首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
A number of bitumen samples have been recovered from vugs and fractures in outcropping Tertiary basalts of the Queen Charlotte Islands off the west coast of British Columbia, Canada. n-Alkanes and acyclic isoprenoids are not present and the polycyclic biomarker distribution of the four samples analyzed by GC and GC-MS has been altered. One sample contains no remaining recognizable biomarkers. Two bitumens were also obtained from Lower Jurassic potential source rocks, including one from the Sandilands Formation, which was considered previously to be the most likely source of the Tertiary bitumens. Although these two bitumens were also taken from outcrops, they are considerably less biodegraded. The Sandilands Formation bitumen contains 28, 30-bisnorhopanes and since these compounds were not detected in the Tertiary bitumens, there is no evidence from the initial results for a Sandilands Formation contribution to the hydrocarbons in the Tertiary basalts. The presence of 18α(H)-oleanane in the saturate fraction of two of the Tertiary bitumens from widely separated locations indicates that they are at least partially sourced from Tertiary organic matter.Because the distribution of biomarkers in some samples has been severely affected by biodegradation, the asphaltenes of the bitumens were hydrously-pyrolysed and the saturate fractions of the resulting pyrolysates analysed for possible additional information on the origin of the bitumens. The pyrolysates from the more degraded samples contain compounds not detected in the saturate fractions of the original bitumen and show some of the expected characteristics of the original non-degraded bitumen. However, the compounds most useful for correlation are not present in the pyrolysates apparently due to their non-incorporation into the kerogen macromolecule. Our results suggest that hydrous-pyrolysis of asphaltenes is of limited use in the correlation of biodegraded samples and in determining their origins.  相似文献   

2.
Acquiring crude oils that have been expelled from the same rock unit at different levels of thermal maturation is currently not feasible in the natural system. This prevents direct correlation of compositional changes between the organic matter retained in a source rock and its expelled crude oil at different levels of thermal maturation. Alleviation of this deficiency in studying the natural system requires the use of laboratory experiments. Natural generation of petroleum from amorphous type-II kerogen in the Woodford Shale may be simulated by hydrous pyrolysis, which involves heating crushed rock in contact with water at subcritical temperatures (<374°C). Four distinct stages of petroleum generation are observed from this type of pyrolysis; (1) pre-oil generation, (2) incipient-oil generation, (3) primary-oil generation, and (4) post-oil generation.The effects of thermal maturation on the δ13C values of kerogen, bitumen, and expelled oil-like pyrolysate from the Woodford Shale have been studied through these four stages of petroleum generation. Similar to the natural system, the kerogens isolated from the pyrolyzed rock showed no significant change in δ13C. This suggests that the δ13C value of kerogens may be useful in kerogen typing and oil-to-source rock correlations. δ13C values of bitumens extracted from the pyrolyzed rock showed an initial decrease during the incipient-oil generation stage, followed by depletion during the primary- and post-oil generation stages. This reversal is not favorable for geochemical correlation or maturity evaluation. Saturated and polar components of the bitumen show the greatest δ13C variations with increasing thermal maturation. The difference between the δ13C of these two components gives a unidirectional trend that serves as a general indicator of thermal maturation and is referred to as the bitumen isotope index (BII).δ13C values of the expelled pyrolysates show a unidirectional increase with increasing thermal maturation. The constancy and similarity of δ13C values of the aromatic components in the expelled pyrolysates and bitumens, with increasing thermal maturation, encourages their use in oil-to-oil and oil-to-source rock correlations. Isotopic type-curves for expelled pyrolysates indicate that they may be useful in oil-to- oil correlations, but have a limited use in oil-to-source rock correlations.  相似文献   

