首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
驱龙铜矿是西藏陆陆碰撞造山带冈底斯斑岩铜矿带内代表性矿床之一。本文对其含矿斑岩和矿石矿物进行了S、Pb同位素组成分析。驱龙矿床含矿斑岩与矿石矿物的硫同位素组成比较一致,含矿斑岩δ34S为-2.1‰~-1.1‰,黄铜矿δ34S为-6.3‰~-1.0‰,均值-2.76‰;硬石膏δ34S为 12.5‰~ 14.4‰,平均 13.4‰。成矿热液中的硫同位素基本达到了平衡,显示出岩浆硫组成特点。含矿斑岩的206Pb/204Pb范围为18.5104~18.6083,207Pb/204Pb变化于15.5946~15.7329之间,208Pb/204Pb为38.6821~39.1531之间;矿石矿物黄铜矿的206Pb/204Pb、207Pb/204Pb、208Pb/204Pb分别为18.4426~18.5909、15.5762~15.6145、38.5569~38.8568。含矿斑岩与矿石矿物的铅同位素组成比较一致,它们的变化幅度较小,应具有相同的起源与演化历史。无论是岩石铅还是矿石铅,在铅构造模式图上均位于造山带铅演化曲线上。驱龙矿床硫、铅同位素数据暗示,成矿物质主要来自深源岩浆,含矿斑岩起源于西藏造山带加厚的下地壳熔融,具有幔源成分的混染。  相似文献   

2.
雪鸡坪斑岩铜矿位于西南三江构造火成岩带义敦岛弧带,其成矿斑岩为印支期石英闪长玢岩和石英二长斑岩。研究对该矿区安山岩、矿化斑岩和矿石矿物系统进行S,Pb同位素分析结果表明:金属硫化物的δ34S值为-3.1‰~ 0.7‰,平均值为-1.1‰,与矿化斑岩的硫同位素组成(-1.4‰和-1.5‰)一致,均落入幔源硫范围,表明硫主要来自岩浆;δ34S黄铁矿(-1.8‰~ 0.7‰,平均-0.5‰)>δ34S黄铜矿(-2.2‰~0.0‰,平均-1.2‰)>δ34S方铅矿(-3.1‰~-1.3‰,平均-2.4‰),硫同位素分馏基本达到平衡。矿石矿物(208Pb/204Pb=37.917~38.230,平均值38.075;207Pb/204Pb=15.528~15.614,平均值15.571;206Pb/204Pb=17.929~18.082,平均值17.981)与矿化斑岩(208Pb/204Pb=37.832、37.883,207Pb/204Pb=15.529、15.538,206Pb/204Pb=17.906、17.910)以及安山岩(208Pb/204Pb=37.816~37.884,207Pb/204Pb=15.549~15.562,206Pb/204Pb=17.845~17.919)的初始铅组成基本一致,变化范围较小,表明三者具有相同的来源;在铅构造模式图上,所有样品铅同位素均位于造山带演化线上或附近,在铅同位素源区判别图中,均落入造山带和下地壳区域,这表明Pb主要来源于壳幔混合。雪鸡坪铜矿S,Pb同位素组成共同指示成矿物质主要来自于深部岩浆,这种岩浆可能主要起源于俯冲洋壳板片的部分熔融并受到少量地壳物质的混染。  相似文献   

