首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three-dimensional neutron and X-ray tomography reveals the textural and spatial relationship of diamonds and associated minerals in situ, in a unique suite of 17 diamondiferous eclogites. We emphasize the reporting of X-ray imaging on mantle xenoliths, which in combination with neutron imaging enables the clear identification of diamonds and interstitial metasomatic secondary minerals. In particular, neutrons are highly sensitive to hydrogen (H), allowing for the identification of OH- and H2O-bearing metasomatic minerals. The identification of metasomatic minerals allows for the delineation of distinct metasomatic pathways through the eclogite xenoliths. Diamonds are readily identified as the darkest greyscales due to their low attenuation, and are typically surrounded by secondary minerals, never in contact with primary minerals, and always confined within metasomatic pathways. The ubiquitous occurrence of diamonds in association with pathways suggests a potential genetic link. Both octahedral and dodecahedral diamonds are observed within individual xenoliths, suggesting multiple heterogeneous growth and dissolution processes at small scales. The distinct age dichotomy between eclogite xenoliths and metasomatic mineral assemblages implies that the observed textural relationship of diamonds and late-stage metasomatic pathways for this suite of 17 eclogites casts doubt on the theory that eclogitic diamonds formed billions of years ago. Diamonds are interpreted to have formed from multiple growth episodes, with the last of these episodes represented by the metasomatic assemblages observed in this study. This further indicates that eclogitic diamond inclusions may span large time scales from ancient ages (>2 Ga) all the way to the last growth event, perhaps even close to the time of kimberlite emplacement (~360 Ma), which has significant implications for age-dating of diamonds and the study of diamonds as a whole.  相似文献   

2.
For the first time, three-dimensional, high-resolution X-ray computed tomography (HRXCT) of an eclogite xenolith from Yakutia has successfully imaged diamonds and their textural relationships with coexisting minerals. Thirty (30) macrodiamonds (≥1 mm), with a total weight of just over 3 carats, for an ore grade of some 27,000 ct/ton, were found in a small (4 × 5 × 6 cm) eclogite, U51/3, from Udachnaya. Based upon 3-D imaging, the diamonds appear to be associated with zones of secondary alteration of clinopyroxene (Cpx) in the xenolith. The presence of diamonds with secondary minerals strongly suggests that the diamonds formed after the eclogite, in conjunction with meta-somatic input(s) of carbon-rich fluids. Metasomatic processes are also indicated by the non-systematic variations in Cpx inclusion chemistry in the several diamonds. The inclusions in the diamonds vary considerably in major- and trace-element chemistry within and between diamonds, and do not correspond to the minerals of the host eclogite, whose compositions are extremely homogeneous. Some Cpx inclusions possess +Eu anomalies, probably inherited from their crustal source rocks. The only consistent feature for the Cpx crystals in the inclusions is that they have higher K2O than the Cpx grains in the host.

The δ13C compositions are relatively constant at ?5% both within and between diamonds, whereas δ15N values vary from ?2.8% to ?15.8%. Within a diamond, the total N varies considerably from 15 to 285 ppm in one diamond to 103 to 1250 ppm in another. Cathodoluminescent imaging reveals extremely contorted zonations and complex growth histories in the diamonds, indicating large variations in growth environments for each diamond.

This study directly bears on the concept of diamond inclusions as time capsules for investigating the mantle of the Earth. If diamonds and their inclusions can vary so much within this one small xenolith, the significance of their compositions is a serious question that must be addressed in all diamond-inclusion endeavors.  相似文献   