3.
Biomarker distributions in a suite of asphaltenes and kerogens have been analysed by flash pyrolysis directly coupled to a GCMS system. Attention has been focussed on biomarkers of the sterane and triterpane types. The sample suite under investigation consists of sediments with different kerogen types and some crude oils. Biomarker distributions in the pyrolysates have been compared with the “free” biomarkers in the corresponding saturated hydrocarbon fractions.The analyses show significant differences between the distributions of the free biomarkers and those in the pyrolysates. The latter have lower amounts of steranes while diasteranes are absent or present at low concentrations only. In the triterpane traces a shift of maximum intensity from C30 (free compounds) to C27/C29 is observed. Furthermore, the pyrolysates contain a set of triterpenes (not present among the free compounds), and there is a selective loss of “non-regular” triterpanes that are present in the saturated hydrocarbon fractions. The observed differences between pyrolysates and free hydrocarbons can be explained partly by the processes occurring during pyrolysis such as bond rupture and subsequent stabilisation of primary pyrolysis products. To a certain extent these differences also show that maturation processes occurring in sediments have effects on free biomarker molecules different from those on molecules that are enclosed in a macromolecular matrix (kerogen or asphaltenes).Differences between biomarker distributions of asphaltene and kerogen pyrolysates are relatively small. A comparison with the pyrolysates from extracted whole sediments suggests that these differences are mainly caused by interactions between the organic material and the mineral matrix during pyrolysis.Oil asphaltenes behave differently from sediment asphaltenes as their pyrolysates are more similar to the corresponding saturated hydrocarbon fractions, i.e. the differences described above are observed to a much smaller extent. This different behaviour appears to be the result of coprecipitation of a part of the maltene fraction with the oil asphaltenes.  相似文献   

4.
The triterpenoid hydrocarbons of some West Australian shales have been examined by GC-MS. In addition to the common 17α(H),21β(H)-hopanes, 17β(H),21β(H)-hopanes and 17β(H),21α(H)-moretanes, 28,30-bisnorhopane, 25,28,30-trisnorhopane and 25-norhopanes were identified in the organic extracts. In contrast, pyrolysates of the solvent-extracted sediments contained only the common hopane and moretane series, indicating that 28,30-bisnorhopane, 25,28,30-trisnorhopane and 25-norhopanes are not bonded to kerogen, but rather are present in the sediments as free hydrocarbons.  相似文献   

5.
准噶尔盆地西南缘四棵树凹陷主要分布侏罗系、白垩系和古近系3套潜在烃源岩,其中侏罗系八道湾组烃源岩有机质丰度较高,有机质类型以Ⅲ型为主,部分为Ⅱ2型,生烃潜力较高;三工河组烃源岩有机质丰度、类型明显偏差,生烃潜力较低;西山窑组泥岩有机质丰度较高,但由于受西山窑组沉积末期构造抬升导致地层剥蚀的影响,烃源岩厚度较小,总体上生烃条件较差;白垩系烃源岩在四棵树凹陷最大厚度可达300 m,处于低熟阶段,生烃潜力较小;古近系烃源岩有机质丰度较高、类型好,但成熟度偏低,生烃条件较差。侏罗系八道湾组烃源岩处于主要生油阶段;白垩系烃源岩已达到生烃门限,处于低熟—中等成熟阶段;古近系烃源岩成熟度偏低,目前仍处于未熟到低熟阶段。油源对比表明,四棵树凹陷北部斜坡及车排子凸起带原油主要来源于四棵树凹陷及沙湾凹陷侏罗系烃源灶,后期受到白垩系低熟油源灶的侵染,古近系烃源岩的油源贡献有限。  相似文献   