3.
白音查干矿床是大兴安岭南段新发现的一处大型Sn多金属矿床。为查明该矿床Sn成矿作用与Ag-Pb-Zn成矿作用的关系,本文开展了矿床地质、萤石和石英斑岩Sr-Nd同位素、硫化物S-Pb同位素和原位S同位素地球化学特征研究。SrNd同位素分析结果显示,所有萤石样品均具有相近的(~(87)Sr/~(86) Sr)_i、(~(143)Nd/~(144)Nd)_i和ε_(Nd)(t)值范围,而且与石英斑岩的Sr-Nd同位素组成基本一致,说明矿床各成矿阶段的萤石具有相同的成因,与石英斑岩岩浆作用关系密切。单矿物和原位S同位素数据显示,Ⅰ区Ag-Pb-Zn矿石中的硫化物δ~(34)S值范围(-13.9‰~-4.8‰)与Ⅲ Sn矿石硫化物的δ~(34)S值范围(-12.5‰~-5.3‰)基本一致;而且,Ⅰ区闪锌矿原位δ~(34)S值变化范围较小且较为均一(-12.4‰~-7.3‰,平均为-9.2‰),与石英斑岩"Zn-F-B集合体"中闪锌矿原位δ~(34)S值变化范围(-10.6‰~-9.0‰,平均为-9.7‰)基本一致,说明S可能主要来源于石英斑岩岩浆。Pb同位素特征显示,Ⅰ区Ag-Pb-Zn矿石中的硫化物Pb同位素组成(~(206) Pb/~(204) Pb=18.177~18.200、~(207)Pb/~(204)Pb=15.519~15.531、~(208) Pb/~(204)Pb=37.985~38.053)与石英斑岩Pb同位素组成(~(206)Pb/~(204)Pb=18.206~18.235、~(207)Pb/~(204)Pb=15.529~15.530、~(208)Pb/~(204)Pb=38.025~38.036)基本一致,说明Ag-Pb-Zn成矿作用的Pb可能主要来源于石英斑岩岩浆。结合矿床地质特征、Sr-Nd、S、Pb同位素数据可知,白音查干矿床Sn成矿作用与Ag-Pb-Zn成矿作用具有密切的成因联系,矿床成矿流体和成矿物质可能主要来源于石英斑岩岩浆。  相似文献   

4.
新疆萨热克大型铜矿床含矿地层为上侏罗统库孜贡苏组砂砾岩,与下伏下-中侏罗统煤矿形成"同盆共存"现象。萨热克铜矿石中碎裂岩化发育,并伴有沥青化,金属硫化物以辉铜矿为主,含少量的斑铜矿和黄铜矿等,多与次生石英-方解石等沿砾石裂隙分布。矿石中辉铜矿δ34S=-19.1‰~-13.2‰,辉铜矿206Pb/204Pb比值范围为16.699~18.417,207Pb/204Pb为15.294~15.684,208Pb/204Pb为36.909~38.996。次生石英流体包裹体的δ18OH2O值变化范围为17.9‰~20.6‰,δDV-SMOW变化范围为-82.6‰~-52.4‰。矿石中沥青δ13C变化范围为-20.79‰~-20.35‰,康苏组煤岩δ13CV-PDB值变化范围为-24.7‰~-24.3‰,两者较为接近。上述结果表明萨热克铜矿床中的硫源自地层中大量硫酸盐的还原作用,铅同位素指示成矿金属元素具有多元性,次生石英中成矿流体以变质流体为主,矿石中的沥青等有机质与下伏中-下侏罗统煤层等烃源岩有关。上述同位素资料结合矿床的地质特征显示萨热克铜矿床具有多期多阶段的成矿特征。  相似文献   

5.
江西德兴朱砂红斑岩铜矿床H-O-S-Pb同位素特征及意义   总被引:1,自引:0,他引:1  
江西德兴斑岩铜矿田位于扬子地块东南缘,毗邻赣东北深断裂;该矿田由富家坞、铜厂及朱砂红矿床组成,属世界超大型斑岩铜矿。本文在系统的野外观察及室内岩相学观察的基础上,通过H、O、S、Pb同位素地球化学研究手段,探讨该矿床的成矿流体及成矿物质来源。H、O同位素研究结果显示,矿石石英脉中石英的δ~(18)O值范围为8.4‰~11.2‰,与之平衡的δ~(18)O_(H_2O)值范围分别为0.44‰~3.14‰,含矿石英脉中石英的δD值范围为-73.2‰~56.9‰,成矿流体以岩浆分异热液及天水热液为主。矿石中硫化物δ~(34)S组成变化范围较窄,为-4.3‰~-0.9‰,多数集中在0值左右且在S同位素直方图上呈塔式分布特点,表明具有岩浆硫(0±3‰)的特征。矿石硫化物中Pb同位素组成比较稳定,~(206)Pb/~(204)Pb、~(207)Pb/~(204)Pb和~(208)Pb/~(204)Pb比值分别为18.079~18.643、15.545~15.578和38.058~38.595。朱砂红矿床硫化物中Pb同位素组成与德兴含矿斑岩大致相同,明显区别于源自双桥山群地层的矿石中Pb同位素组成,表明成矿物质主要来源于含矿斑岩,并非双桥山群浅变质地层。朱砂红矿床的流体来源为岩浆分异热液及天水热液的混合,成矿物质主要来自斑岩,矿床发育与斑岩体密切相关。德兴矿区三个矿床对比研究表明,朱砂红斑岩型矿床H、O同位素特征与铜厂斑岩铜矿床大体一致,成矿流体来源基本相似;三个矿床中S同位素表现为从东南的富家坞矿床向西北的朱砂红矿床由高到低的变化趋势,但变化范围基本保持一致,朱砂红矿床可能比铜厂矿床及富家坞矿床受更多围岩物质混染;三个矿床Pb同位素总体显示出壳幔混合铅的特征。三个矿床为同一成矿系统,矿床的差异可能源自岩浆与围岩混染程度的不同。  相似文献   

