首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
This paper describes the application and characteristics of a new net for crack statistics. The net, here called transmission net or “u-net” (“Übertragungsnetz”, “Ü-Netz”) is used in combination with a transmission table or “u-table” (“Übertragungstabelle”, “Ü-Tabelle”). Its purpose is to obtain a sphere of crack locations from a series of cracks, having been measured according to strike and inclination.

The “u-net” is composed of a grid subdivided into degrees or degree-grid (“Gradnetz”) and an equal-area-grid (“flächengleiches Netz”). Having replaced the direction σ of strike by its normal δ, the cracks are registered into the meshes of the degree-grid and are there counted. Then they are transmitted into the equal-area-grid according to the percent values of the u-table. From the pattern of frequency numbers (“Häufigkeitszahlen”) in the equal-area-grid the sphere of crack locations is obtained.

Particular specifications regulate the procedure for special measure values, i.e., those of the integral multiples of 5°, especially the angles of inclination τ = 0° and τ = 90° (see 1.4). With greater inaccuracies in measurements, one changes, by means of a given table (see Table V), to a degree-grid of 10°. With very small inaccuracies, on the other hand, the procedure may be simplified, the degree-grid becoming unnecessary (see 1.5). The meshes near the centre, being too long, may be avoided by an additional circle (“Zusatzkreis”—see 1.3).

The “u-net” was constructed in such a way that the spheres of crack locations report the real frequency distribution at all times, free from systematic errors. This is achieved by the method that all calculations follow the principle of area equality or area proportionality on the hemisphere (see 2.1). The procedure using the “u-net” can be adapted to differential accuracies of measuring. It is especially suitable for large numbers of cracks; it is simple in calculation and may easily be programmed for digital computers. Thus the “u-net” is advantageous for all applications in which a large number of cracks has to be dealt with. Such applications are very frequent in rock mechanics, in engineering geology for the purpose of foundation of large hydraulic buildings (dams, caverns), in petrography, tectonics and in geophysical investigations such as the determination of crack structures with a view to explaining micromagnetic occurrences, for instance. Furthermore, the “u-net” is applicable not only to crack statistics but also to other similar statistical methods, e.g., to the statistics of cristal axes or to geographic frequency analyses.  相似文献   


2.
Kazuo Hoshino   《Engineering Geology》1993,35(3-4):199-205
Japan is located at the boundary between three continental and oceanic plates, and there is a great variety and complexity of geological features as a result of tectonic activities. The possibility of excavating large underground tunnels in the seemingly “fragile” rocks in orogenic areas was considered as a national project for the underground storage of petroleum. One hundred and seventy sites in 57 areas were selected based on a comprehensive survey over the whole country. After a successful experiment with a test tunnel, 112 m long and 250 m2 in cross-section area, excavated in Cretaceous granite, three sites in granites and pyroclastic rocks were selected for construction. The largest of these storage tunnels is 550 m in length and20 × 30 m in cross-section.

Before construction, a detailed survey of the subsurface geology was carried out, taking into consideration the structural geology, the mechanical properties of the rocks and the hydrogeology. It was concluded that even in active orogenic areas, there are many suitable sites for large underground excavations and that these can be detected by detailed, planned surveys.  相似文献   


3.
John Morgan 《Tectonophysics》1994,230(3-4):181-198
A method is outlined for calculating three-dimensional finite strain in physical models of geological structures containing passive strain markers. This method makes it possible to determine the three-dimensional strain pattern in models of structures that lack any of the types of symmetry (such as that imparted by cylindrical folding) that simplified calculations in previous work. The strain markers in the new method are in the shape of stubby rectangular prisms or cubes. These form a three-dimensional grid or array occupying each of the active layers in a model (e.g., for a simple two-layer gravitationally unstable system, one grid for the overburden layer and one for the buoyant layer). Each of the grids can be described by positions of three families of “strain marker surfaces”, which are contacts between layers of strain markers.

