首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Melt loss and the preservation of granulite facies mineral assemblages   总被引:29,自引:3,他引:29  
The loss of a metamorphic fluid via the partitioning of H2O into silicate melt at higher metamorphic grade implies that, in the absence of open system behaviour of melt, the amount of H2O contained within rocks remains constant at temperatures above the solidus. Thus, granulite facies rocks, composed of predominantly anhydrous minerals and a hydrous silicate melt should undergo considerable retrogression to hydrous upper amphibolite facies assemblages on cooling as the melt crystallizes and releases its H2O. The common occurrence of weakly retrogressed granulite facies assemblages is consistent with substantial melt loss from the majority of granulite facies rocks. Phase diagram modelling of the effects of melt loss in hypothetical aluminous and subaluminous metapelitic compositions shows that the amount of melt that has to be removed from a rock to preserve a granulite facies assemblage varies markedly with rock composition, the number of partial melt loss events and the P–T conditions at which melt loss occurs. In an aluminous metapelite, the removal of nearly all of the melt at temperatures above the breakdown of biotite is required for the preservation of the peak mineral assemblage. In contrast, the proportion of melt loss required to preserve peak assemblages in a subaluminous metapelite is close to half that required for the aluminous metapelite. Thus, if a given proportion of melt is removed from a sequence of metapelitic granulites of varying composition, the degree of preservation of the peak metamorphic assemblage may vary widely.  相似文献   

2.
A thermodynamic model for haplogranitic melts in the system Na2O–CaO–K2O–Al2O3–SiO2–H2O (NCKASH) is extended by the addition of FeO and MgO, with the data for the additional end‐members of the liquid incorporated in the Holland & Powell (1998) internally consistent thermodynamic dataset. The resulting dataset, with the software thermocalc , is then used to calculate melting relationships for metapelitic rock compositions. The main forms for this are PT and TX pseudosections calculated for particular rock compositions and composition ranges. The relationships in these full‐system pseudosections are controlled by the low‐variance equilibria in subsystems of NCKFMASH. In particular, the solidus relationships are controlled by the solidus relationships in NKASH, and the ferromagnesian mineral relationships are controlled by those in KFMASH. However, calculations in NCKFMASH allow the relationships between the common metapelitic minerals and silicate melt to be determined. In particular, the production of silicate melt and melt loss from such rocks allow observations to be made about the processes involved in producing granulite facies rocks, particularly relating to open‐system behaviour of rocks under high‐grade conditions.  相似文献   

3.
The P–T evolution of amphibolite facies gneisses and associated supracrustal rocks exposed along the northern margin of the Paleo to MesoArchean Barberton greenstone belt, South Africa, has been reconstructed via detailed structural analysis combined with calculated K(Mn)FMASH pseudosections of aluminous felsic schists. The granitoid‐greenstone contact is characterized by a contact‐parallel high‐strain zone that separates the generally low‐grade, greenschist facies greenstone belt from mid‐crustal basement gneisses. The supracrustal rocks in the hangingwall of this contact are metamorphosed to upper greenschist facies conditions. Supracrustal rocks and granitoid gneisses in the footwall of this contact are metamorphosed to sillimanite grade conditions (600–700 °C and 5 ± 1 kbar), corresponding to elevated geothermal gradients of ~30–40 °C km?1. The most likely setting for these conditions was a mid‐ or lower crust that was invaded and advectively heated by syntectonic granitoids at c. 3230 Ma. Combined structural and petrological data indicate the burial of the rocks to mid‐crustal levels, followed by crustal exhumation related to the late‐ to post‐collisional extension of the granitoid‐greenstone terrane during one progressive deformation event. Exhumation and decompression commenced under amphibolite facies conditions, as indicated by the synkinematic growth of peak metamorphic minerals during extensional shearing. Derived P–T paths indicate near‐isothermal decompression to conditions of ~500–650 °C and 1–3 kbar, followed by near‐isobaric cooling to temperatures below ~500 °C. In metabasic rock types, this retrograde P–T evolution resulted in the formation of coronitic Ep‐Qtz and Act‐Qtz symplectites that are interpreted to have replaced peak metamorphic plagioclase and clinopyroxene. The last stages of exhumation are characterized by solid‐state doming of the footwall gneisses and strain localization in contact‐parallel greenschist‐facies mylonites that overprint the decompressed basement rocks.  相似文献   