3.
The Origins of Yakutian Eclogite Xenoliths   总被引:2,自引:2,他引:2       下载免费PDF全文
Owing to the association with diamonds, eclogite xenoliths havereceived disproportionate attention given their low abundancein kimberlites. Several hypotheses have been advanced for theorigin of eclogite xenoliths, from the subduction and high-pressuremelting of oceanic crust, to cumulates and liquids derived fromthe upper mantle. We have amassed a comprehensive data set,including major- and trace-element mineral chemistry, carbonisotopes in diamonds, and Rb–Sr, Sm–Nd, Re–Os,and oxygen isotopes in ultrapure mineral and whole-rock splitsfrom eclogites of the Udachnaya kimberlite pipe, Yakutia, Russia.Furthermore, eclogites from two other Yakutian kimberlite pipes,Mir and Obnazhennaya, have been studied in detail and offercontrasting images of eclogite protoliths. Relative to eclogitesfrom southern Africa and other Yakutian localities, Udachnayaeclogites are notable in the absence of chemical zoning in mineralgrains, as well as the degree of light rare earth element (LREE)depletion and unradiogenic Sr; lack of significant oxygen, sulfur,and carbon isotopic variation relative to the mantle; and intermineralradiogenic isotopic equilibration. Several of these eclogitescould be derived from ancient, recycled, oceanic crust, butmany others exhibit no evidence for an oceanic crustal protolith.The apparent lack of stable-isotope variation in the Udachnayaeclogites could be due to the antiquity of the samples and consequentlack of deep oceanic and biogenically diverse environments atthat time. Those eclogites that are interpreted to be non-recycledhave compositions characteristic of Group A eclogites from otherlocalities that also have been interpreted as being directlyfrom the mantle. At least two separate and diverse isotopicreservoirs are suggested by Nd isotopic whole-rock reconstructions.Most samples were derived from typical depleted mantle. However,two groups of three samples each indicate both enriched mantleand possible ultra-depleted mantle present beneath Yakutia duringthe late Archean and early Proterozoic. The vast majority ofeclogites studied from the Obnazhennaya pipe also exhibit characteristicsof Group A eclogites and are probably derived directly fromthe mantle. However, the eclogites from the Mir kimberlite aremore typical of other eclogites world-wide and show convincingevidence of a recycled, oceanic crustal affinity. We concurwith the late Ted Ringwood that eclogites can be formed in avariety of ways, both within the mantle and from oceanic crustalresidues. KEY WORDS: diamonds; eclogite xenoliths; isotopic composition; REE; Yakutia  相似文献   

4.
Eclogitic (E-type) and related parageneses of natural diamonds are represented by suites of diamond inclusions and xenoliths of diamondiferous eclogites. Major-element data are presented for 32 coexisting minerals forming 19 bimineralic and trimineralic inclusions from diamonds, including omphacite-orthopyroxene (1 sample), garnet-omphacite (5 samples), garnet-coesite (5 samples), omphacite-coesite (2 samples), garnet-picroilmenite (2 samples), garnet-kyanite (1 sample), omphacite-phlogopite (2 samples), and garnel-omphacite-phlogopite (1 sample). Major-element variations of coexisting minerals are typical of corresponding eclogites. Omphacite with 5.02 wt% Na2O, inter-grown with orthopyroxene with Mg# 83.7, represents the first example of a diamondiferous websterite paragenesis including Na-clinopyroxene. This indicates a broader range in mineral compositions of E-type-related websteritepyroxenite-associated diamonds than known previously. This unique websterite-pyroxenitic mineral assemblage represents a transitional paragenesis between peridotitic or ultramafic (U-type) and E-type parageneses.

Bimineralic eclogites, ilmenite eclogites, coesite + corundum + kyanite eclogites, and grospydites occur not only as sets of inclusions in diamonds but, with a few exceptions (ilmenite and coesite eclogites), also as diamondiferous eclogite xenoliths. The coesite eclogite paragenesis is a significant inclusion suite in diamonds, and was detected in about 15 diamond occurrences worldwide. It represents from 15% to 22% of all E-type diamonds in several occurrences, and thus should not be considered as rare.  相似文献   