After deformation, the model is serial-sectioned horizontally and the traces of the strain marker surfaces on the sections are digitized. The strain state is calculated at each of several hundred points arranged in a three-dimensional “output grid” extending throughout the mechanically active part of the model. An interpolation procedure is used to estimate the spacing and orientation of the strain marker surfaces in the vicinity of each of the output grid points. The following quantities are determined for each of the three families of strain marker surfaces:

1. (1) the local horizontal orientation of the strain marker surfaces;

2. (2) the local spacing of the surfaces; and

3. (3) the local inclination of the surfaces, calculated from their change in position from the serial section above, to the serial section below, the output grid point.

This information is used to generate a parallelepiped representing the strain marker geometry in the neighbourhood of the output grid point. The edges of the parallelepiped are equivalent to the coefficients of the strain matrix, from which the three principal strain magnitudes and orientations are readily derived.  相似文献   


4.
The island of Hokkaido, Japan, is subdivided into nineteen regions on the basis of regional geology and landslide distribution. Four major geologic zones characterize these regions, as follows: (1) Volcanic Rock Zone, (2) “Green Tuff” Zone, (3) Mudstone Zone, and (4) Serpentinite “Green Rock” Zone. Each zone is marked by landslides of a distinctive type. In addition, we have analyzed the relationship between landslide distribution and geologic structure for several areas.  相似文献   

5.
在全面收集地质和工程勘察资料基础上,系统梳理了成都市地下空间资源综合利用需要防范关注的7类地质问题以及需要统筹保护的4类地质资源。根据城市地下空间资源综合利用约束性地质要素(地质问题、地质资源)和地质结构在垂向上的差异,将成都市0~200 m地下空间划分为0~30 m、30~60 m、60~100 m、100~200 m 4个层位,在此基础上,提出了成都市地下空间分区、分层开发利用建议,编制了《支撑服务成都市地下空间资源综合利用地质环境图集》。图集范围覆盖成都市中心城区、高新西区、高新南区、国际生物城、天府新区成都直管区、天府空港新城、简州新城、淮州新城等重点地区,包括39张图件和1个地质调查报告。图集为成都市城市地下空间综合利用、城市空间优化拓展、城市功能品质提升以及国土空间开发、空间转型升级和城市集约、绿色、可持续发展提供了地质依据,对于全国其他城市开展同类图集编制具有示范和借鉴意义。  相似文献   

6.
J.Victor Owen   《Lithos》1993,29(3-4):217-233
Mineralogical reaction-zones developed between mafic gneiss (amphibolite) and metapelite reveal the role of cm-scale metasomatism during amphibolite-facies metamorphism of the Port-aux-Basques gneiss complex (PBGC). Ionic diffusion between mafic and pelitic layers led to the development of 1–3 cm wide, schistose, biotite + garnet-rich (Type 1) reaction-zones at the margins of mafic layers, and/or the crystallization of poikiloblastic hornblende within a garnet- and biotite-depleted (Type 2) reaction-zone up to 20 cm wide within nearby paragneiss. Garnet-biotite thermometry of the Type 1 reaction-zones indicates Tmax of c. 560–645°C at a pressure of c. 6 kbar constrained by “GASP” and “GRAIL” subassemblages in the host rock.

Compared to the “unaltered” amphibolite, Type 1 reaction-zones are enriched in K, Rb and Ba, and depleted in Ca and Sr; compared to the “unaltered” metapelite, Type 2 reaction-zones show opposite trends: they are depleted in K, Rb and Ba, and enriched in Ca and Sr. This indicates that the formation of the reaction-zones involved the exchange of K, Ca and related trace elements in opposite directions across the amphibolite/paragneiss interface, and that the system was approximately closed to these components where both reaction-zones are present.  相似文献   


7.
Aoki, K. and Shiogama, Y., 1993. Geoengineering techniques used in the construction of underground openings in jointed rocks. In: M. Langer, K. Hoshino and K. Aoki (Editors), Engineering Geology in the Utilization of Underground Space.Eng. Geol., 35: 167–173.