4.
High‐pressure granulites are generally characterized by the absence of orthopyroxene. However, orthopyroxene is reported in a few high‐pressure, felsic–metapelitic granulites, such as the Huangtuling felsic high‐pressure granulite in the North Dabie metamorphic core complex in east‐central China, which rarely preserves the high‐pressure granulite facies assemblage of garnet + orthopyroxene + biotite + plagioclase + K‐feldspar + quartz. To investigate the effects of bulk‐rock composition on the stability of orthopyroxene‐bearing, high‐pressure granulite facies assemblages in the NCKFMASHTO (Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3) system, a series of PTX pseudosections based on the melt‐reintegrated composition of the Huangtuling felsic high‐pressure granulite were constructed. Calculations demonstrate that the orthopyroxene‐bearing, high‐pressure granulite facies assemblages are restricted to low XAl [Al2O3/(Na2O + CaO + K2O + FeO + MgO + Al2O3) < 0.35, mole proportion] or high XMg [MgO/(MgO + FeO) > 0.85] felsic–metapelitic rock types. This study also reveals that the XAl values in the residual felsic–metapelitic, high‐pressure granulites could be significantly reduced by a high proportion of melt loss. We suggest that orthopyroxene‐bearing, high‐pressure granulites occur in residual overthickened crustal basement under continental subduction–collision zones and arc–continent collision belts.  相似文献   

5.
The metamorphic rocks of the Ivrea Zone in NW Italy preserve a deep crustal metamorphic field gradient. Application of quantitative phase equilibria methods to metapelitic rocks provides new constraints on the P–T conditions recorded in Val Strona di Omegna, Val Sesia and Val Strona di Postua. In Val Strona di Omegna, the metapelitic rocks show a structural and mineralogical change from mica‐schists with the common assemblage bi–mu–sill–pl–q–ilm ± liq at the lowest grades, through metatexitic migmatites (g–sill–bi–ksp–pl–q–ilm–liq) at intermediate grades, to complex diatexitic migmatites (g–sill–ru–bi–ksp–pl–q–ilm–liq) at the highest grades. Partial melting in the metapelitic rocks is consistent with melting via the breakdown of first muscovite then biotite. The metamorphic field gradient in Val Strona di Omegna is constrained to range from conditions of ~3.5–6.5 kbar at ≈650 °C to ~10–12 kbar at >900 °C. The peak P–T estimates, particularly for granulite facies conditions, are significantly higher than those of most earlier studies. In Val Sesia and Val Strona di Postua, cordierite‐bearing rocks record the effects of contact metamorphism associated with the intrusion of a large mafic body (the Mafic Complex). The contact metamorphism occurred at lower pressures than the regional metamorphic peak and overprints the regional metamorphic assemblages. These relationships are consistent with the intrusion of the Mafic Complex having post dated the regional metamorphism and are inconsistent with a model of magmatic underplating as the cause of granulite facies metamorphism in the region.  相似文献   

6.
The evolution of the mineral assemblages and P–T conditions during partial melting of upper‐amphibolite facies paragneisses in the Orue Unit, Epupa Complex, NW Namibia, is modelled with calculated P–T–X phase diagrams in the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O system. The close concordance of predictions from the phase diagrams to petrographic observations and thermobarometric results documents that quantitative phase diagrams are suitable to explain the phase relationships in migmatitic upper‐amphibolite facies low‐ and medium‐pressure metapelites, which occur in many high‐grade metamorphic terranes worldwide. Different mineral assemblages in the migmatitic metapelites of the Orue Unit reflect regional discrepancies in the metamorphic grade: in a Northern Zone, early biotite–sillimanite–quartz assemblages were replaced via melt‐producing reactions by cordierite‐bearing assemblages. In a Southern Zone, they were replaced via melt‐producing reactions by garnet‐bearing assemblages while cordierite is restricted to rare metapelitic granofelses, which preserve Grt–Sil–Crd–Bt peak assemblages. Peak‐metamorphic conditions of 700–750 °C at 5.5–6.7 kbar in the Southern Zone and of ~750 °C at 4.5 kbar in the Northern Zone are estimated by integrating thermobarometric calculations with data from calculated mineral composition isopleths. Retrograde back‐reactions between restite and crystallizing melt are recorded by the replacement of garnet by biotite–sillimanite and/or biotite–muscovite intergrowths. Upper‐amphibolite facies metamorphism and partial melting (c. 1340–1320 Ma) in the rocks of the Southern Zone of the Orue Unit, which underwent probably near‐isobaric heating–cooling paths, are attributed to contact metamorphism induced by the coeval (c. 1385–1319 Ma) emplacement of the Kunene Intrusive Complex, a huge massif‐type anorthosite body. The lower‐pressure metapelites of the Northern Zone are interpreted to record contact metamorphism at an upper crustal level.  相似文献   