6.
Hydrous and anhydrous closed-system pyrolysis experiments were conducted on a sample of Mahogany oil shale (Eocene Green River Formation) containing Type-I kerogen to determine whether the role of water had the same effect on petroleum generation as reported for Type-II kerogen in the Woodford Shale. The experiments were conducted at 330 and 350 °C for 72 h to determine the effects of water during kerogen decomposition to polar-rich bitumen and subsequent bitumen decomposition to hydrocarbon-rich oil. The results showed that the role of water was more significant in bitumen decomposition to oil at 350 °C than in kerogen decomposition to bitumen at 330 °C. At 350 °C, the hydrous experiment generated 29% more total hydrocarbon product and 33% more C15+ hydrocarbons than the anhydrous experiment. This is attributed to water dissolved in the bitumen serving as a source of hydrogen to enhance thermal cracking and facilitate the expulsion of immiscible oil. In the absence of water, cross linking is enhanced in the confines of the rock, resulting in formation of pyrobitumen and molecular hydrogen. These differences are also reflected in the color and texture of the recovered rock. Despite confining liquid-water pressure being 7-9 times greater in the hydrous experiments than the confining vapor pressure in the anhydrous experiments, recovered rock from the former had a lighter color and expansion fractures parallel to the bedding fabric of the rock. The absence of these open tensile fractures in the recovered rock from the anhydrous experiments indicates that water promotes net-volume increase reactions like thermal cracking over net-volume decrease reactions like cross linking, which results in pyrobitumen. The results indicate the role of water in hydrocarbon and petroleum formation from Type-I kerogen is significant, as reported for Type-II kerogen.  相似文献   

7.
Siliceous sourced Tertiary oils from the Circum-Pacific area of Japan, Russia and the U.S.A. have a heavy carbon isotope composition, monomodal n-alkane distributions, and nearly identical regular sterane compositions with a predominance of C27 homologues. These are consistent with open marine depositional environments dominated by diatomaceous organic matter. However, a number of alkane and biomarker parameters such as Pr/Ph, CPI, relative concentration of 28,30-bisnorhopane, and the C35/C34 homohopane ratio indicate more oxic depositional environments for the source rocks of Japan and Russia. In contrast to the California Monterey Formation sourced oils, petroleums with low maturity levels from the North Sakhalin basin, Russia and the Akita basin, Japan have lower concentrations of asphaltenes and sulphur and are characterized by higher API gravities. A correlation of extractable organic matter from source rocks vs the least matured petroleums demonstrates that oil expulsion in siliceous shales of the Akita basin occurs at a maturity level corresponding to Ro≥0.65%, which is in the range of the conventional oil window (Ro = 0.6−1.1%).  相似文献   

8.
运用有机岩石学、有机地球化学、催化加氢热解、GC—IRMS等方法和技术,深入研究了川东北飞仙关组储层固体沥青及可能烃源岩的地球化学特征。研究认为,飞仙关组储层固体沥青反射率高,双反射明显,为非均质结构储层焦沥青;在碳酸盐岩储层的各种孔隙中,呈脉状、球粒状、角片状或块状等他形充填,具有中间相结构和镶嵌状结构特征,反映其高温热变质成因;元素组成有S/C高、H/C低的特点,其固体碳同位素组成与长兴组烃源岩干酪根相似。储层固体沥青的可能烃源岩发育于还原—弱氧化咸水沉积环境,有机质来源于水生藻类;氯仿沥青“A”饱和烃甾萜类生物标志物对比表明,上二叠长兴组烃源岩是主要来源,飞仙关组、下志留统烃源岩亦有贡献;催化加氢产物饱和烃及其正构烷烃单体碳同位素组成显示,坡2井飞仙关组储层固体沥青与罐5井飞仙关组烃源岩具有明显的亲缘关系,这也可作为飞仙关组海槽相烃源岩对飞仙关组气藏有贡献的佐证。  相似文献   

9.
在宜昌兴山下三叠统嘉陵江组灰岩晶洞和方解石脉中发现液体油苗。为查明其源岩,通过详细的野外剖面资料及密集采样,以有机碳含量0.5%为有效烃源岩下限,甄别出宜昌地区有三套有效烃源岩。通过烃源岩地球化学特征分析,发现萜烷、常规甾烷、甲藻甾烷等常规生物标志物的组成和分布趋于一致。高演化阶段的趋同性,已无法区分各套烃源岩,不能用于油源对比。但从三芳甾烷的组成和干酪根、氯仿沥青"A"稳定碳同位素组成特征,可以区分这三套烃源岩。油苗特征与上奥陶统五峰组—下志留统龙马溪组下部源岩相似,推测油苗来源于此源岩。  相似文献   

