首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 199 毫秒
1.
The Saar-Nahe-Basin in SW-Germany is one of the largest Permo-Carboniferous basins in the internal zone of the Variscides. Its evolution is closely related to movements along the Hunsrück Boundary Fault, which separates the Rhenohercynian and the Saxothuringian zones. Recent deep seismic surveys indicate that the Saar-Nahe-Basin formed in the hanging wall of a major detachment which soles out at lower crustal levels at about 16 km depth. Oblique extension along an inverted Variscan thrust resulted in the formation of a half-graben, within more than 8 km of entirely continental strata accumulated. The structural style within the basin is characterized by normal faults parallel to the basin axis and orthogonal transfer fault zones. Balanced cross-section construction and subsidence analysis indicate extension of the orogenically thickened lithosphere by 35%. Subsidence modeling shows discontinuous depth-dependent extension with laterally varying extension factors for crust and mantle lithosphere. Thus, the offset between maximum rift and thermal subsidence can be explained by a zone of mantle extension shifted laterally with respect to the zone of maximum crustal extension.
  相似文献   

2.
In the general discussion on the Variscan evolution of central Europe the pre-Mesozoic basement of the Alps is, in many cases, only included with hesitation. Relatively well-preserved from Alpine metamorphism, the Alpine External massifs can serve as an excellent example of evolution of the Variscan basement, including the earliest Gondwana-derived microcontinents with Cadomian relics. Testifying to the evolution at the Gondwana margin, at least since the Cambrian, such pieces took part in the birth of the Rheic Ocean. After the separation of Avalonia, the remaining Gondwana border was continuously transformed through crustal extension with contemporaneous separation of continental blocks composing future Pangea, but the opening of Palaeotethys had only a reduced significance since the Devonian. The Variscan evolution in the External domain is characterised by an early HP-evolution with subsequent granulitic decompression melts. During Visean crustal shortening, the areas of future formation of migmatites and intrusion of monzodioritic magmas in a general strike–slip regime, were probably in a lower plate situation, whereas the so called monometamorphic areas may have been in an upper plate position of the nappe pile. During the Latest Carboniferous, the emplacement of the youngest granites was associated with the strike–slip faulting and crustal extension at lower crustal levels, whereas, at the surface, detrital sediments accumulated in intramontaneous transtensional basins on a strongly eroded surface.  相似文献   

3.
Different PTt paths and Variscan tectonic evolution have been described for the lower crust of Calabria. New data have been collected through retrieval technique and construction of pseudosections to control the validity of the previous data and to check the appropriate model to describe the tectono-thermal evolution of the lower crust of the Serre (southern Calabria). The time-period from ~350 and ~270?Ma has been considered to depict the evolution from Variscan crustal thickening to exhumation as happens in the peri-Mediterranean blocks of south European Variscides and consistently with the available geochronological data. It results that: (1) P-peak at 0.9 and 1.03 GPa at the top and bottom, respectively, was reached earlier than T-peak, (2) crustal thickening developed likely earlier than 325?Ma within the stability field of kyanite, in agreement with previous studies, up to the P-peak along a geothermal gradient of about 21–22°C?km?1, (3) the T-peak of 700 and 880°C at the top and bottom, respectively, was reached in the stability field of sillimanite after a nearly isobaric heating and (4) Variscan exhumation occurred under increasing T/depth ratio and stopped 270–280?Ma ago. The P–T paths for the upper and lower portions of the section, qualitatively comparable to the numerical simulation, reflect different styles of exhumation, cooling and, according to the available geochronological data, diachronic evolution.  相似文献   