5.
Diamonds and eclogites of the Jericho kimberlite (Northern Canada)   总被引:1,自引:1,他引:0  
We studied diamonds and barren and diamondiferous eclogite xenoliths from the Jericho kimberlite (Northern Slave craton). The majority of the diamonds are non-resorbed octahedral crystals, with moderately aggregated N (IaB < 50%, N < 300 ppm) and δ13C = −5 to −41‰. The diamonds belong to “eclogitic” (90% of the studied samples), “websteritic” (7%) and “peridotitic” (3%) assemblages. The Jericho diamonds differ from the majority of “eclogitic” diamonds worldwide in magnesian compositions of associated minerals and extremely light C isotopic compositions (δ13C = −24 to −41‰). We propose that metasomatism triggered by H2O fluids may have been involved in the diamond formation. Multiple episodes of the metasomatism and associated melt extraction of various ages are evident in Jericho eclogite xenoliths where primary garnet and clinopyroxene have been recrystallized to more magnesian minerals with higher contents of some incompatible trace elements and to hydrous secondary phases. The model is supported by the general similarity of mineral compositions in diamondiferous eclogites to those in diamond inclusions and to secondary magnesian garnet and clinopyroxene in recrystallized barren eclogites. The ultimate products of the metasomatism could be “websteritic” diamond assemblages sourced from magnesian eclogites. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Distribution of water among the main rock-forming nominally anhydrous minerals of mantle xenoliths of peridotitic and eclogitic parageneses from the Udachnaya kimberlite pipe, Yakutia, has been studied by IR spectroscopy. The spectra of all minerals exhibit vibrations attributed to hydroxyl structural defects. The content of H2O (ppm) in minerals of peridotites is as follows: 23–75 in olivine, 52–317 in orthopyroxene, 29–126 in clinopyroxene, and 0–95 in garnet. In eclogites, garnet contains up to 833 ppm H2O, and clinopyroxene, up to 1898 ppm (~ 0.19 wt.%). The obtained data and the results of previous studies of minerals of mantle xenoliths show wide variations in H2O contents both within different kimberlite provinces and within the Udachnaya kimberlite pipe. Judging from the volume ratios of mineral phases in the studied xenoliths, the water content varies over narrow ranges of values, 38–126 ppm. At the same time, the water content in the studied eclogite xenoliths is much higher and varies widely, 391–1112 ppm.  相似文献   

7.
Diamond formation from metasomatic fluids, rather than from igneous melts, remains controversial but is paramount to our understanding of diamonds' mantle origin(s). Physical and chemical properties of diamonds, their inclusions, and host eclogites from the Mir kimberlite, Yakutia, Russia form the basis for our evaluation of diamond origin. Mir eclogitic diamonds and their multiple inclusions show a definite break in time and temperature between the formation of the core zones and the rims of the diamonds. Extreme changes in chemistry for multiple diamond inclusions (DIs) between the cores and the rims cannot be accounted for by magmatic fractional crystallization. Evidence also exists for large temperature decreases (40° to 140°C) from the cores to the rims of some diamonds. The distinct changes in nitrogen contents and aggregation states from cores to rims of diamonds would appear to reflect different residence times for these portions of the diamonds in the mantle- i.e., formation of cores and rims at vastly different times (e.g., 2 Gy). Many of the mineral-chemical characteristics, including C and N isotopes and N aggregation states of the diamond, can best be explained by crystallization of the diamonds after formation of the eclogite host. This suggests that the formation of the eclogite and the nucleation and growth of some diamonds are not coeval and possibly not cogenetic.

Most diamondiferous eclogite xenoliths probably have never experienced a major magmatic episode (i.e., complete melt stage) after subduction of their crustal protoliths into the mantle. Carbon isotopes in diamond, sulfur isotopes from sulfide DIs, and oxygen isotopes from eclogite minerals all point to crustal protoliths for many eclogites.

All of the factors above, taken as a whole, indicate that many eclogitic diamonds are the result of petrogenesis by metasomatism over a prolonged period of time. Introduction of metasomatic fluids facilitates the precipitation of the diamonds, either in tolo or as rims on previously formed diamonds. Inasmuch as some eclogites are considered to be igneous in origine.g., Group-A eclogites of Taylor and Neal (1989)-it is entirely possible that these eclogites may contain truly igneous diamonds. However, even some of these diamonds may have later metasomatic overgrowths.  相似文献   

8.
Olivine, orthopyroxene and garnet grains belonging to the peridotitic suite of mineral inclusions in natural diamonds typically show compositions poorer in Ca and Al and richer in Mg and Cr than the same minerals in peridotite nodules in kimberlite. Other features suggest the crystallisation of diamonds from magmas of kimberlitic affinities, and it is suggested that the genesis of peridotitic suite diamonds is linked with that of a CO2-bearing magma. It is shown that the generation of kimberlitic magma from common garnet-peridotite (with 5 wt.% clinopyroxene) in the presence of CO2 may rapidly remove by melting all Ca-rich solid phases (clinopyroxene and/or carbonate). Further melting may form liquids in equilibrium with olivine, orthopyroxene, and garnet with the distinctive compositions of the diamond inclusions. The amount of melting and CO2 necessary for the loss of clinopyroxene (and/or carbonate) are estimated at approximately 5.0 wt.% and 0.5 wt.% respectively.  相似文献   