6.
四川盐源西范坪斑岩铜矿特征和成因   总被引:8,自引:0,他引:8  
四川盐源西范坪斑岩铜矿的成矿母岩为喜山期石英二长斑岩,Nd、Sr、Pb、O同位素资料证实,它属于同熔型,源岩可能为区内未出露的中元古代末期火成岩。矿床中石英流体包裹体具有高的均一温度,高的盐度,并含有少见的黄铜矿子晶。成矿热液的δ18O值为9.34‰~4.16‰,表明它们主要由岩浆水组成,有少量大气降水混入,Pb、S同位素研究表明,成矿组分主要来自岩浆,部分来自围岩。  相似文献   

7.
扎拉格阿木铜矿床位于锡林浩特地块北部边缘,矿体赋存于二叠纪砂质板岩和角砾岩中,受NE向断裂控制,为中温热液脉型铜矿床。本文通过流体包裹体和C?H?O?S?Pb同位素地球化学研究手段,来探讨扎拉格阿木铜矿成矿机制。成矿热液期存在5个成矿阶段:钾长石阶段、石英?绢云母阶段、石英?黄铁矿阶段、石英?多金属硫化物阶段、石英?方解石阶段。其中石英?多金属硫化物阶段为主成矿阶段,本阶段主要发育富液相、富气相、含子矿物包裹体;富液相包裹体均一温度与盐度分别为:138~289℃和2.06%~16.11% NaCl eqv;含子矿物包裹体均一温度与盐度分别为:320~374℃和32.68%~39.81% NaCl eqv,包裹体气体成分除少量CO2以外,均为H2O。H?O同位素分析表现为,石英中的〖δO〗^18值变化范围-8.5‰~7.5‰,流体的δD值变化范围为-116‰~-98‰,暗示早阶段成矿流体主要为岩浆热液,晚期伴有大气降水混入。C?O同位素分析表明,δ13C值为-6.9‰~ -10.1‰,δ18OSMOW介于2.5‰~11.7‰,在δ18O?δ13C 图上数据点落在岩浆水与大气水的中间区域。矿石硫化物的δ34S值介于-4.5‰~1.5‰,指示具有幔源岩浆硫的特征。矿石硫化物Pb同位素的208Pb/204Pb、207Pb/204Pb和206Pb/204Pb比值分别为38.034~38.609、15.497~15.655和18.141~18.446,推测Pb具有地幔来源的特点并伴有地壳或造山带Pb混入。成矿过程中伴随着流体沸腾作用,成矿物质沉淀受早期形成的岩浆热液与后加入大气降水混合的影响。  相似文献   

8.
本文通过对冈底斯铜矿带甲马、拉抗俄、南木、厅宫、冲江及洞嘎 6个矿区含矿斑岩的全岩 Nd、Sr、Pb、O同位素分析 ,发现它们具有比较清楚的变化规律。Sr、Pb同位素组成总体上表现为放射成因组份自西向东逐渐增高 ,87Sr/ 86 Sr、2 0 6 Pb/ 2 0 4 Pb、2 0 7Pb/ 2 0 4 Pb和 2 0 8Pb/ 2 0 4 Pb值变化范围分别为 0 .70 4 6 35~ 0 .70 792 0 ,18.315~18.6 6 1,15 .5 0 1~ 16 .6 2 6和 38.175~ 38.96 0 ;Nd同位素比值自西向东则逐渐降低 (1 43Nd/ 1 44 Nd=0 .5 12 313~0 .5 12 931)。综合分析显示这些含矿斑岩主要产生于俯冲到深部的雅鲁藏布江洋壳在榴辉岩相条件下的部分熔融 ,同时有少量俯冲沉积物参与了源区混合。上述同位素比值的区域变化与沉积物混入量沿成矿带自西向东不断增多有关 ,大体的比例是西段洞嘎矿区 <1% ;中段冲江、厅宫、南木和拉抗俄各矿区在 1%~ 5 %之间 ;东段甲马矿区为10 %~ 15 %。与 Nd、Sr、Pb同位素不同 ,氧同位素缺少上述变化规律。它们的 δ1 8O值在整个成矿带上都比较稳定 ,从 5 .5‰~ 9.8‰ ,平均为 7.7‰ (冲江和厅宫矿区以石英斑晶为准 ) ,明显高于亏损 MORB源区的 δ1 8O值 (5 .70‰ )。这说明在沉积物源区混合很少的情况下 ,成矿带中段和西段的含矿斑岩在上升侵位过程  相似文献   