7.
Mineral textures in metapelitic granulites from the northern Prince Charles Mountains, coupled with thermodynamic modelling in the K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 (KFMASHTO) model system, point to pressure increasing with increasing temperature on the prograde metamorphic path, followed by retrograde cooling (i.e. an anticlockwise P–T path). Textural evidence for the increasing temperature part of the path is given by the breakdown of garnet and biotite to form orthopyroxene and cordierite in sillimanite‐absent rocks, and through the break‐down of biotite and sillimanite to form spinel, cordierite and garnet in more aluminous assemblages. This is equated to the advective addition of heat from the regional emplacement of granitic and charnockitic magmas dated at c. 980 Ma. A subsequent increase in pressure, inferred from the break‐down of spinel and quartz to sillimanite, cordierite and garnet in aluminous rocks, is attributed to crustal thickening related to upright folding dated at 940–910 Ma. The terrane attained peak metamorphic temperatures of c. 880 °C at pressures of c. 6.0–6.5 kbar during this event. Subsequent cooling is inferred from the localised breakdown of cordierite and garnet to form biotite and sillimanite that developed in the latter stages of the same event. The textural observations described are interpreted via the application of P–T and P–T–X pseudosections. The latter show that most rock compositions preserve only fragments of the overall P–T path; a result of different rock compositions undergoing mineral assemblage changes, or changes in mineral modal abundance, on different sections of the P–T path. The results also suggest that partial melting during granulite facies metamorphism, coupled with melt loss and dehydration, initiated a switch from pervasive ductile, to discrete ductile/brittle deformation, during retrograde cooling.  相似文献   

8.
Small pods of silica-undersaturated Al-rich and Mg-rich granulite facies rocks containing sapphirine, pleonastic spinel, kornerupine, cordierite, orthopyroxene, corundum, sillimanite and gedrite are scattered throughout the NE Strangways Range, Central Australia. These are divided into four distinct rock types, namely orthopyroxene-rich aluminous granofels and metapelitic gneisses containing sapphirine, spinel or kornerupine. Two granulite facies metamorphic events are recognized, of which only the first (M1) is considered in this paper. Peak metamorphic mineral parageneses indicate that the M1 thermal maximum occurred at approximately 900–950 °C and 8–9 kbar. All samples are characterized by profuse and diverse coronitic and symplectic reaction textures. These are interpreted as evidence for the sequential crossing of the following reactions in the system FMAS: cordierite + spinel + corundum = sapphirine + sillimanite, cordierite + spinel = orthopyroxene + sapphirine + sillimanite, sapphirine + spinel + sillimanite = orthopyroxene + corundum, sapphirine + sillimanite = cordierite + orthopyroxene + corundum. Phase stability relationships in FMAS and MASH indicate an anticlockwise P–T path terminated by isobaric cooling. Such a path is exemplified by early low-P mineral parageneses containing spinel, corundum and gedrite and the occurrence of both prograde and retrograde corundum. Reaction textures preserve evidence for an increase in aH2O and aB2O3 with progressive isobaric cooling. This hydrous retrogression resulted from crystallization of intimately associated M1 partial melt segregations. There is no evidence for voluminous magmatic accretion giving rise to the high M1 thermal gradient. The M1 P–T path may be the result of either lithospheric thinning after both crustal thickening and burial of the supracrustal terrane, or concomitant crustal thickening and mantle lithosphere thinning.  相似文献   

