seismic tomography results for the Slave mantle. In peridotite, an observed increase of seismic wave velocities with depth is controlled by lower degrees of chemical depletion in the deeper upper mantle. In eclogite, seismic velocities increase more rapidly with depth than in peridotite. This follows from contrasting first-order pressure derivatives of bulk isotropic moduli for eclogite and peridotite, and from the lower compressibility of eclogite at high pressures. Our calculations suggest that depletion in cratonic mantle has a distinct seismic signature compared to non-cratonic mantle. Depleted mantle on cratons should have slower Vp, faster Vs and should show lower Poisson's ratios due to an orthopyroxene enrichment. For the modelled Slave craton xenoliths, the predicted effect on seismic wave velocities would be up to 0.05 km/s.  相似文献   

17.
The Eastern Desert of Egypt is well known as a gold-mining district since ancient times. Gold mineralization is closely associated with the granitic rocks in such way that the mineralization is either hosted by or occurs immediately adjacent to the granite intrusions. Granitic rocks accompanying gold mineralization in the Eastern Desert can be grouped into three categories i.e. syn-late tectonic calc-alkaline granites, calc-alkaline to mildly alkaline granites of the transitional stage and post-tectonic alkaline granites.Tectonically, gold mineralization is linked with the tectonothermal stages that were operative during the evolution of the Arabian–Nubian Shield (ANS). During the primitive stages of the island-arc formation, pre-orogenic gold mineralization (auriferous exhalites) was formed by hot brines accompanying submarine volcanic activity. No role for the granite is observed in this stage. Syn-orogenic gold mineralization (i.e. gold hosted in altered ophiolitic serpentinites along thrust faults and in sutures, quartz veins hosted in the metavolcano-sedimentary assemblage and/or the I-type granitic rocks surrounding them) connected with the collision and accretion stage is characterized by emplacement of calc-alkaline (I-type) older granite batholiths. Shear fractures reflected in brittle–ductile shear zones and amphibolite-green schist facies regional metamorphism were broadly contemporaneous with this intense compressional tectonic regime. Available fluid inclusion microthermometry and isotopic studies reveal that both metamorphic and magmatic fluids related to the syn-late tectonic calc-alkaline granites were operative. A further indication for the role of the granites is indicated by the presence of some concentrations of Antimony, Bismuth, Molybdenum, Tungsten, Rubidium, Beryllium, Tin, Yttrium, Ytterbium, Tantalum and Niobium in some auriferous quartz veins in the Egyptian gold mines.In the cratonal development of the (ANS), the land underwent a transitional stage between the major subduction-related calc-alkaline magmatic activity and the subsequent post-tectonic plutonism represented by the alkaline granites. This transitional stage is dominated by the eruption of Dokhan volcanics and deposition of molass-type Hammamat sediments. At ~ 590–530 Ma, the Arabian–Nubian Shield was deformed by post-accretionary structures, in the form of N-trending shortening zones such as the Hamisana shear zone and NW-trending strike-slip faults such as the Najd fault system. The regional NNW–SSE directed extension opened spaces that were progressively sealed with different magmatic phases including among them a considerable proportion of rocks referred to as “younger granites” in the Egyptian literature. Late-orogenic gold mineralization connected with the transitional stage is represented principally by the gold-bearing quartz veins traversing Hammamat molasse sediments, quartz veins traversing syn-extensional younger granites and generally quartz veins in ductile to brittle shears related to the Najd fault system and within Hamisana shear zone and its splays.By the end of Pan African orogeny until the Tertiary, the basement was intermittently intruded by a number of sub-alkaline to per alkaline granite bodies that host Mo, Sn, W, Nb–Ta and U mineralization in the Eastern Desert of Egypt. Anorogenic gold mineralization connected with post-orogenic granites is represented by small amounts of the element in disseminations, stockworks and quartz veins of Sn–W–Ta–U mineralization.The present review shows that gold mineralization in Egypt is an expression of two major cycles with distinct magmatic and tectonic characteristics, and the two cycles were separated by a transitional stage. The emplacement of granites in the compressional cycle played an important role in metamorphosing the country rocks by producing the heat energy required for the regional metamorphism and the providing of the magmatic fluids. The H2O–CO2 fluids enriched in volatiles were released at the greenschist–amphibolite facies transition at 450°–500 °C and mixed with the I-type calc-alkaline granite related fluids and both moved down a temperature gradient away from the amphibolite-green schist transition at depth to a lower temperature regime in the upper levels where it is deposited in brittle–ductile shear zones. With the extensional cycle, the syn-extensional granite intrusions acted as heat engine in such way that the heat of the granite drove the convective cells to circulate through the auriferous host-granite contacts, leaching gold and other elements and depositing it in structurally favorable sites. In addition, the contrasts in competency between the granites with brittle deformational characteristics and the surrounding country rocks with a ductile response to stress, led to a generation of extensive fracture pattern within the more competent unit.  相似文献   

18.
The thermodynamic properties of 154 mineral end-members, 13 silicate liquid end-members and 22 aqueous fluid species are presented in a revised and updated data set. The use of a temperature-dependent thermal expansion and bulk modulus, and the use of high-pressure equations of state for solids and fluids, allows calculation of mineral–fluid equilibria to 100  kbar pressure or higher. A pressure-dependent Landau model for order–disorder permits extension of disordering transitions to high pressures, and, in particular, allows the alpha–beta quartz transition to be handled more satisfactorily. Several melt end-members have been included to enable calculation of simple phase equilibria and as a first stage in developing melt mixing models in NCKFMASH. The simple aqueous species density model has been extended to enable speciation calculations and mineral solubility determination involving minerals and aqueous species at high temperatures and pressures. The data set has also been improved by incorporation of many new phase equilibrium constraints, calorimetric studies and new measurements of molar volume, thermal expansion and compressibility. This has led to a significant improvement in the level of agreement with the available experimental phase equilibria, and to greater flexibility in calculation of complex mineral equilibria. It is also shown that there is very good agreement between the data set and the most recent available calorimetric data.  相似文献   

19.
Ultrasonic measurements of compressional and shear wave velocities under hydrostatic pressure up to 70 MPa were carried out on cylindrical specimens cored across and along the foliation planes. Our measurements revealed that the foliation of the metamorphic rocks induces a clear velocity anisotropy between two orthogonal directions; faster along the foliation plane and slower across the plane in most rock types. All velocity components monotonically increase with the confining pressure, probably due to the closure of microcracks distributed in rock specimens. We determined the complete set of dynamic moduli of foliated metamorphic rocks with two assumptions; transverse isotropy due to the foliation and ellipsoidal seismic energy propagation from a point source. The calculated elastic moduli referring to different directions could be valuable for the design of various engineering structures in planar textured rock mass.  相似文献   

20.
F.G. Bell 《Engineering Geology》1994,36(3-4):257-266
The Lower Cretaceous in North Yorkshire is represented by a marine succession termed the Speeton Clay. The principal minerals in these clays consist of quartz, mica and clay minerals, although pyrite, glauconite and siderite are notable in some beds. The proportions of clay minerals change within the Speeton Clay and generally illite becomes more important in the younger horizons.

The Speeton Clay is a silty clay which generally has a high plasticity, the latter being influenced by the proportion of clay fraction present. All the clays tested were inactive although they would appear to have a potential for expansion. Neither the plasticity nor the moisture content were affected by depth.

In terms of its undrained shear strength, most of the Speeton Clay could be regarded as a stiff clay. It was also insensitive with generally a low slake-durability index. Its coefficients of volume compressibility were characteristic of overconsolidated and heavily overconsolidated days.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号