9.
新疆青河县新近发现哈腊苏铜矿床,正在进行的勘探证实具有大型铜储量前景。它位于阿尔泰东南缘,靠近额尔齐斯构造变形带。这个区域经历了古生代中期的洋-陆俯冲、古生代晚期的陆-陆碰撞以及其后的陆内活化等地质过程。铜成矿与哪种地质地质过程有关受人关注,矿床成因也存在斑岩型、热液脉型和火山岩型等不同认识。哈腊苏铜矿区主要出露中泥盆统基性火山岩(含苦橄岩)及侵入其中的不同时期含铜蚀变斑岩体,包括花岗闪长斑岩、斑状花岗岩、石英二长斑岩和石英闪长斑岩等,斑岩SiO_2质量分数为57.24%~65.45%,其中花岗闪长斑岩δ~(18)O_(V-SMOW)=7.9‰~8.6‰,ε_(Nd)(t)=7.3~8.5(接近于MORB值),(~(87)Sr/~(86)Sr)_t=0.70383~0.70410(接近原始地幔值),暗示岩浆起源于地幔或下地壳。矿区含铜蚀变斑岩全岩矿化(Cu 0.2%),矿体(Cu 0.3%以上)呈透镜状和不规则分枝脉状,产状与斑岩体相仿,95%以上矿体产于斑岩体内。围岩蚀变从矿体到斑岩再到基性火山岩围岩,发育钾长石黑云母化、黑云母绿泥石化、青磐岩化的分带,后期脉状线型钾长石化叠加于早期面状弥散型钾硅酸盐蚀变之上。没有次生硫化物富集现象,原生铜矿石出现细脉浸染型和脉状叠加型两种自然类型,前者以"黄铁矿+黄铜矿+辉钼矿"为典型金属矿物组合,后者呈在前者背景上的"石英+黄铁矿+黄铜矿"脉状叠加矿化。相对于前者,后者Cu、Au品位明显偏高(分别达到Cu 2.21%、Au 0.83 g/t)、微量和稀土元素总量降低,微量元素蛛网图和REE配分曲线更为平缓,Eu正异常更加显著。基性火山喷发、幔源岩浆侵入和多期矿化叠加是哈腊苏铜成矿的关键,早期斑岩型铜成矿基础上的后期构造热液矿化叠加显著。细脉浸染型铜矿石中共生黄铁矿-黄铜矿的硫同位素温度计指示斑岩型铜成矿温度为420~560℃。铜矿石硫化物δ~(34)S_(V-CDT)主体范围为-1‰~-4‰,矿石硫源自幔源斑岩体(有地层硫酸盐还原硫少量混入);黄铁矿~(206)Pb/~(204)Pb=18.052~18.461,~(207)Pb/~(204)Pb=15.501~15.606,~(208)Pb/~(204)Pb=37.813~39.335,与矿床所在区域喀拉通克岩浆Cu-Ni硫化物接近,成矿金属主体来自幔源斑岩;脉状矿化叠加型铜矿石中含铜硫化物石英脉晶出母液(δ~(18)O_(V-SMOW)=6.4‰~10.2‰,δD_(V-SMOW)=-89‰~-80‰)具有岩浆水的O、H同位素组成特点。通过成岩、成矿和热液蚀变的年代学研究获得:(1)含铜蚀变的斑状花岗岩(381.6±2.5)Ma和花岗闪长斑岩(371.8±9.6)Ma的U-Pb谐和年龄、细脉浸染型铜矿石中辉钼矿(376.9±2.2)Ma的Re-Os等时线年龄,是洋-陆俯冲期斑岩成岩成矿的年龄记录;(2)含铜蚀变石英二长斑岩(265.6±3.7)Ma的U-Pb谐和年龄和脉状叠加型铜矿石中钾长石(269.2±3.2)Ma的Ar-Ar坪年龄,是陆-陆碰撞晚期斑岩铜矿化蚀变的年龄记录;(3)含铜蚀变石英闪长斑岩(215.8±4.6)Ma的U-Pb谐和年龄和脉状叠加型铜矿石中钾长石(198.2±2.3)~(206.4±2.7)Ma的Ar-Ar坪年龄,是陆内构造岩浆活化期的年龄记录。多期构造-岩浆-热液矿化叠加作用是哈腊苏铜成矿的显著特征。该研究为认识中亚构造域斑岩铜矿床的多期叠加成矿作用特征积累了新资料。  相似文献   