4.
Thermal modeling techniques constrained by published petrological and thermo-chronometric data were applied to examine late orogenic burial and exhumation at a Variscan suture zone in Central Europe. The suture separates the southern Rhenohercynian zone from the Mid-German Crystalline Rise and traces the former site of a small oceanic basin. Closure of this basin during Variscan subduction and subsequent collision of continental units were responsible for different tectono-metamorphic evolutions in the suture's footwall and hanging wall. Relative convergence rates between the southern Rhenohercynian zone and western Mid-German Crystalline Rise can be inferred from the pressure-temperature-time evolution of the Northern Phyllite Zone. During Late Viséan-Early Namurian times, horizontal thrusting velocities were at least 20 mm/a. Thermal modeling suggests that exhumation of the Mid-German Crystalline Rise occurred temporarily at rates of more than 3 mm/a. Such rapid exhumation cannot be produced by erosion only, but requires a substantial contribution of extensional strain. Exhumation by upper crustal extension occurred contemporaneously with convergence and is explained by continuous underplating of crustal slices and thrusting along faults with ramp-flat geometry. Finally, implications for the tectono-metamorphic history of the study area and the thermal state of the crust during late Variscan exhumation are discussed.  相似文献   

5.
Abstract

Detailed structural analysis in the southwestern part of the Variscan Sehwarzwald Massif (SW Germany) indicates polyphase, synmetamorphic deformation in ductile shear zones. The tectono-melainnrphir evolution is characterized by orogenic crustal shortening and subsequent late- orogenic crustal extension in Carboniferous times. Convergence is responsible for an KSK trending, north dipping thrust zone with intense deformation in orthogneissic S-C type mylonites Superposed on schistose and folded metasediments presumably lower Carboniferous in age. Southeastward thrust-’“g parallel to pervasive stretching lineation, similar to the pre-dominant oblique convergent structures ill the central part of the massif, is related to crustal stacking. Relations of early granite intrusions with the outlasting retrograde tectonics Point to a Lower Carboniferous (Late-Visean) age of shortening.

Subsequent crustal extension is indicated by a broad N-S trending and west dipping ductile shear zone within high grade meetamorphic (I1T7LP) gneisses. Retrograde stretching lineatone marked by sillimanite to chlorite anr consistent with a top-to-the-west shearing on the western flank of a large progressively warping domai structure. Intensely sheared and boudinaged granitic rocks are syn-tectonic and seal the age of extension at about 325 Ma (Lower/ Upper Carboniferous boundary). During progressively cataclastic stages of tectonic denudation the still active detachment controlled formation of an adjacent late Paleozoic (Stephano-Pcrniian) continental basin supersedding high-grade gneiss. As elsewhere in the Varisean belt, the late extensional process in the tectono-”“‘tainorphie evolution of the southern Sehwarzwald is related rapid uplift, exhumation and thinning by a gravitational collaps of a previously thickened crust.  相似文献   

6.
The orogenic Balkanid belt, which developed between the Moesian Plate and the Moravian-Rhodopi-Thracian Massifs, was affected by the Late Carboniferous and Early Permian opening of W-E oriented graben structures. The progressive tectonic rejuvenation of the basins is demonstrated by the deposition of repeated regional sedimentary cycles, associated with volcanism that was mostly localised along the tectonic boundaries, in an intramontane setting.The Late Carboniferous volcanism is represented by rhyodacitic explosive products and hyaloclastites, and by andesitic flows. During the Early Permian, subvolcanic rhyodacitic and rhyolitic bodies and the explosive products prevailed in the western sectors, whereas rhyolitic ignimbrites occur to the east.The tectonically active basins are interpreted due to late orogenic collapse, and the alternation of extensional tectonics and minor compressional phases is consistent with the regional transtensional regime, active along the Variscan suture of Pangaea. The volcanic activity associated with the evolution of the basins matches the petrogenetic features and the evolution from early dacitic – andesitic to late rhyolitic activity in the Southern European segment of the Variscan system.These Late Carboniferous-Early Permian sedimentary and tectono-magmatic events in Bulgaria are characterized, and compared with the homologous Permo-Carboniferous sequences along some western European segments of the Variscan belt.  相似文献   