9.
The first results of study of minerals and diamonds of diamond-bearing eclogites from kimberlites of the Yubileinaya pipe with a variable percent amount of clinopyroxene and garnet are presented. Samples with a garnet content from 30 to 90% of the xenolith volume are dominant among the round to oval xenoliths with diamonds. Five eclogite samples contain grains of accessory rutile, as well as corundum and kyanite. Some samples host two or more diamond crystals.  相似文献   

10.
Mineral inclusions in diamonds from the Sputnik kimberlite pipe, Yakutia   总被引:9,自引:0,他引:9  
The Sputnik kimberlite pipe is a small “satellite” of the larger Mir pipe in central Yakutia (Sakha), Russia. Study of 38 large diamonds (0.7-4.9 carats) showed that nine contain inclusions of the eclogitic paragenesis, while the remainder contain inclusions of the peridotitic paragenesis, or of uncertain paragenesis. The peridotitic inclusion suite comprises olivine, enstatite, Cr-diopside, chromite, Cr-pyrope garnet (both lherzolitic and harzburgitic), ilmenite, Ni-rich sulfide and a Ti-Cr-Fe-Mg-Sr-K phase of the lindsleyite-mathiasite (LIMA) series. The eclogitic inclusion suite comprises omphacite, garnet, Ni-poor sulfide, phlogopite and rutile. Peridotitic ilmenite inclusions have high Mg, Cr and Ni contents and high Nb/Zr ratios; they may be related to metasomatic ilmenites known from peridotite xenoliths in kimberlite. Eclogitic phlogopite is intergrown with omphacite, coexists with garnet, and has an unusually high TiO2 content. Comparison with inclusions in diamonds from Mir shows general similarities, but differences in details of trace-element patterns. Large compositional variations among inclusions of one phase (olivine, garnet, chromite) within single diamonds indicate that the chemical environment of diamond crystallisation changed rapidly relative to diamond growth rates in many cases. P-T conditions of formation were calculated from multiphase inclusions and from trace element geothermobarometry of single inclusions. The geotherm at the time of diamond formation was near a 35 mW/m2 conductive model; that is indistinguishable from the Paleozoic geotherm derived by studies of xenoliths and concentrate minerals from Mir. A range of Ni temperatures between garnet inclusions in single diamonds from both Mir and Sputnik suggests that many of the diamonds grew during thermal events affecting a relatively narrow depth range of the lithosphere, within the diamond stability field. The minor differences between inclusions in Mir and Sputnik may reflect lateral heterogeneity in the upper mantle.  相似文献   

11.

The first studies of diamonds in eclogitic xenoliths from the Komsomolskaya kimberlite pipe are described. Among round and oval-shaped xenoliths with diamond ingrowths, samples with a garnet content of 40–90% of the xenolith volume dominate. Two eclogite samples contain grains of accessory rutile; a kyanite sample is also revealed. Certain samples contain two or more crystals of diamonds. Diamonds with an octahedral habit and crystals with transitional habits, which belong to an octahedral-rhombic dodecahedral row, dominate in eclogites; there are many variety VIII aggregates. A high concentration of structural nitrogen, commonly in the A form, was registered in most of the crystals. Diamonds with a small content of nitrogen impurities, 40–67% in the B1 form, are present in a number of xenoliths. The calculated temperatures of the formation of eclogitic xenoliths is 1100–1300°C. Diversity in the impurity compositions of diamonds in the same xenolith shows that these diamonds were formed at various times and in different settings. The diamond position in xenoliths, the various level of nitrogen aggregation in the diamonds, and a number of other factors point to the later formation of the diamonds, as compared to minerals of eclogites, from fluid or fluid-melts in the process of metasomatosis.