9.
The production of large volumes of fluid from metabasic rocks, particularly in greenstone terranes heated across the greenschist–amphibolite facies transition, is widely accepted yet poorly characterized. The presence of carbonate minerals in such rocks, commonly as a consequence of sea‐floor alteration, has a strong influence, via fluid‐rock buffering, on the mineral equilibria evolution and fluid composition. Mineral equilibria modelling of metabasic rocks in the system Na2O‐CaO‐FeO‐MgO‐Al2O3‐SiO2‐CO2‐H2O (NCaFMASCH) is used to constrain the stability of common metabasic assemblages. Calculated buffering paths on TXCO2 pseudosections, illustrate the evolution of greenstone terranes during heating across the greenschist‐amphibolite transition. The calculated paths constrain the volume and the composition of fluid produced by devolatilization and buffering. The calculated amount and composition of fluid produced are shown to vary depending on PT conditions, the proportion of carbonate minerals and the XCO2 of the rocks prior to prograde metamorphism. In rocks with an initially low proportion of carbonate minerals, the greenschist to amphibolite facies transition is the primary period of fluid production, producing fluid with a low XCO2. Rocks with greater initial proportions of carbonate minerals experience a second fluid production event at temperatures above the greenschist to amphibolite facies transition, producing a more CO2‐rich fluid (XCO2 = 0.2–0.3). Rocks may achieve these higher proportions of carbonate minerals either via more extensive seafloor alteration or via infiltration of fluids. Fluid produced via devolatilization of rocks at deeper crustal levels may infiltrate and react with overlying lower temperature rocks, resulting in external buffering of those rocks to higher XCO2 and proportions of carbonate minerals. Subsequent heating and devolatilization of these overlying rocks results in buffering paths that produce large proportions of fluid at XCO2 = 0.2–0.3. The production of fluid of this composition is of importance to models of gold transport in Archean greenstone gold deposits occurring within extensive fluid alteration haloes, as these haloes represent the influx of fluid of XCO2 = 0.2–0.3 into the upper crust.  相似文献   

10.
Much of the exposed Archean crust is composed of composite gneiss which includes a large proportion of intermediate to tonalitic material. These gneiss terranes were typically metamorphosed to amphibolite to granulite facies conditions, with evidence for substantial partial melting at higher grade. Recently published activity–composition (a?x) models for partial melting of metabasic to intermediate compositions allows calculation of the stable metamorphic minerals, melt production and melt composition in such rocks for the first time. Calculated P?T pseudosections are presented for six bulk rock compositions taken from the literature, comprising two metabasic compositions, two intermediate/dioritic compositions and two tonalitic compositions. This range of bulk compositions captures much of the diversity of rock types found in Archean banded gneiss terranes, enabling us to present an overview of metamorphism and partial melting in such terranes. If such rocks are fluid saturated at the solidus, they first begin to melt in the upper amphibolite facies. However, at such conditions, very little (< 5%) melt is produced and this melt is granitic in composition for all rocks. The production of greater proportions of melt requires temperatures ~800–850 °C and is associated with the first appearance of orthopyroxene at pressures below 8–9 kbar or with the appearance and growth of garnet at higher pressures. The temperature at which orthopyroxene appears varies little with composition providing a robust estimate of the amphibolite–granulite facies boundary. Across this boundary, melt production is coincident with the breakdown of hornblende and/or biotite. Melts produced at granulite facies range from tonalite–trondhjemite–granodiorite for the metabasic protoliths, granodiorite to granite for the intermediate protoliths and granite for the tonalitic protoliths. Under fluid‐absent conditions the melt fertility of the different protoliths is largely controlled by the relative proportions of hornblende and quartz at high grade, with the intermediate compositions being the most fertile. The least fertile rocks are the most leucocratic tonalites due to their relatively small proportions of hydrous mafic phases such as hornblende or biotite. In the metabasic rocks, melt production becomes limited by the complete consumption of quartz to higher temperatures. The use of phase equilibrium forward‐modelling provides a thermodynamic framework for understanding melt production, melt loss and intracrustal differentiation during the Archean.  相似文献   