10.
希勒克特哈腊苏铜矿位于阿尔泰铜矿带南缘,即原卡拉先格尔斑岩铜矿带内。初步的研究和钻孔资料表明,铜矿体完全受斑岩体(石英闪长斑岩和花岗闪长斑岩)控制,矿石具细脉浸染状构造,金属矿物主要为黄铜矿和黄铁矿以及少量的磁铁矿、斑铜矿和镜铁矿。其中磁铁矿形成早于黄铜矿,指示了岩浆具有较高的氧化状态。矿化蚀变分带与斑岩铜矿基本相似,岩体内见钾长石化、黑云母化、硅化和黄铁矿化,接触带见石英绢云母化,围岩见青磐岩化。含矿斑岩的地球化学特征表明其属于埃达克岩(adakite):高SiO2(63%~66%)、高Al2O3(15%~17%)、富集Sr(378×10-6~447×10-6)、无负Eu异常、亏损Y(10×10-6~14×10-6)和Yb(1.3×10-6~1.5×10-6)以及低的Sr同位素初始值(0.70439)、高的(εNd)t(+6.9~+8.2)和低的δ18OV-SMOW(<10‰)。其Rb-Sr等时线年龄为(332.8±8.5)Ma,为早石炭世侵位的产物,其形成与蒙古洋板块向南俯冲造成的洋壳部分熔融有关,因此其成矿地质背景与世界巨型斑岩铜矿十分相似。另外,在希勒克特哈腊苏铜矿外围还有数个与其十分相似的铜矿点,因此该地区展示了良好的找矿前景,同时也是中国又一个潜在的斑岩铜矿带。  相似文献   

11.
西藏雄梅铜矿区含矿斑岩与非含矿斑岩成因对比研究   总被引:1,自引:1,他引:0  
西藏雄梅铜矿床是近年来在班公湖_怒江成矿带中段新发现的一处斑岩铜矿床,该矿床的发现使得班公湖_怒江成矿带真正具备了"带"的概念,大大地拓宽了找矿远景。文章通过对雄梅铜矿区斑岩体的LA_ICP_MS锆石U_Pb定年,发现矿区存在2套斑岩:一套是前人测定的年龄为106.7 Ma的含矿斑岩;另一套是本文测定的非含矿斑岩,3个年龄分别是(121.8±2.3)Ma(MSWD=0.32)、(122.8±2.1)Ma(MSWD=1.16)、(121.5±2.5)Ma(MSWD=0.54)。两套斑岩的岩性虽然都是花岗闪长斑岩,但非含矿斑岩比含矿斑岩含有更多的钾长石,矿化强度大大减弱。岩石地球化学分析结果表明,两套斑岩虽然都富集大离子亲石元素(LILE)Rb、Ba、Th、U、K、Pb,亏损高场强元素(HFSE)Nb、Ta、Ti,具有碰撞后岩浆作用的共同特征,但在岩浆源区和成因上显示出明显的差异。含矿斑岩和非含矿斑岩均属于强过铝质S型花岗岩,然而前者源区组成为杂砂岩,后者源区则以泥质岩为主。岩浆分异过程中,含矿斑岩受斜长石和钾长石的分离结晶控制,非含矿斑岩则受钾长石和黑云母的分离结晶控制。  相似文献   