  相似文献   

12.
Magnesium-rich, calcium-poor, lilac coloured garnets have been found in the heavy mineral concentrate of the Finsch kimberlite pipe. Some of these garnets contain sufficient chromium to place them within the compositional field of the garnets previously only reported as inclusions in diamonds.These lilac garnets are considered to have formed in equilibrium with the minerals found as inclusions in diamond and hence with the diamond itself. Their presence in the kimberlite should be diagnostic of the presence of diamond, but it is not known if there is any quantitative relationship. The garnets are considered to have a deeper provenance than the magnesian garnets commonly found as xenocrysts in kimberlite and in garnet peridotite xenoliths. The mantle composition at their depths of origin must be more refractory in nature than the peridotite xenoliths. The garnets having a higher magnesium and chromium content, a higher Mg/Fe ratio and lower calcium, aluminium and titanium than those found in the xenoliths.  相似文献   

13.
A generalized diagram was constructed for the compositions of multicomponent heterogeneous parental media for diamonds of kimberlite deposits on the basis of the mantle carbonatite concept of diamond genesis. The boundary compositions on the diagram of the parental medium are defined by the components of minerals of the peridotite and eclogite parageneses, mantle carbonatites, carbon, and the components of volatile compounds of the C-O-H system and accessory phases, both soluble (chlorides, phosphates, and others) and insoluble (sulfides and others) in carbonate-silicate melts. This corresponds to the compositions of minerals, melts, and volatile components from primary inclusions in natural diamonds, as well as experimental estimations of their phase relations. Growth media for most natural diamonds are dominated by completely miscible carbonate-silicate melts with dissolved elemental carbon. The boundary compositions for diamond formation (concentration barriers of diamond nucleation) in the cases of peridotite-carbonate and eclogite-carbonate melts correspond to 30 wt % peridotite and 35 wt % eclogite; i.e., they lie in the carbonatite concentration range. Phase relations were experimentally investigated at 7 GPa for the melting of the multicomponent heterogeneous system eclogite-carbonatite-sulfide-diamond with a composition close to the parental medium under the conditions of the eclogite paragenesis. As a result, “the diagram of syngenesis” was constructed for diamond, as well as paragenetic and xenogenic mineral phases. Curves of diamond solubility in completely miscible carbonate-silicate and sulfide melts and their relationships with the boundaries of the fields of carbonate-silicate and sulfide phases were determined. This allowed us to establish the physicochemical mechanism of natural diamond formation and the P-T conditions of formation of paragenetic silicate and carbonate minerals and coexistence of xenogenic sulfide minerals and melts. Physicochemical conditions of the capture of paragenetic and xenogenic phases by growing diamonds were revealed. Based on the mantle carbonatite concept of diamond genesis and experimental data, a genetic classification of primary inclusions in natural diamond was proposed. The phase diagrams of syngenesis of diamond, paragenetic, and xenogenic phases provide a basis for the analysis of the physicochemical history of diamond formation in carbonatite magma chambers and allow us to approach the formation of such chambers in the mantle material of the Earth.  相似文献   

14.
《International Geology Review》2012,54(13):1658-1667
The identification of syngenetic inclusions in diamond (i.e. inclusions of minerals that crystallized at the same time and by the same genesis as their host) has long been of paramount importance in diamond studies. However, the widespread assumption that many or most inclusions in diamonds are syngenetic is based on qualitative morphological criteria and few direct measurements. In order to provide statistically significant information on inclusion–host genetic relations for at least one kimberlite, we have determined the crystallographic orientations of 43 olivine inclusions with diamond-imposed morphology, a feature generally interpreted to indicate syngenesis, in 20 diamonds from the Udachnaya kimberlite (Siberia). Our unprecedented large data set indicates no overall preferred orientation of these olivines in diamond. However, multiple inclusions within a single diamond frequently exhibit similar orientations, implying that they were derived from original single monocrystals. Therefore, regardless of the possible chemical re-equilibration during diamond-forming processes, at least some of the olivines may have existed prior to the diamond (i.e. they are protogenetic). Our results imply that a diamond-imposed morphology alone cannot be considered as unequivocal proof of syngenicity of mineral inclusions in diamonds.  相似文献   