11.
The ax relations recently presented in White et al. ( 2014 , Journal of Metamorphic Geology, 32, 261–286) are extended to include MnO. This provides a set of internally consistent ax relations for metapelitic rocks in the MnO–Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O2 (MnNCKFMASHTO) system. The mixing parameters for the Mn‐bearing minerals were estimated using the micro‐? approach of Powell et al. ( 2014 , Journal of Metamorphic Geology, 32, 245–260). Then the Mn‐end‐member thermodynamic properties were calibrated using a database of co‐existing minerals involving literature data from rocks and from experiments on natural materials. Mn‐end‐members were calibrated for orthopyroxene, cordierite, staurolite, chloritoid, chlorite, biotite, ilmenite and hematite, assuming known properties for the garnet end‐member spessartine. The addition of MnO to phase diagram calculations results in a marked expansion of the stability of garnet‐bearing assemblages. At greenschist facies conditions garnet stability is extended down temperature. At amphibolite facies conditions, the garnet‐in boundary shifts to lower pressure. While the addition of MnO greatly influences the stability of garnet, it has relatively little effect on the stability of other common metapelitic minerals, with the resultant diagrams being topologically very similar to those calculated without MnO. Furthermore, the addition of MnO in the amounts measured in most metapelites has only a small effect on the mode of garnet, with calculated garnet modes remaining smaller than 1% in the PT range outside its predicted Mn‐free PT range.  相似文献   

12.
The Acquadolce Subunit on the Island of Elba, Italy, records blueschist facies metamorphism related to the Oligocene–early Miocene stages of continental collision in the Northern Apennines. The blueschist facies metamorphism is represented by glaucophane- and lawsonite-bearing metabasite associated with marble and calcschist. These rock types occur as lenses in a schistose complex representing foredeep deposits of early Oligocene age. Detailed petrological analyses on metabasic and metapelitic protoliths, involving mineral and bulk-rock chemistry coupled with PT and PTX(Fe2O3) pseudosection modelling using PERPLE_X, show that the Acquadolce Subunit recorded nearly isothermal exhumation from peak pressure–temperature conditions of 1.5–1.8 GPa and 320–370°C. During exhumation, peak lawsonite- and possibly carpholite- or stilpnomelane-bearing assemblages were overprinted and partially obliterated by epidote-blueschist and, subsequently, albite-greenschist facies metamorphic assemblages. This study sheds new light on the tectonic evolution of Adria-derived metamorphic units in the Northern Apennines, by showing (a) the deep underthrusting of continental crust during continental collision and (b) rapid exhumation along ‘cold’ and nearly isothermal paths, compatible with syn-orogenic extrusion.  相似文献   

13.
The Sanbagawa metamorphic belt of southwest Japan is one of the type localities of subduction‐related high‐P metamorphism. However, variable pressure–temperature (PT) paths and metabasic assemblages have been reported for eclogite units in the region, leading to uncertainty about the subduction zone paleo‐thermal structure and associated tectonometamorphic conditions. To analyse this variation, phase equilibria modelling was applied to the three main high‐P metabasic rock types documented in the region – glaucophane eclogite, barroisite eclogite and garnet blueschist – with modelling performed over a range of P, T, bulk rock H2O and bulk rock ferric iron conditions using thermocalc . All samples are calculated to share a common steep prograde PT path to similar peak conditions of ~16–20 kbar and 560–610 °C. The results establish that regional assemblage variation is systematic, with the alternation in peak amphibole phase due to peak conditions overlapping the glaucophane–barroisite solvus, and bulk composition effects stabilizing blueschist v. eclogite facies assemblages at similar PT conditions. Furthermore, the results reveal that a steep prograde PT path is common to all eclogite units in the Sanbagawa belt, indicating that metamorphic conditions were consistent along strike. All localities are compatible with predictions made by a ridge approach model, which attributes eclogite facies metamorphism and exhumation of the Sanbagawa belt to the approach of a spreading ridge.  相似文献   