Examples of underground openings used for pumped storage hydroelectric power stations and storage facilities for crude oil in Japan are described. In these examples the observational construction technique is important to compensate for missing data in the preliminary surveys. Some new drilling and assessment techniques that have been developed are also introduced.  相似文献   


8.
“Lower-crustal suite” xenoliths occur in “on-craton” and “off-craton” kimberlites located across the south-western margin of the Kaapvaal craton, southern Africa.

Rock types include mafic granulite (plagioclase-bearing assemblages), eclogite (plagioclase-absent assemblages with omphacitic clinopyroxene) and garnet pyroxenite (“orthopyroxene-bearing eclogite”). The mafic granulites are subdivided into three groups: garnet granulites (cpx + grt + plag + qtz); two pyroxene garnet granulites (cpx + opx + grt + plag); kyanite granulites (cpx + grt + ky + plag + qtz). Reaction microstructures preserved in many of the granulite xenoliths involve the breakdown of plagioclase by a combination of reactions: (1) cpx + plag → grt + qtz; (2) plag → grt + ky + qtz; (3) plag → cpx (jd-rich) + qtz. Compositional zoning in minerals associated with these reactions records the continuous transition from granulite facies mineral assemblages and pressure (P) — temperature (T) conditions to those of eclogite facies.

Two distinct P-T arrays are produced: (1) “off-craton” granulites away from the craton margin define a trend from 680 °C, 7.5 kbar to 850 °C, 12 kbar; (2) granulite xenoliths from kimberlites near the craton margin and “on-craton” granulites produce a trend with similar geothermal gradient but displaced to lower T by ˜ 100 °C. Both P-T fields define higher geothermal gradients than the model steady state conductive continental geotherm (40 mWm2) and are not consistent with the paleogeotherm constructed from mantle-derived garnet peridotite xenoliths.

A model involving intrusion of basic magmas around the crust/mantle boundary followed by isobaric cooling is proposed to explain the thermal history of the lower crust beneath the craton margin. The model is consistent with the thermal evolution of the exposed Namaqua-Natal mobile belt low-pressure granulites and the addition of material from the mantle during the Namaqua thermal event (c. 1150 Ma). The xenolith P-T arrays are not interpreted as representing paleogeotherms at the time of entrainment in the host kimberlite. They most likely record P-T conditions “frozen-in” during various stages of the tectonic juxtaposition of the Namaqua Mobile Belt with the Kaapvaal craton.  相似文献   


9.
This paper reports the integrated application of petrographic and Sm–Nd isotopic analyses for studying the provenance of the Neoproterozoic Maricá Formation, southern Brazil. This unit encompasses sedimentary rocks of fluvial and marine affiliations. In the lower fluvial succession, sandstones plot in the “craton interior” and “transitional continental” fields of the QFL diagram. Chemical weathering probably caused the decrease of the 147Sm/144Nd ratios to 0.0826 and 0.0960, consequently lowering originally > 2.0 Ga TDM ages to 1.76 and 1.81 Ga. 143Nd/144Nd ratios are also low (0.511521 to 0.511633), corresponding to negative εNd present-day values (− 21.8 and − 19.6). In the intermediate marine succession, sandstones plot in the “dissected arc” field, reflecting the input of andesitic clasts. Siltstones and shales reveal low 143Nd/144Nd ratios (0.511429 to 0.511710), εNd values of − 18.1 and − 23.6, and TDM ages of 2.16 and 2.37 Ga. Sandstones of the upper fluvial succession have “dissected arc” and “recycled orogen” provenance. 143Nd/144Nd isotopic ratios are also relatively low, from 0.511487 to 0.511560, corresponding to εNd values of − 22.4 and − 21.0 and TDM of 2.07 Ga. A uniform granite–gneissic basement block of Paleoproterozoic age, with subordinate volcanic rocks, is suggested as the main sediment source of the Maricá Formation.  相似文献   

10.
M. Langer 《Engineering Geology》1993,34(3-4):159-167
The problem of waste disposal in Germany has been solved by using a combination of above-ground and underground disposal. Site selection criteria and precise criteria for the performance assessment of various types of waste disposal are available. In view of long-term safety of disposal, it is necessary to include geological and hydrogeological viewpoints in addition to purely engineering viewpoints.