15.
Z.V. Spetsius   《Lithos》2004,77(1-4):525-538
Highly aluminous xenoliths include kyanite-, corundum- and coesite-bearing eclogites, grospydites and alkremites. These xenoliths are present in different kimberlites of Yakutia but have most often been found in Udachnaya and other pipes of the central Daldyn–Alakitsky region. Kimberlites of this field also contain eclogite-like xenoliths with kyanite and corundum that originate in the lower crust or the lower crust–upper mantle transition zone. Petrographic study shows that two rock groups of different structure and chemistry can be distinguished among kyanite eclogites: fine- to medium-grained with mosaic structure and coarse-grained with cataclastic structure. Eclogites with mosaic structure are characterized by the occurrences of symplectite intergrowths of garnet with kyanite, clinopyroxene and coesite; only in this group do grospydites occur. In cataclastic eclogites, coarse-grained coesite occurs, corresponding in size to other rock-forming minerals. Highly aluminous xenoliths differ from bimineralic eclogites in their high content of Al2O3 and total alkali content. Coesite-bearing varieties are characterized by low MgO content and higher Na/K and Fe2+/Fe3+ ratios, as well as high contents of Na2O. Geochemical peculiarities of kyanite eclogites and other rocks are exhibited by a sloping chondrite-normalized distribution of rare earth elements (REE) in garnets and low Y/Zr ratio, in contrast to bimineralic rocks. Coesite is found in more than 20 kyanite eclogites and grospydites from Udachnaya. Grospydites with coesite from Zagadochnaya pipe are described. Three varieties of coesite in these rocks are distinguished: (a) subhedral grains with size of 1.0–3.0 mm; (b) inclusions in the rock-forming minerals; (c) sub-graphic intergrowths with garnet. The presence and preservation of coesite in eclogites indicate both high pressure of formation (more than 30 kbar) and set a number of constraints on the timing of xenolith cooling during entrainment and transport to the surface. Different ways of formation of the highly aluminous eclogites are discussed. Petrographic observations and geochemistry suggest that some highly aluminous rocks have formed as a result of crystallization of anorthosite rocks in abyssal conditions. δ18O-estimations and other petrologic evidence point out the possible origin of some of these xenoliths as the result of subduction of oceanic crust. Diamondiferous samples have been found in all varieties except alkremites. Usually these eclogites contain cubic or coated diamonds. However, two sample corundum-bearing eclogites with diamonds from the Udachnaya pipe contain octahedra that show evidence of resorption.  相似文献   

16.
Major-element and REE compositions of 14 diamondiferous eclogites from the Udachnaya kimberlite in Yakutia, Siberia have been determined by electron microprobe and secondary ion mass spectrometer (SIMS). Based on previous clinopyroxene classification schemes (e.g., Taylor and Neal 1989), all of these eclogite xenoliths belong to Group B/C, although some of the garnet compositions and mineral REE abundances are inconsistent with the indicated groups. This demonstrates the inadequacy of the classification scheme based on African eclogites for application to Siberian samples. Because of the coarse grain size of the Udachnaya nodules, meaningful modal abundances could not be obtained. However, reconstructed REE compositions using various garnet: clinopyroxene ratios demonstrate relative insensitivity to changes in mode for common eclogitic assemblages. Many of these reconstructed REE compositions show LREE depletions. Some depletions are consistent with an origin (either directly or through partial melting) as normal or Type-I ocean floor basalt. Others, however, require material of eclogitic or pyroxenitic affinities to undergo partial melting; this facilitates the depletion of LREE while leaving the HREE at nearly original levels. Many of the eclogites of South Africa are consistent with a protolith of anomalous or Type II ocean floor basalt. This fundamental difference between the two regions is the likely cause of the inconsistencies with the chemicallybased classification.  相似文献   