14.
Mineral assemblages in Al2O3‐rich, SiO2‐ and K2O‐poor metapelitic rocks from the western Odenwald Crystalline Complex (Variscan Mid‐German Crystalline Rise, southern Germany) include corundum, spinel, cordierite, sillimanite, garnet and staurolite. Quartz is absent from almost all samples. Therefore, the applicability of conventional geothermobarometry is very limited or even impossible. Detailed petrographic investigation on selected samples permits inference of the sequence of appearance and disappearance of several mineral assemblages. The recognition of such partial re‐equilibration stages and their associated mineral assemblages, together with mineral stabilities predicted from KFMASH pseudosections, enables the determination of the pressure‐temperature (P–T) trajectories experienced by these rocks during the Variscan metamorphism. The rocks were metamorphosed under low‐P/high‐T conditions and underwent an anti‐clockwise P–T evolution. A pressure increase from about 2 kbar to 4 ± 0.5 kbar was accompanied by heating. Peak metamorphic conditions were reached at pressures of 4 ± 0.5 kbar and temperatures of at least 640 °C, probably even higher. The retrograde evolution is characterised by near‐isobaric cooling from ≥ 640 °C to approximately 550 °C. The rocks underwent the anti‐clockwise evolution in a subduction‐related magmatic arc setting. The close spatial association of the low‐P/high‐T rocks with recently discovered metabasic eclogites in the eastern part of the Odenwald Crystalline Complex may indicate a fossil paired metamorphic belt in the Central European Variscides.  相似文献   

15.
Rocks of basic and intermediate bulk composition occur in orogenic terranes from all geological time periods and are thought to represent significant petrological components of the middle and lower continental crust. However, the former lack of appropriate thermodynamic models for silicate melt, amphibole and clinopyroxene that can be applied to such lithologies at high temperature has inhibited effective phase equilibrium modelling of their petrological evolution during amphibolite‐ and granulite facies metamorphism. In this work, we present phase diagrams calculated in the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O2 (NCKFMASHTO) compositional system for a range of natural basic and intermediate bulk compositions for conditions of 2–12 kbar and 600–1050 °C using newly parameterized activity–composition relationships detailed in a companion paper by Green et al. in this issue. Particular attention is given to mid‐ocean ridge basalt (MORB) and diorite protolith bulk compositions. Calculated subsolidus mineral assemblages in all basic and intermediate rock types are modally dominated by hornblende and plagioclase, with variable proportions of epidote, clinopyroxene, garnet, biotite, muscovite, quartz, titanite or ilmenite present at different pressures. The H2O‐saturated (wet) solidus has a negative P?T slope and occurs between ~620–690 °C at mid‐ to lower‐crustal pressures of 5–10 kbar. The lowest‐T melts generated close to the wet solidus are calculated to have granitic major‐element oxide compositions. Melting at higher temperature is attributed primarily to multivariate hydrate‐breakdown reactions involving biotite and/or hornblende. Partial melt compositions calculated at 800–1050 °C for MORB show good correlation with analysed compositions of experimental glasses produced via hydrate‐breakdown melting of natural and synthetic basic protoliths, with Niggli norms indicating that they would crystallize to trondhjemite or tonalite. Diorite is shown to be significantly more fertile than MORB and is calculated to produce high‐T melts (>800 °C) of granodioritic composition. Subsolidus and suprasolidus mineral assemblages show no significant variation between different members of the basalt family, although the P?T conditions at which orthopyroxene stabilizes, thus defining the prograde amphibolite–granulite transition, is strongly dependent on bulk‐rock oxidation state and water content. The petrological effects of open‐ and closed‐system processes on the mineral assemblages produced during prograde metamorphism and preserved during retrograde metamorphism are also examined via a case‐study analysis of a natural Archean amphibolite from the Lewisian Complex, northwest Scotland.  相似文献   