7.
A review is presented of interpretations made to date of the Irish Variscides, and the various models of Late Palaeozoic crustal evolution. An examination is then made of the factors controlling Variscan strain in Ireland, including lithological competence, basement fabric and basement-cover thickness. From this, the difficulties of recognizing Variscan 'fronts' and 'fold belts' are emphasized.
In order to determine whether all putative Variscan strain is indeed Variscan. in age, new time-temperature data (vitrinite reflectance; apatite fission track populations) are discussed, along with offshore data. A case is then presented for recognizing quite distinct episodes of both Variscan and post-Variscan heating and deformation. Some of the implications for the Variscides to the east are briefly examined, and the suitability of a regional 'escape tectonics' model is tested.  相似文献   

8.
李三忠  杨振升 《岩石学报》1997,13(2):189-202
通过对胶辽吉地区古元古代裂谷带的深入研究,提出了伸展构造环境下中深部地壳花岗质岩浆侵位的一种模式,即花岗质岩浆沿基底与盖层之间的拆离滑脱带多次贯入,形成岩席,之后随着地壳拉伸(或伸展)作用,这些岩席逐渐远离侵位中心,发生侧向迁移。这种大陆壳内中深部花岗质岩浆的侵位和地壳的侧向伸展的模式,与有些学者提出的大洋中脊玄武质岩浆的侵位和洋壳扩张的模式是基本相似的。这一模式也是大陆地壳快速生长加厚的一种有效机制。由于花岗质岩浆的上涌引起上覆盖层因重力失稳形成一系列顺层滑脱构造组合。它们与花岗岩和基底共同构成中深构造层次岩浆隆起-顺层分层滑脱构造系  相似文献   

9.
The present comment disproves the tectonic model of a late Devonian/early Carboniferous Tibetan-style collisional plateau in the Teplá-Barrandean (TB) part of the Bohemian Massif, which later collapsed by thermal weakening of the underlying crust. Contrary to this model, the TB neither reveals major crustal thickening nor uplift and erosion, and eastern continuations of the TB were, during the relevant time-span, areas of open marine sedimentation. Late Devonian/early Carboniferous marine sediments widespread also in the Armorican and Central Massifs of France testify to low topography in central parts of the Variscan orogen. Notional traces of a Permo-Carboniferous ice cap on the French Massif Central do not support the plateau model, because they are questionable and much younger than the inferred plateau stage of the TB. The relative uplift of high-grade metamorphic rocks to the NW and the SE of the TB is not due to sinking of an elevated TB, but, instead, to the hydraulic and buoyant expulsion of HP material from the Saxo-Thuringian and Moldanubian subduction channels. The rise of lower-grade HT rocks along the southwestern margin of the Bohemian Massif was effected by late Carboniferous transpression. The high temperature and the resulting low viscosity of the rising materials were probably not caused by Variscan mantle delamination, but relate to lithospheric thinning and heating at the tip of the westward propagating Tethys Rift.  相似文献   

10.
We challenge some of the long-standing beliefs related to the Permian Oslo Rift structure, often referred to as a case example/type locality for continental rifting. The crustal structure of the Oslo Rift was long presumed to be thinned Proterozoic crust overlying a Permian high-density layer, interpreted as magmatic underplating. New data support an alternative view of the crustal structure in the Oslo Rift region. The Bouguer gravity high in the region shows a strong asymmetry: a steep, westward-facing gradient to the west of the rift, and a much gentler eastern gradient. We present a 3D density model based on petrophysical and seismic information, which accounts for the Bouguer gravity high using an eastward extension of old Precambrian structures, without invoking a prominent magmatic underplated structure. Reactivation of old pre-rift structures appears to be an important feature, affecting the evolution and location of the Permo-Carboniferous Oslo Rift.  相似文献   

11.
《Geodinamica Acta》2013,26(6):385-392
In low grade rocks of the Eastern Pyrenees syn-orogenic Variscan extension is achieved by kilometric scale low-angle brittle normal faults. Evidence of these faults is generally depicted by subtractive contacts between Devonian upon Cambro-Ordovician rocks. Normal faults are cut by a Variscan granodiorite pluton and U-Pb available geochronologic data of the granodiorite, 305 Ma ± 3 [30], indicates that the age of extension can be attributed to Moscovian times. Extension postdates the main period of Variscan crustal thickening and occurs in N-S to NE-SW direction, roughly perpendicular to the trend of the main Variscan compressional structures. Such relationships point out that the onset of Variscan extension occurs after compression and prior to the granodiorite emplacement and to the deposition of post-orogenic volcanics.  相似文献   