10.
Two Chinese immature oil shales from the continental deposits of kerogen type I and II have been thermally treated combined with the technique of supercritical fluid extraction at 630–650 K and 15–25 MPa in a semi-continuous laboratory scale apparatus. Toluence is selected as the solvent. Up to 70–80% of the kerogen matrix can be converted to a thermal bitumen and extracted simultaneously. The chemical structural parameters from the NMR, IR, XRD, ESR and EA analyses of the kerogen and the thermal bitumen show striking resemblance in nature. It implies that the thermal bitumen is primarily a depolymerized product of the kerogen. Based on the GC/MS spectra of the aliphatic eluate of the thermal bitumen, the predominance of the odd/even ratio of the alkanes and the epimeric ratios, such as 20S(20S + 20R) of C-29 steranes and 22S/(22S + 22R) of C-32 terpanes, show that the maturity of the thermal bitumen from these oil shales is comparable to that of commercial immature oils from East China. The thermal bitumen is thought to be an intermediate product of the thermal degradation of kerogen.Since the thermal bitumen is mainly composed of asphaltenes and resins, it has a structure of gel. The gel-state bitumen may turn to sol-state readily due to its low aromaticity and polarity, or due to selective adsorption of asphaltenes by clay minerals. Then the migration potential of the bitumen is enhanced.Consequently, under favorable geological conditions, the thermal depolymerization of kerogen seems to be a probable mechanism to explain the formation of immature oils.  相似文献   

11.
There are abundant bitumens and oil seepages stored in vugs in a Lower-Triassic Daye formation (T1d) marlite in Ni’erguan village in the Southern Guizhou Depression. However, the source of those oil seepages has not been determined to date. Multiple suites of source rocks of different ages exist in the depression. Both the oil seepages and potential source rocks have undergone complicated secondary alterations, which have added to the difficulty of an oil-source correlation. For example, the main source rock, a Lower-Cambrian Niutitang Formation (?1n) mudstone, is over mature, and other potential source rocks, both from the Permian and the Triassic, are still in the oil window. In addition, the T1d oil seepages underwent a large amount of biodegradation. To minimize the influence of biodegradation and thermal maturation, special methods were employed in this oil-source correlation study. These methods included catalytic hydropyrolysis, to release covalently bound biomarkers from the over mature kerogen of ?1n mudstone, sequential extraction, to obtain chloroform bitumen A and chloroform bitumen C from the T1d marlite, and anhydrous pyrolysis, to release pyrolysates from the kerogen of T1d marlite. Using the methods above, the biomarkers and n-alkanes released from the oil samples and source rocks were analysed by GC–MS and GC-C-IRMS. The oil-source correlation indicated that the T1d oil seepage primarily originated from the ?1n mudstone and was partially mixed with oil generated from the T1d marlite. Furthermore, the seepage also demonstrated that the above methods were effective for the complicated oil-source correlation in the Southern Guizhou Depression.  相似文献   

12.
A new maturity parameter determined on both oil and bitumen samples, the asphaltene Tmax, is proposed and discussed. This parameter could be very useful to address the maturity of the source rock. The asphaltene Tmax is measured by programmed Rock-Eval pyrolysis, using a modified temperature program. Some phases of the experimental procedure, such as the asphaltene preparation and the Rock-Eval measurement substratum choice, are crucial in order to achieve reliable data. Laboratory simulations were carried out in order to assess the possible effects of both primary and secondary migration on asphaltene Tmaxin the expelled oil: the original value of the asphaltene Tmax in the bitumen is not substantially modified and it is very close to that measured on kerogen. Examples of the determination of asphaltene Tmax on many samples, collected from different areas and with different organic matter composition, are given. Results show that Tmax values from oil asphaltenes are reasonable indicators of source rock maturity.  相似文献   