16.
The Mahneshan Metamorphic Complex (MMC) is one of the Precambrian terrains exposed in the northwest of Iran. The MMC underwent two main phases of deformation (D1 and D2) and at least two metamorphic events (M1 and M2). Critical metamorphic mineral assemblages in the metapelitic rocks testify to regional metamorphism under amphibolite‐facies conditions. The dominant metamorphic mineral assemblage in metapelitic rocks (M1) is muscovite, biotite I, Garnet I, staurolite, Andalusite I and sillimanite. Peak metamorphism took place at 600–620°C and ∼7 kbar, corresponding to a depth of ca. 24 km. This was followed by decompression during exhumation of the crustal rocks up to the surface. The decrease of temperature and pressure during exhumation produced retrograde metamorphic assemblages (M2). Secondary phases such as garnet II biotite II, Andalusite II constrain the temperature and pressure of M2 retrograde metamorphism to 520–560°C and 2.5–3.5 kbar, respectively. The geothermal gradient obtained for the peak of metamorphism is 33°C km−1, which indicates that peak metamorphism was of Barrovian type and occurred under medium‐pressure conditions. The MMC followed a ‘clockwise’ P–T path during metamorphism, consistent with thermal relaxation following tectonic thickening. The bulk chemistry of the MMC metapelites shows that their protoliths were deposited at an active continental margin. Together with the presence of palaeo‐suture zones and ophiolitic rocks around the high‐grade metamorphic rocks of the MMC, these features suggest that the Iranian Precambrian basement formed by an island‐arc type cratonization. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Exposed cross‐sections of the continental crust are a unique geological situation for crustal evolution studies, providing the possibility of deciphering the time relationships between magmatic and metamorphic events at all levels of the crust. In the cross‐section of southern and northern Calabria, U–Pb, Rb–Sr and K–Ar mineral ages of granulite facies metapelitic migmatites, peraluminous granites and amphibolite facies upper crustal gneisses provide constraints on the late‐Hercynian peak metamorphism and granitoid magmatism as well as on the post‐metamorphic cooling. Monazite from upper crustal amphibolite facies paragneisses from southern Calabria yields similar U–Pb ages (295–293±4 Ma) to those of granulite facies metamorphism in the lower crust and of intrusions of calcalkaline and metaluminous granitoids in the middle crust (300±10 Ma). Monazite and xenotime from peraluminous granites in the middle to upper crust of the same crustal section provide slightly older intrusion ages of 303–302±0.6 Ma. Zircon from a mafic to intermediate sill in the lower crust yields a lower concordia intercept age of 290±2 Ma, which may be interpreted as the minimum age for metamorphism or intrusion. U–Pb monazite ages from granulite facies migmatites and peraluminous granites of the lower and middle crust from northern Calabria (Sila) also point to a near‐synchronism of peak metamorphism and intrusion at 304–300±0.4 Ma. At the end of the granulite facies metamorphism, the lower crustal rocks were uplifted into mid‐crustal levels (10–15 km) followed by nearly isobaric slow cooling (c. 3 °C Ma?1) as indicated by muscovite and biotite K–Ar and Rb–Sr data between 210±4 and 123±1 Ma. The thermal history is therefore similar to that of the lower crust of southern Calabria. In combination with previous petrological studies addressing metamorphic textures and P–T conditions of rocks from all crustal levels, the new geochronological results are used to suggest that the thermal evolution and heat distribution in the Calabrian crust were mainly controlled by advective heat input through magmatic intrusions into all crustal levels during the late‐Hercynian orogeny.  相似文献   

18.
Eclogite facies metamorphic rocks have been discovered from the Bizan area of eastern Shikoku, Sambagawa metamorphic belt. The eclogitic jadeite–garnet glaucophane schists occur as lenticular or sheet‐like bodies in the pelitic schist matrix, with the peak mineral assemblage of garnet + glaucophane + jadeite + phengite + quartz. The jadeitic clinopyroxene (XJd 0.46–0.75) is found exclusively as inclusions in porphyroblastic garnet. The eclogite metamorphism is characterized by prograde development from epidote–blueschist to eclogite facies. Metamorphic P–T conditions estimated using pseudosection modelling are 580–600 °C and 18–20 kbar for eclogite facies. Compared with common mafic eclogites, the jadeite–garnet glaucophane schists have low CaO (4.4–4.5 wt%) and MgO (2.1–2.3 wt%) bulk‐rock compositions. The P–T– pseudosections show that low XCa bulk‐rock compositions favour the appearance of jadeite instead of omphacite under eclogite facies conditions. This is a unique example of low XCa bulk‐rock composition triggered to form jadeite at eclogite facies conditions. Two significant types of eclogitic metamorphism have been distinguished in the Sambagawa metamorphic belt, that is, a low‐T type and subsequent high‐T type eclogitic metamorphic events. The jadeite–garnet glaucophane schists experienced low‐T type eclogite facies metamorphism, and the P–T path is similar to lawsonite‐bearing eclogites recently reported from the Kotsu area in eastern Shikoku. During subduction of the oceanic plate (Izanagi plate), the hangingwall cooled gradually, and the geothermal gradient along the subduction zone progressively decreased and formed low‐T type eclogitic metamorphic rocks. A subsequent warm subduction event associated with an approaching spreading ridge caused the high‐T type eclogitic metamorphism within a single subduction zone.  相似文献   