12.
《Gondwana Research》2014,25(3-4):886-901
The Late Mesoproterozoic (1085–1040 Ma) Ngaanyatjarra Rift, previously referred to as the Giles Event, is the dominant component of the Warakurna Large Igneous Province (LIP) that affected much of central and western Australia. This rift is well preserved and provides excellent examples of rift structure at a variety of crustal levels and times in the rift's evolution. Geological knowledge is integrated with geophysical interpretations and models to understand the crustal structure and evolution of this rift. Two phases are identified: an early rift stage (1085–1074 Ma) that is characterised by voluminous magmatism within the upper crust and relatively little tectonic deformation; and a late rift stage that is characterised by tectonic deformation, synchronous with the deposition of a thick pile of volcanic and sedimentary rocks (1074–1040 Ma). Compared to modern rift examples, this rift is unusual in that the crust was thickened by ~ 15 km and overall extension was very limited. However, its structure and evolution are very similar to the near-contemporaneous Midcontinent Rift, which shows the addition of a similar quantity of magmatic material as well as crustal thickening and limited extension. For these Mesoproterozoic rifts, we suggest that magmatism was the dominant process, and that the extension observed was a response to magmatism-induced crustal thickening and the gravitational collapse of the crustal column. Other Proterozoic rifts show similar characteristics (e.g. Transvaal Rift), whereas most Phanerozoic rifts are dissimilar, showing instead a dominance of extension, with magmatism largely a result of this extension. This change in the style of rifting from the Precambrian to the Phanerozoic may relate to the influence of a typically cooler and stronger lithosphere, which has caused stronger strain localisation and a greater role for extension as the controlling factor in rift evolution.  相似文献   

13.
The high-temperature metamorphism recorded in the Valuengo and Monesterio areas constitutes a rare occurrence in the Ossa-Morena Zone of Southwest Iberia, where low-grade metamorphism dominates. The metamorphism of the Valuengo area has been previously considered either Cadomian or Variscan in age, whereas that of Monesterio has been interpreted as a Cadomian imprint. However, these areas share important metamorphic and structural features that point towards a common tectonometamorphic evolution. The metamorphism of the Valuengo and Monesterio areas affects Late Proterozoic and Early Cambrian rocks, and is syn-kinematic with a top-to-the-north mylonitic foliation, which was subsequently deformed by early Variscan folds and thrusts. The U–Pb zircon age (480±7 Ma) we have obtained for an undeformed granite of the Valuengo area is consistent with our geological observations constraining the age of the metamorphism. We propose that this high-temperature metamorphic imprint along a NW–SE ductile extensional shear zone is related to the crustal extension that occurred in the Ossa-Morena Zone during the Cambro-Ordovician rifting. In the same way, the tectonothermal effect of the preorogenic rifting stage may have been wrongly attributed to orogenic processes in other regions as well as in this one.  相似文献   