13.
14.
A Cambrian solid bitumen from northwestern Sichuan Basin, southern China was analyzed using two different flash pyrolysis methods coupled with gas chromatography–mass spectrometry analysis, including Pyroprobe® and analytical laser micropyrolysis. Results show that pyrolysis products from a Pyroprobe® (model 5000) analysis are dominated by mono-, di- and tricyclic aromatic hydrocarbons, whilst those from laser micropyrolysis are dominated by aliphatic hydrocarbons (n-alk-1-ene/n-alkane doublets), which is consistent with the results from an FT-IR spectrum of the solid bitumen. According to the molecular compositions of the pyrolysates from two types of pyrolysis, results from a 532 nm continuous wave laser may be more suitable for pyrolysis research of bitumen/asphaltene. Thus, differences in pyrolysis techniques must be considered when used to characterize oil asphaltenes or source rock kerogens.  相似文献   

15.
The composition of organic matter was investigated in the oil shales and country rocks of the Kashpir deposit. The analysis of the aromatic fraction of bitumen showed the presence of isorenieratene derivatives, which indicates the accumulation of the sequence under anoxic conditions in the bottom waters of a paleobasin. Special attention was given to the composition of organosulfur compounds from the bitumen of rocks and products of kerogen pyrolysis. The concentrations of hydrocarbon structures occurring in the bitumen in a free state and in sulfur-bearing derivatives are comparable. The composition of the pyrolysis products of kerogen depends on the concentration of organic carbon in the rock: carbon-rich rock varieties contain kerogen whose pyrolysis yields relatively high concentrations of organosulfur compounds and low total contents of n-alkanes/n-alkenes-1.  相似文献   

16.
广西南丹大厂中泥盆统古油藏固体沥青及其潜在烃源岩——同区泥盆系深水槽盆地相优质泥岩均已达到过成熟热演化阶段,其沥青“A”含量均很低,并且强烈的热改造作用和后期抬升接近地表后可能发生的生物降解作用,严重影响了用沥青“A”中常规生物标志物进行油源研究的准确性.目前固体沥青的来源缺乏直接的分子有机地球化学证据.本文运用了催化...  相似文献   

17.
Palynological and palynofacies analyses were carried out on some Cretaceous samples from the Qattara Rim-1X borehole, north Western Desert, Egypt. The recorded palynoflora enabled the recognition of two informal miospore biozones arranged from oldest to youngest as Elaterosporites klaszii-Afropollis jardinus Assemblage Zone (mid Albian) and Elaterocolpites castelainii–Afropollis kahramanensis Assemblage Zone (late Albian–mid Cenomanian). A poorly fossiliferous but however, datable interval (late Cenomanian–Turonian to ?Campanian–Maastrichtian) representing the uppermost part of the studied section was also recorded. The palynofacies and visual thermal maturation analyses indicate a mature terrestrially derived organic matter (kerogen III) dominates the sediments of the Kharita and Bahariya formations and thus these two formations comprise potential mature gas source rocks. The sediments of the Abu Roash Formation are mostly dominated by mature amorphous organic matter (kerogen II) and the formation is regarded as a potential mature oil source rock in the well. The palynomorphs and palynofacies analyses suggest deposition of the clastics of the Kharita and Bahariya formations (middle Albian and upper Albian–middle Cenomanian) in a marginal marine setting under dysoxic–anoxic conditions. By contrast, the mixed clastic-carbonate sediments of the Abu Roash Formation (upper Cenomanian–Turonian) and the carbonates of the Khoman Formation (?Campanian–Maastrichtian) were mainly deposited in an inner shallow marine setting under prevailing suboxic–anoxic conditions as a result of the late Cenomanian and the Campanian marine transgressions. This environmental change from marginal to open (inner shelf) basins reflects the vertical change in the type of the organic matter and its corresponding hydrocarbon-prone types. A regional warm and semi-arid climate but with a local humid condition developed near/at the site of the well is thought to have prevailed.  相似文献   