19.
In this study, we investigate the metamorphic history of the Assynt and Gruinard blocks of the Archean Lewisian Complex, northwest Scotland, which are considered by some to represent discrete crustal terranes. For samples of mafic and intermediate rocks, phase diagrams were constructed in the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O2 (NCKFMASHTO) system using whole‐rock compositions. Our results indicate that all samples equilibrated at similar peak metamorphic conditions of ~8–10 kbar and ~900–1,000°C, consistent with field evidence for in situ partial melting and the classic interpretation of the central region of the Lewisian Complex as representing a single crustal block. Melt‐reintegration modelling was employed in order to estimate probable protolith compositions. Phase equilibria calculated for these modelled undepleted precursors match well with those determined for a subsolidus amphibolite from Gairloch in the southern region of the Lewisian Complex. Both subsolidus lithologies exhibit similar phase relations and potential melt fertility, with both expected to produce orthopyroxene‐bearing hornblende granulites, with or without garnet, at the conditions inferred for the Badcallian metamorphic peak. For fully hydrated protoliths, prograde melting is predicted to first occur at ~620°C and ~9.5 kbar, with up to 45% partial melt predicted to form at peak conditions in a closed‐system environment. Partial melts calculated for both compositions between 610 and 1,050°C are mostly trondhjemitic. Although the melt‐reintegrated granulite is predicted to produce more potassic (granitic) melts at ~700–900°C, the modelled melts are consistent with the measured compositions of felsic sheets from the central region Lewisian Complex.  相似文献   

20.
In southwest New Zealand, a suite of felsic diorite intrusions known as the Western Fiordland Orthogneiss (WFO) were emplaced into the mid to deep crust and partially recrystallized to high‐P (12 kbar) granulite facies assemblages. This study focuses on the southern most pluton within the WFO suite (Malaspina Pluton) between Doubtful and Dusky sounds. New mapping shows intrusive contacts between the Malaspina Pluton and adjacent Palaeozoic metasedimentary country rocks with a thermal aureole ~200–1000 m wide adjacent to the Malaspina Pluton in the surrounding rocks. Thermobarometry on assemblages in the aureole indicates that the Malaspina Pluton intruded the adjacent amphibolite facies rocks while they were at depths of 10–14 kbar. Similar P–T conditions are recorded in high‐P granulite facies assemblages developed locally throughout the Malaspina Pluton. Palaeozoic rocks more than ~200–1000 m from the Malaspina Pluton retain medium‐P mid‐amphibolite facies assemblages, despite having been subjected to pressures of 10–14 kbar for > 5 Myr. These observations contradict previous interpretations of the WFO Malaspina Pluton as the lower plate of a metamorphic core complex, everywhere separated from the metasedimentary rocks by a regional‐scale extensional shear zone (Doubtful Sound Shear Zone). Slow reaction kinetics, lack of available H2O, lack of widespread penetrative deformation, and cooling of the Malaspina Pluton thermal anomaly within c. 3–4 Myr likely prevented recrystallization of mid amphibolite facies assemblages outside the thermal aureole. If not for the evidence within the thermal aureole, there would be little to suggest that gneissic rocks which underlie several 100 km2 of southwest New Zealand had experienced metamorphic pressures of 10–14 kbar. Similar high‐P metamorphic events may therefore be more common than presently recognized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号