14.
Investigations of brittle deformation structures, present within the crystalline rocks of the Bavarian Oberpfalz, reveal a complex late to post-Variscan crustal evolution. Upper Carboniferous (mainly Westphalian) granites were emplaced into semibrittle to brittle rocks of the ZEV (zone of Erbendorf-Vohenstrauß) and the EGZ (Erbendorf greenschist unit), respectively. From both the alignment of the granites and the direction of granite-related tension gashes a north-east-south-west extension must be assumed for the period of magmatic activities. Apart from the granite intrusions, rapid crustal uplift (about 1.5 km/my) led to an increase in the geothermal gradient from < 30 °C/km (late Variscan pre-granitic) to > 40 °C/km (late Variscan post-granitic). The increased geothermal gradient persisted during the succeeding reverse faulting which results from late Carboniferous (probably Stephanian) east-west and northeast-south-west compression. Although not evidenced directly in the area considered, strike-slip faults seem to have played an important part during the late Variscan crustal evolution, particularly in the Early Permian. The strike-slip events indicate further crustal shortening and indentation under north-south compression.A similar indentation was present in Cretaceous time. After a weak phase of Early Cretaceous reverse faulting, which results from north-south compression, strike-slip faults formed under north-west-south-east and north-south compression. All these faults, in particular the strike-slip faults, seem to be related to the Cretaceous and lowermost Tertiary convergence of the Alpine/Carpathian orogeny.A late stage of crustal extension, characterized by a radial stress tensor (2 = 3), is indicated through high angle normal faults which probably formed during the subsidence of the adjacent Neogene Eger Graben.  相似文献   

15.
Ion microprobe U?CPb analyses of zircons from three gabbroic intrusions from the Spanish Central System (SCS) (Talavera, La Solanilla and Navahermosa) yield Variscan ages (300 to 305?Ma) in agreement with recent studies. Only two zircon crystals from La Solanilla massif gave slightly discordant Paleoproterozoic ages (1,848 and 2,010?Ma). Hf isotope data show a relatively large variation with the juvenile end-members showing ?Hfi values as high as +3.6 to +6.9 and +1.5 to +2.9 in the Navahermosa and Talavera gabbros, respectively. These positive ?Hfi values up to +6.9 might represent the composition of the subcontinental mantle which generates these SCS gabbros. This ?Hfi range is clearly below depleted mantle values suggesting the involvement of enriched mantle components on the origin of these Variscan gabbros, and is consistent with previous whole-rock studies. The presence of zircons with negative ?Hfi values suggest variable, but significant, crustal contamination of the gabbros, mainly by mixing with coeval granite magmas. Inherited Paleoproterozoic zircons of La Solanilla gabbros have similar trace element composition (e.g. Th/U ratios), but more evolved Hf-isotope signatures than associated Variscan zircons. Similar inherited ages have been recorded in zircons from coeval Variscan granitoids from the Central Iberian Zone. Granitic rocks have Nd model ages (TDM) predominantly in the range of 1.4 to 1.6?Ga, suggesting a juvenile addition during the Proterozoic. However, Hf crustal model ages of xenocrystic Proterozoic zircons in La Solanilla gabbro indicate the presence of reworked Archean protoliths (TDM2 model ages of 3.0 to 3.2?Ga) incorporated into the hybridized mafic magma.  相似文献   

16.
 Situated in the inner zone of the Variscan Iberian Massif, the Tormes Gneissic Dome offers a good opportunity for thermal modelling of orogenic crustal extension, because the P–T–t loops are well constrained by an extensive set of thermobarometric, structural and geochronological data. As an example of feedback between forward and inverse methods, the aim of this study was to establish one- and two-dimensional thermal models that reproduce the contrasting petrological P–T paths of two structural units separated by an extensional tectonic contact in the metamorphic complex, and to explain the spatial and temporary development of the low-pressure metamorphism in the rocks located just above this contact. In one dimension, the syn-extension path of the lower unit resulting from modelling is characterized by an isothermal decompression phase, followed by near isobaric cooling, which is typical of exhumed rocks. The upper unit path records a syn-extension near isobaric heating, more important in rocks just above the tectonic contact. Condensed isograds of low-pressure/high-temperature metamorphism in the basal upper unit are thus interpreted as a consequence of advective crustal extension and conductive upward heat transfer. In two dimensions, the delaminated simple shear geometric model of crustal extension explains the observed temperature rise in excess of 500  °C in the basal upper unit and is consistent with the spatial distribution of M2 low-pressure/high-temperature isograds. This demonstrates the important role of extensional structures produced during the collapse of the thickened crust in the thermal evolution. The heating phase, well explained with intermediate dip angle for extensional fault in the upper crust (45°) and finite extension of 75 km, is followed by cooling, thus reflecting normal erosional process. Received: 1 September 1998 / Accepted: 29 June 1999  相似文献   