17.
Clinopyroxene inclusions in diamond contain elevated potassium contents and can potentially be dated by 40Ar/39Ar techniques. Previous 40Ar/39Ar studies of clinopyroxene inclusions contained in cleaved diamonds have suggested that argon, produced from the decay of potassium prior to eruption of the host kimberlite magma, diffuses to the diamond/clinopyroxene interface under mantle conditions. After intrusion and cooling below the closure temperature for argon diffusion, radiogenic argon is retained by the clinopyroxene inclusions. This behaviour complicates efforts to date diamond crystallisation events; however, extraction of inclusions from their host diamond should induce loss of all interface argon, thus raising the possibility of determining kimberlite emplacement ages. This possibility has important implications for constraining the source localities of detrital diamond deposits worldwide, with concomitant benefits to diamond exploration. To investigate this premise, 40Ar/39Ar laser probe results are presented for single clinopyroxene inclusions extracted from a total of fifteen gem-quality diamonds from the Mbuji-Mayi kimberlite in the Democratic Republic of Congo, and the Jwaneng and Orapa kimberlites in Botswana.Initial fusion analyses of clinopyroxene inclusions from Mbuji-Mayi diamonds yielded ages older than the time of host kimberlite intrusion, indicating partial retention of extraneous argon by the clinopyroxene inclusions themselves. Step-heating analyses of clinopyroxene inclusions from Orapa and Jwaneng diamonds produced older apparent ages from lower temperature steps and the ‘rim’ fragment of one Orapa inclusion. High temperature (fusion) analyses yielded younger apparent ages, commonly approaching the times of host kimberlite eruption. Total-gas integrated 40Ar/39Ar ages are mostly intermediate between the times of inferred diamond crystallisation and kimberlite eruption. Ca/K ratios for each sample are uniform across step-heating increments, indicating that age variations are not due to compositional, mineralogical or alteration effects. The favoured explanation for these results is partial retention of extraneous argon in primary and/or secondary fluid inclusions. This component is then preferentially outgassed in lower temperature heating steps, yielding older apparent ages.The partial retention of extraneous argon by clinopyroxene inclusions clearly restricts efforts to determine source ages for detrital diamond deposits. Results from individual samples must necessarily be interpreted as maximum source emplacement ages. Nonetheless, step-heating analyses of several clinopyroxene inclusions from a detrital diamond deposit may provide reasonable constraints on the ages of source kimberlites/lamproites; however minor age populations as well as those closely spaced in time, may be difficult to resolve.It is argued that the majority of older 40Ar/39Ar ages can be explained in terms of the partial retention of inherited argon, produced between the times of diamond crystallisation and kimberlite eruption. Although the presence of excess argon in some clinopyroxene inclusions cannot be excluded, available evidence (e.g. no excess argon in Premier eclogitic inclusions or potassium-poor inclusions) suggests that this is not a factor for most samples. Three possible mechanistic models are forwarded to account for the uptake of inherited (± excess) argon in fluid inclusions. The first envisages negligible interface porosity and diffusion of extraneous argon exclusively to primary fluid inclusions, which subsequently partially decrepitated during eruption, causing accumulation of argon at the diamond/clinopyroxene interface. The second model permits diffusive loss of extraneous argon to both the interface region and primary fluid inclusions. The third involves diffusion of extraneous argon to the interface region, with later entrapment of some interface argon in secondary fluid inclusions, produced by fracture/annealing processes active during eruption. The first model can account for all 40Ar/39Ar results, whereas the latter two mechanisms require the presence of an excess argon component to explain older integrated ages (up to 2.9 Ga) from two Jwaneng samples. Excess argon contamination would compromise efforts to determine diamond genesis ages using the 40Ar/39Ar dating technique. However, if the first model is valid, then the older 40Ar/39Ar integrated ages support previous Re-Os age results for the crystallisation of Jwaneng diamonds.  相似文献   