12.
王翠云  李晓峰  肖荣  白艳萍  杨锋  毛伟  蒋松坤 《岩石学报》2012,28(12):3869-3886
德兴铜矿是中国华南地区重要的大型斑岩铜矿,由朱砂红、铜厂和富家坞3个矿床组成。在系统的钻孔样岩相观察基础上,本文把德兴朱砂红花岗闪长斑岩划分为3种类型蚀变岩(钾化-黑云母化蚀变岩、绿泥石化蚀变岩、石英-绢(白)云母化蚀变岩),其主要标志性蚀变矿物依次为:钾长石(黑云母)→绿泥石→石英+绢(白)云母,且热液蚀变程度依次增强。以Al2O3作为不活动组分,通过Isocon分析法表明:随着热液蚀变作用的持续进行,蚀变程度的逐渐增强,主量元素(P2O5)行为较稳定,Na2O、Sr元素大量活化迁出;高场强元素Hf、Th、U、V、Co、Nb、Ta等表现为弱活动性或不活动性;成矿元素Cu、Pb、W显示出大量带入,表明热液流体和成矿流体可能属于同一流体系统。稀土元素均发生一定程度的活化迁移,其中绿泥石化蚀变岩的LREE、HREE均较原岩亏损,而石英-绢(白)云母化花岗闪长斑岩的LREE、HREE富集/亏损情况因样品而异,相对增量/减量变化幅度较大。各类蚀变花岗闪长斑岩球粒陨石化配分模式表现较一致,均为轻稀土相对于重稀土富集的右倾分布,极弱Eu负异常,曲线左陡右平缓,尾部轻微上翘,形似铲状,反映岩浆源区角闪石的分离结晶作用。蚀变花岗闪长斑岩的Y/Ho比值与球粒陨石的Y/Ho比值基本一致,表明Y-Ho在热液蚀变过程中未发生明显分离。弱蚀变花岗闪长斑岩具有较高Sr/Y比值、La/Sm比值以及中等Sm/Yb比值,暗示源区残留相主要为角闪石±石榴子石。  相似文献   

13.
亓华胜  杨晓勇 《地质论评》2016,62(S1):175-176
Grasberg斑岩铜金矿床位于新几内亚岛西巴布亚地区(图1),是全球著名的铜金矿床,为已发现的高品位斑岩型铜金矿床之一(Cu >1%,Au >1 g/t),铜金储量规模巨大。该地区自新生代以来一直处于活动大陆边缘和岛弧环境,其大地构造位置欧亚板块-印度-澳大利亚板块和太平洋板块的结合部位,板块间的汇聚、碰撞、俯冲和拆离、扩张等地质作用形成了复杂的沟-弧-盆体系(Baldwin et al., 2012),也形成了该地区复杂的构造系统,概括为增生岛弧地体、巴布亚移动变质带、巴布亚褶皱带、Fly地台四个构造单元。由于缺少对Grasberg斑岩型铜金矿床成矿岩浆地球化学属性的深入研究,其成因机制和构造演化存在诸多争论。本文对该岩体开展地球化学研究,以期探索巴布亚新生代区域岩浆岩演化和铜金成矿作用。  相似文献   

14.
15.
曹殿华 《地质学报》2009,83(10):1430-1435
长期以来,关于雪鸡坪斑岩铜矿的成岩成矿时代具有很大的争议。为了限定成矿作用开始的时限,本文选择代表成矿前岩浆岩的绢英岩化带内含矿斑岩进行锆石SHRIMP年代学测试,获得了215.2±1.9Ma的成岩年龄,说明雪鸡坪斑岩铜矿形成于215Ma之后。锆石Hf同位素测试结果显示岩浆主要来源于地幔源区,但是锆石Hf同位素分布不均匀,8颗锆石εHf(t)的结果分布于1.1~2.1,二阶段模式年龄平均值为1150Ma,两颗锆石εHf(t)值为7.4和6.0,对应的二阶段模式年龄分别为778Ma和869Ma,暗示存在两种不同的岩浆源区,可能发生过岩浆混合作用,但需进一步的研究证实。区域同位素年代学对比结果表明,215Ma左右的岩浆活动是中甸弧主要的控制斑岩铜矿成矿的热事件。  相似文献   