17.
The Aegean Sea area is thought to be an actively extending back-arc region, north of the present day Hellenic volcanic arc and north-dipping subduction zone in the Eastern Mediterranean. The area shows extensive normal faulting, ductile ‘extensional’ shear zones and extensional S-C fabrics throughout the islands that have previously been related to regional Aegean extension associated with slab rollback on the Hellenic Subduction Zone. In this paper, we question this interpretation, and suggest the Cenozoic geodynamic evolution of the Aegean region is associated with a Late Cretaceous–Eocene NE-dipping subduction zone that was responsible for continent-continent collision between Eurasia and Adria-Apulia/Cyclades. Exhumation of eclogite and blueschist facies rocks in the Cyclades and kyanite-sillimanite grade gneisses in the Naxos core complex have pressures that are far greater than could be accounted for purely by lithospheric extension and isostatic uplift. We identify four stages of crustal shortening that affected the region prior to regional lithospheric extension, herein called the Aegean Orogeny. This orogeny followed a classic Wilson cycle from early ophiolite obduction (ca. 74 Ma) onto a previously passive continental margin, to attempted crustal subduction with HP eclogite and blueschist facies metamorphism (ca. 54–45 ?Ma), through crustal thickening and regional kyanite – sillimanite grade Barrovian-type metamorphism (ca. 22–14 ?Ma), to orogenic collapse (<14 ?Ma). At least three periods of ‘extensional’ fabrics relate to: (1) Exhumation of blueschists and eclogite facies rocks showing tight-isoclinal folds and top-NE, base-SW fabrics, recording return flow along a subduction channel in a compressional tectonic setting (ca. 50–35 ?Ma). (2) Extensional fabrics within the core complexes formed by exhumation of kyanite- and sillimanite gneisses showing thrust-related fabrics at the base and ‘extensional’ fabrics along the top (ca. 18.5–14 ?Ma). (3) Regional ductile-brittle ‘extensional’ fabrics and low-angle normal faulting related to the North Cycladic Detachment (NCD) and the South(West) Cycladic Detachment (WCD) during regional extension along the flanks of a major NW–SE anticlinal fold along the middle of the Cyclades. Major low-angle normal faults and ductile shear zones show symmetry about the area, with the NE chain of islands (Andros, Tinos, Mykonos, Ikaria) exposing the NE-dipping NCD with consistent top-NE ductile fabrics along 200 ?km of strike. In contrast, from the Greek mainland (Attica) along the SE chain of islands (Kea, Kythnos, Serifos) a SW-dipping low-angle normal fault and ductile shear zone, the WCD is inferred for at least 100 ?km along strike. Islands in the middle of the Cyclades show deeper structural levels including kyanite- and sillimanite-grade metamorphic core complexes (Naxos, Paros) as well as Variscan basement rocks (Naxos, Ios). The overall structure is an ~100 ?km wavelength NW–SE trending dome with low-angle extensional faults along each flank, dipping away from the anticline axis to the NE and SW. Many individual islands show post-extensional large-scale folding of the low-angle normal faults around the domes (Naxos, Paros, Ios, Sifnos) indicating a post-Miocene late phase of E–W shortening.  相似文献   