18.
Diamonds: time capsules from the Siberian Mantle   总被引:1,自引:0,他引:1  
Diamonds are thought to be “time capsules” from the Earth's mantle. However, by themselves, consisting of nearly pure carbon, diamonds provide little geochemical information about their conditions of formation and the nature of their mantle hosts. This obstacle to studying the origin of diamonds and their hosts can be overcome by using two main approaches that focus on studying: (1) the rocks that contain diamonds, i.e., diamondiferous xenoliths; and (2) mineral inclusions within the diamonds, the time capsule's little treasures, if you will. Diamondiferous xenoliths, their diamonds, and mineral inclusions within the diamonds are the subject of this review, focusing on studies of samples from the Yakutian kimberlites in the Siberian Platform.Studies of diamondiferous eclogite xenoliths significantly enhance our understanding of the complex petrogenesis of this important group of rocks and their diamonds. Such studies involve various geochemical and petrological investigations of these eclogites, including major and trace-element, radiogenic as well as stable isotopic analyses of whole rocks and minerals. The results from these studies have clearly established that the Group A-C eclogites originate from subduction of ancient oceanic crust. This theory is probably applicable worldwide.Within the last several years, our research group at Tennessee has undertaken the systematic dissection (pull apart) of diamondiferous eclogites from Siberia, consisting of the following steps: (1) high-resolution computed X-ray tomography of the xenoliths to produce 3D images that relate the minerals of the xenoliths to their diamonds; (2) detailed dissection of the entire xenolith to reveal the diamonds inside, followed by characterization of the setting of the diamonds within their enclosing minerals; and (3) extraction of diamonds from the xenolith for further investigation of the diamonds and their inclusions. In this last step, it is important that the nature and relative positions of the diamond inclusions are carefully noted in order to maximize the number of inclusions that can be exposed simultaneously on one polished surface. In this modus operandi, cathodoluminescence imaging, plus FTIR/N aggregation and C/N isotopic analyses are performed on polished diamond surfaces to reveal their internal growth zones and the spatial relationship of the mineral inclusions to these zones.Knowledge gained by such detailed, albeit work-intensive, studies continues to add immensely to the constantly evolving models of the origin of diamonds and their host rocks in the Earth's mantle, as well as to lithospheric stability models in cratonic areas. Multiple lines of evidence indicate the ultimate crustal origin for the majority of mantle eclogites. Similar pieces of evidence, particularly from δ13C in P-type diamonds and δ18O in peridotitic garnets lead to the suggestion that at least some of the mantle peridotites, including diamondiferous ones, as well as inclusions in P-type diamonds, may have had a crustal protolith as well.  相似文献   

19.
A garnet-clinopyroxene barometer is proposed for mantle eclogites on the basis of the Ca-Tscher-mack (CaTs) solubility in clinopyroxene coexisting with garnet. This barometer permits estimation of P-T conditions for garnet-clinopyroxene equilibration in the range 650°C ≤ T ≤ 1700°C and 20 ≤ P ≤ 70 kbar, with a total uncertainty of 19%. This model is applicable to pyroxenes that are sodium rich (i.e., have high jadeite contents). Application of this barometer results in high P-T estimates for Monastery and Argyle diamond inclusions. Estimates also are lower for the host Yakutian eclogites than for the diamonds included in them. This suggests differences in re-equilibration between the diamond inclusions and their host xenoliths. The results suggest that eclogite equilibration in the mantle occurs at depths from 60 to 230 km, characterized by two main types of geothermal gradients, lying close to established peridotite geotherms (Boyd, 1973).  相似文献   

20.
P. Peltonen  K. A. Kinnunen  H. Huhma 《Lithos》2002,63(3-4):151-164
Diamondiferous Group A eclogites constitute a minor portion of the mantle-derived xenoliths in the eastern Finland kimberlites. They have been derived from the depth interval 150–230 km where they are inferred to occur as thin layers or small pods within coarse-grained garnet peridotites. The chemical and isotopic composition of minerals suggest that they represent (Proterozoic?) mantle-derived melts or cumulates rather than subducted oceanic lithosphere. During magma ascent and emplacement of the kimberlites, the eclogite xenoliths were mechanically and chemically rounded judging from the types of surface markings. In addition, those octahedral crystal faces of diamonds that were partially exposed from the rounded eclogite xenolith became covered by trigons and overlain by microlamination due to their reaction with the kimberlite magma. The diamonds bear evidence of pervasive plastic deformation which is not, however, evident in the eclogite host. This suggests that annealing at ambient lithospheric temperatures has effectively recrystallised the silicates while the diamond has retained its lattice imperfections and thus still has the potential to yield information about ancient mantle deformation. One of our samples is estimated to contain approximately 90,000 ct/ton diamond implying that some diamonds occur within very high-grade pods or thin seams in the lithospheric mantle. To our knowledge, this is one of the most diamondiferous samples described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号