18.
Familiar since antiquity, and subject in contemporary times to various characterization schemes, the exact nature of solid bitumen is not yet fully known. Bitumens have ‘random polymer-like’ molecular structures, are mobile as highly viscous fluids or were once fluids but have since turned into solids. Solid bitumens consist mainly of large moieties, of polyclyclic aromatic hydrocarbons, occasionally with finely admixed, fine-grained cryptocrystalline graphite. Solid bitumens are distinguished from kerogen, which is the syngenetic and generally finely dispersed particulate organic matter in sedimentary rock that virtually does not migrate following its deposition. Occurrences of solid bitumens are relevant to petroleum exploration as well as the search for, and evaluation of, a variety of metallic mineral deposits. Genesis of bitumen is in many cases linked to the thermal and hydrothermal history of organic matter in sedimentary rock. Apparently bitumen, or more specifically organic acids generated along with bitumen during diagenesis, may alter porosity of reservoir rocks or otherwise prepare the ground for ore deposition. Bitumen is also relatively sensitive to alteration processes, some of which, such as oxidative weathering, water leaching, biodegradation (contact) metamorphism and ionizing radiation may likewise affect its nature. Elemental composition of bitumen commonly reflects the nature of mineral deposits. Is is possible that in petroleum exploration, trace metal abundances of bitumen may eventually allow prediction of crude oil types and volumes anticipated from a given source rock? Beside transition elements, notably Ni and V, highly anomalous concentrations of U, Pt and Au occur in some solid bitumens. During the generation of petroleum from kerogen, the trend in δ13C is toward lighter values. The opposite seems to occur when liquid petroleum is subjected to thermal cracking (and /or related processes) yielding solid bitumen enriched in 13C, and isotopically light methane. In fact, except for deasphalting and possibly some irradiation processes, the result of thermal cracking, oxidation, water leaching, inspissation (drying) and bacterial degradation of crude oil is that lower molecular weight hydrocarbons are removed leaving bitumen residues enriched in aromatic hydrocarbons, heteroatomic compounds (NSO) and 13C. Such phenomena are relevant to bitumen paragenesis in petroleum reservoir rocks, to certain Phanerozoic occurrences of multiple generations of bitumens, and to bitumens in mineral deposits.  相似文献   

19.
Pyrolysis experiments were carried out on Monterey formation kerogen and bitumen and Green River formation kerogen (Type II and I, respectively), in the presence and absence of montmorillonite, illite and calcite at 200 and 300°C for 2–2000 hours. The pyrolysis products were identified and quantified and the results of the measurements on the gas and condensate range are reported here.A significant catalytic effect was observed for the pyrolysis of kerogen with montmorillonite, whereas small or no effects were observed with illite and calcite, respectively. Catalytic activity was evident by the production of up to five times higher C1–C6 hydrocarbons for kerogen with montmorillonite than for kerogen alone, and by the dominance of branched hydrocarbons in the C4–C6 range (up to 90% of the total amount at any single carbon number). This latter effect in the presence of montmorillonite is attributed to cracking via a carbonium-ion [carbocation] intermediate which forms on the acidic sites of the clay. No catalytic effect, however, was observed for generation of methane and C2 hydrocarbons which form by thermal cracking. The catalysis of montmorillonite was significantly greater during pyrolysis of bitumen than for kerogen, which may point to the importance of the early formed bitumen as an intermediate in the production of low molecular weight hydrocarbons. Catalysis by minerals was also observed for the production of carbon dioxide.These results stress the importance of the mineral matrix in determining the type and amount of gases and condensates forming from the associated organic matter under thermal stress. The literature contains examples of gas distributions in the geologic column which can be accounted for by selective mineral catalysis, mainly during early stages of organic matter maturation.  相似文献   

20.
滇东罗平地区中三叠统中发现液态油苗   总被引:1,自引:0,他引:1  
张启跃  周长勇  吕涛  谢韬 《地质通报》2009,28(10):1526-1532
通过1∶5万区调填图,在云南罗平地区中三叠统关岭组二段薄层泥晶灰岩中首次发现液态油苗。该稠油显示主要分布在层间晶洞中,表现为干沥青及稠油共存状态。有机地球化学研究表明,氯仿沥青“A”的含量为67×10-6,有机质类型以腐泥型Ⅰ型为主。镜质体干酪根反射率R0为2.84%,Tmax=568℃,表明有机质处于高成熟阶段。液态油苗的显示对于进一步评价南盘江盆地的油气勘探前景具有重要的价值和意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号