18.
Horizontal extension of a previously thickened crust could be the principal mechanism that caused the development of widespread extensional basins throughout the North China block (Hua-Bei region) during the Mesozoic. We develop here a regional tectonic model for the evolution of the lithosphere in the North China block, based on thin sheet models of lithospheric deformation, with numerical solutions obtained using the finite element method. The tectonic evolution of this region is defined conceptually by two stages in our simplified tectonic model: the first stage is dominated by N–S shortening, and the second by E–W extension. We associate the N–S shortening with the Triassic continental collision between the North and South China blocks, assuming that the Tan-Lu Fault system defines the eastern boundary of the North China block. The late Mesozoic E–W extension that created the Mesozoic basin systems requires a change in the regional stress state that could have been triggered by either or both of the following factors: First, gravitational instability of the lithosphere triggered by crustal convergence might have removed the lower layers of the thickened mantle lithosphere and thus caused a rapid increase in the local gravitational potential energy of the lithosphere. Secondly, a change to the constraining stress on the eastern boundary of the North China block, that might have been caused by roll-back of the subducting Pacific slab, could have reduced the E–W horizontal stress enough to activate extension. Our simulations show that widespread thickening of the North China block by as much as 50% can be explained by the collision with South China in the Triassic and Jurassic. If convergence then ceases, E–W extension can occur in the model if the eastern boundary of the region can move outwards. We find that such extension may occur, restoring crustal thickness of order 30 km within a period of 50 Myr or less, if the depth-averaged constitutive relation of the lithosphere is Newtonian, and if the Argand number (the ratio of buoyancy-derived stress to viscous stress) is greater than about 4. Widespread convective thinning of the lithosphere is not required in order to drive the extension with these parameters. If, however, the lithospheric viscosity is non-Newtonian (with strain-rate proportional to the third power of stress) the extensional phase would not occur in a geologically plausible time unless the Argand number were significantly increased by a lithospheric thinning event that was triggered by crustal thickening ratios as low as 1.5.  相似文献   

19.
In the nappe zone of the Sardinian Variscan chain, the deformation and metamorphic grade increase throughout the tectonic nappe stack from lower greenschist to upper amphibolite facies conditions in the deepest nappe, the Monte Grighini Unit. A synthesis of petrological, structural and radiometric data is presented that allows us to constrain the thermal and mechanical evolution of this unit. Carboniferous subduction under a low geothermal gradient (~490–570 °C GPa?1) was followed by exhumation accompanied by heating and Late Carboniferous magma emplacement at a high apparent geothermal gradient (~1200–1450 °C GPa?1). Exhumation coeval with nappe stacking was closely followed by activity on a ductile strike‐slip shear zone that accommodated magma intrusion and enabled the final exhumation of the Monte Grighini Unit to upper crustal levels. The reconstructed thermo‐mechanical evolution allows a more complete understanding of the Variscan orogenic wedge in central Sardinia. As a result we are able to confirm a diachronous evolution of metamorphic and tectonic events from the inner axial zone to the outer nappe zone, with the Late Variscan low‐P/high‐T metamorphism and crustal anatexis as a common feature across the Sardinian portion of the Variscan orogen.  相似文献   

20.
The metamorphic core of the Betic-Rif orogenic chain (Alboran Domain) is made up of lower crustal rocks forming the envelope of the Ronda (Spain) and Beni Bousera (Morocco) peridotites. The deepest sections of the crustal envelopes are made of migmatitic granulites associated with diffuse acidic magmatic products, making these exposure and ideal site to investigate the textural and petrological connection between crustal anatexis and granite magmatism in the contintental crust. However, still debated is the timing of intracrustal emplacement of the peridotite bodies, with models proposing either Alpine (early Miocene) or Hercynian ages, and still uncertain is the linkage between peridotite emplacement and crustal anatexis. In this study, by combining rock textures with whole-rock geochemistry, metamorphic thermobarometry, the U-Pb zircon geochronology and the analysis of the garnet and zircon REE chemistry, we document the P-T-t evolution of the granulite facies migmatites that form the immediate envelope of the Beni Bousera peridotites of the Rif belt. A main episode of Permo-Carboniferous (ca. 300–290 Ma) deep crustal anatexis, melt extraction and migration is documented that we link to the crustal emplacement of the Beni Bousera peridotites during collapse of the Hercynian orogen. Correlation at a regional scale suggests that the Beni-Bousera section can be tentatively correlated with the pre-Alpine (Permo-Carboniferous) basement units tectonically interleaved within the orogenic structure of the Alpine chain. The results of this study provide ultimate constraints to reconstruct the tectono-metamorphic evolution of the Alboran Domain in the Western Mediterranean and impose re-assessment of the modes and rates through which Alpine orogenic construction and collapse occurred and operated in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号