16.
Extensive Early Cretaceous post-collisional igneous rocks, especially the large volume of granitoids developed in the Dabie orogen. Some of these granitic rocks are spatially, temporally, and genetically associated with economically important molybdenum deposits. The Tangjiaping large-scale (> 0.1 million ton) porphyry Mo deposit is located in the northwest of the Northern Dabie Complex unit. The Mo mineralization is mainly hosted in molybdenite-bearing quartz veinlets and stockworks in the Tangjiaping granite porphyry, which intruded into Proterozoic biotite-plagioclase gneiss and amphibole-plagioclase gneiss. Two alteration zones from the porphyry centre outwards and downwards can be recognized: (1) K-silicate alteration-silicification zone; (2) silicification-phyllic alteration zone. The Tangjiaping ore-bearing granite porphyry occurs as an individual stock with an outcrop of 0.4 km2. LA-ICP-MS zircon U-Pb dating of the Tangjiaping granite porphyry yields crystallization age of 115 ± 1 Ma, which is consistent with the molybdenite Re-Os age of the deposit given by previous studies. The Tangjiaping granitic rocks are metaluminous and belong to high-K calc-alkaline and shoshonitic series. They are relatively enriched in light rare earth elements and have moderately negative Eu anomalies. Geochemical and mineralogical characteristics indicate that the Tangjiaping granite is an A-type granite and was generated by partial melting of intermediate-felsic rocks at pressures of ca. 0.4–0.8 GPa. There are high initial 87Sr/86Sr ratios ranging from 0.707367 to 0.709410 and negative εNd(t) values varying from − 15.0 to − 14.2 for the Tangjiaping granite. In situ zircon Hf isotopic analyses show that the εHf(t) values of zircons from the Tangjiaping granite porphyry vary from − 17.0 to − 6.0. The geochemical data and Sr-Nd-Hf isotopes, coupled with the Neoproterozoic inherited zircon age (652 ± 21 Ma), indicate that the Tangjiaping granite porphyry was most likely derived from partial melting of the Northern Dabie gneiss with some relatively enriched mantle materials involved. The Tangjiaping Mo ore-forming granite porphyry was formed in an extensional setting. The Early Cretaceous asthenospheric upwelling might have played an important role in the formation of the approximately coeval Mo-bearing magmas in the Dabie orogen.  相似文献   

17.
The Batu Hijau porphyry copper-gold deposit, Sumbawa Island, Indonesia   总被引:4,自引:0,他引:4  
The Batu Hijau porphyry Cu---Au deposit lies in southwest Sumbawa Island, Indonesia. It is a world-class porphyry Cu deposit in an island are setting, and is typical of this deposit type in most features, including igneous association, morphology, hydrothermal alteration and mineralisation style.The region was not previously recognised as a porphyry Cu province; disseminated Cu sulphides were first recognised in float samples in southwest Sumbawa in 1987. Associated stream sediment sampling identified a broad area of anomalous Au and Cu in an area of greater than 5 km2 around Batu Hijau, including 169 ppb Au in BLEG samples and 580 ppm Cu in stream silts 1 km from the deposit. Mineralisation in bedrock at surface contains > 0.1 wt % Cu and > 0.1 ppm Au over an area of 0.6 km × 1.2 km, including a zone 300 m × 900 m containing > 0.3 wt % Cu. Areas with elevated Mo (> 30 ppm) form a distinctive annulus around this Cu-rich zone.Batu Hijau mineralisation is hosted in a tonalite intrusive complex, and diorite and metavolcanic wallrocks. There are no post-mineralisation igneous intrusions or breccia pipes within the deposit. The main tonalite intrusion forms a stock in the centre of the deposit, where it generally displays intensely pervasive potassic (biotite with magnetite-quartz) alteration and hosts most of the higher grade mineralisation. Younger tonalite dykes intruding the centre of this stock are generally less altered and mineralised than the older tonalite.The core zone of potassic alteration grades outward into extensive propylitic alteration (chlorite-epidote), with both variably overprinted by widespread fracture controlled intermediate argillic alteration (sericite-chlorite), and minor phyllic (sericite-pyrite) and sodic (albite) alteration. Argillic (sericite-kaolinite) and advanced argillic (kaolinite-alunite-pyrophyllite) assemblages occur near surface.Copper and Au grades within the orebody show a positive correlation with quartz stockwork intensity, although disseminated Cu sulphides are also common. Chalcopyrite and bornite are the principle hypogenal minerals, with minor chalcocite. Oxidation extends to a depth of 5 m to 85 m below surface across the deposit, and is underlain by weak supergene mineralisation. Drill testing of the deposit down to 650 m below surface reveals a single cylindrical to conical orebody of 334 million tonnes grading 0.8 wt % Cu and 0.69 gm per tonne Au; the depth extent of mineralisation is unknown.  相似文献   

18.
通过对玉龙含矿斑岩体中钾长石斑晶的X射线衍射及红外光谱分析,其有序度分别为0.457~0.597(X射线衍射)及0.64~0.72(红外光谱),三斜度分别为0.675~0.775(X射线衍射)及0.16~0.44(红外光谱),结构参数为0.278~0.813.这些数据表明钾长石斑晶为中微斜长石,测定的结构温度为370℃~442℃.此外,还从热力学、晶体结构诸方面探讨微斜长石的成因,认为三斜微斜长石与单斜正长石之间的转变在地质历史中很可能是一个不可逆的过程,由微斜长石加热可以转变为正长石,但正长石冷却不会自发地转变为微斜长石,因此由微斜长石结构测得的温度应为钾长石形成时的最高温度,从而得出玉龙含矿斑岩体中钾长石(中微斜长石)斑晶不是岩浆结晶的产物,而是热液作用的产物.  相似文献   

19.
西藏青草山斑岩铜金矿是班公湖-怒江缝合带北侧、羌塘地块南缘新发现的具有超大型远景的斑岩型铜金矿床。本文首次对青草山含矿花岗岩闪长斑岩的锆石进行了 LA-ICPMS U-Pb年代学和微量元素地球化学研究,通过对含矿斑岩中锆石的13个点的U-Pb定年,得出锆石206Pb/238U加权平均年龄为114.60±1.20Ma (MSWD=1.07),此年龄与同样分布于该带上的多不杂斑岩铜矿含矿斑岩成岩年龄、波龙斑岩铜矿成矿年龄基本一致。应用锆石Ti温度计,计算出含矿斑岩中绝大部分锆石的结晶温度小于700℃,如此低的结晶温度指示含矿斑岩岩浆来源于水近饱和条件下发生的部分熔融。通过对锆石微量元素的详细研究,得出青草山含矿斑岩形成于活动大陆边缘的陆缘弧环境,这与前人研究得出的多不杂斑岩铜矿的形成构造背景一致。相近的成岩成矿年龄和一致的形成构造背景揭示以多不杂、青草山、波龙斑岩铜(金)矿床为主要组成的班公湖-怒江斑岩铜矿带的客观存在。依据青草山斑岩铜金矿和多不杂斑岩铜矿的含矿斑岩和同期火山岩的地球化学特征,并结合已有弧环境斑岩铜矿的经典成矿模型,本文提出班公湖-怒江斑岩铜矿带形成的动力学机制,即在早白垩世,班公湖-怒江洋壳向北俯冲,大洋板片向下俯冲到一定深度时,发生大规模脱水作用,释放的流体交代上覆地幔楔,诱发其部分熔融,产生的富含成矿物质的岩浆向上运移,在浅部地壳发育成与成矿相关的岩浆房,部分岩浆上升直接喷出地表,形成下白垩统美日切错组火山岩,部分浅成-超浅成侵位成斑岩体及斑岩型矿床,随着岩浆的多点多期次侵位,最终形成班公湖-怒江斑岩铜矿带。  相似文献   

20.
赣北阳储岭大型斑岩型钨钼矿床地处江南造山带东部九岭-障公山隆起带,是江南钨矿带典型的斑岩型白钨矿矿床。钨钼矿体主要发育于二长花岗斑岩内,少量发育于花岗闪长岩和爆破角砾岩中。矿体以脉状、网脉状、似层状、透镜状、星点状产出。前人针对阳储岭矿床已开展全岩Rb-Sr法、全岩K-Ar法、锆石U-Pb法、辉钼矿Re-Os法等诸多定年工作,但因“过剩Ar”的存在、后期热事件扰动和高U花岗岩中锆石发生蜕晶化等原因,导致成岩年龄结果及解释仍存在争议。文章选取与成矿相关的二长花岗斑岩开展了独居石和金红石原位LA-ICPMS U-Pb同位素定年分析,以精确厘定成矿岩体的侵位年龄。研究表明,独居石年龄为(146.06±0.61)Ma(MSWD=10.2),金红石年龄为(150.20±2.60)Ma(MSWD=1.13)。此外,独居石是开展高U成钨岩体定年的有力对象,独居石年龄与前人发表的高精度辉钼矿Re-Os年龄在误差范围内相一致,独居石年龄可更准确地代表矿床的成矿岩体年龄。阳储岭矿床所处的江南钨矿带内的矿床形成时代主要可分为中侏罗世(约162 Ma)、晚侏罗世(150~135 Ma)和早白垩世(135~12...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号