In particular, the geotechnical site-specific safety assessment is described, as defined by the government in “Technical Regulations on Wastes” (TA-Abfall) in the section “Underground Disposal”. This safety assessment must cover the entire system comprising waste, cavern/mine and surrounding rock. For this purpose geo-mechanical models have to be developed.

According to the multi-barrier principle, the geological setting must be able to contribute significantly to isolation of the waste over longer periods. The assessment of the integrity of the geological barrier can only be performed by making calculations with validated geomechanical models.

Various engineering geological data are required for the selection of a site, for the design and construction of a repository, and for a safety analysis for the post-operational phase. These data can only be attained by the execution of a comprehensive site-specific geomechanical exploration and investigation program. The planning and design of an underground repository in rock salt layers are described, as an example for the various steps of this type of safety assessment.  相似文献   


11.
A.J. Vroman 《Tectonophysics》1981,80(1-4):271-283
The formation of the major rift-valleys is proposed to have been triggered off by the E—W oriented tensional “wave” caused by the slow rotation of the equatorial bulge passing as a stretching hoop through the Earth (Paleozoic—Mesozoic). This ‘wave’ follows the wandering of the polar axis through a great circle (e.g. Creer et al., 1969). The polar wandering is regarded as the readjustment of the Earth's rotational instability caused by the growth of a “weight” fixed on the surface of the Earth and endeavouring to increase its moment of inertia until the weight rotates on the new equator (Gold, 1950). This weight, which must topple the Earth through its fixed spacial axis of rotation, may be slowly developing Pangea. The “wave” of E—W tension is imposed on zones already under E—W tension, e.g., crests of N—S running welts, alias “craton ridges”. The intruding asthenosphere expands the crests and fractures them along tensional rift-valleys. These rifts may develop as spreading centers by gliding of the plates over a lubricating basalt magma.

The idea proposed by R. Schweickert (pers. commun., 1979) that the lithosphere is decoupled from the asthenosphere to an extent that the shell may rotate as a separate unit (as a means to explain how fixed plumes move in unison under the “roll” of the lithosphere) is dismissed. The subducted slabs act as braking flaps and cannot overcome the friction against the asthenosphere. The “roll” would be too young (50 m.y.), because the polar wandering according to Creer is much older.  相似文献   


12.
Flood stories in the Hebrew Bible and the Koran appear to be derived from earlier flood stories like those in the Gilgamesh Epic and still earlier in the Atrahasis. All would have their source from floods of the Tigris and Euphrates rivers.

The Gilgamesh Epic magnifies the catastrophe by having the flood begin with winds, lightning, and a shattering of the earth, or earthquake. Elsewhere in Gilgamesh, an earthquake can be shown to have produced pits and chasms along with gushing of water. It is commonly observed that earthquake shaking causes water to gush from the ground and leaves pits and open fissures. The process is known as soil liquefaction. Earthquake is also a possible explanation for the verse “all the fountains of the great deep (were) broken up” that began the Flood in Genesis. Traditionally, the “great deep” was the ocean bottom. A more recent translation substitutes “burst” for “broken up” in describing the fountains, suggesting that they erupted at the ground surface and were caused by an earthquake with soil liquefaction. Another relation between soil liquefaction and the Flood is found in the Koran where the Flood starts when “water gushed forth from the oven”. Soil liquefaction observed erupting preferentially into houses during an earthquake provides a logical interpretation if the oven is seen as a tiny house. A case can be made that earthquakes with soil liquefaction are embedded in all of these flood stories.  相似文献   


13.
In recent years the northwestern Black Sea has been investigated by a great number of geophysical methods. Charts of the M discontinuity and (isopachous) charts of the “granitic”, the “basaltic”, the Paleozoic, the Jurassic-Triassic, the Upper and Lower Cretaceous and the Eocene layers were plotted based on the results of the combined data of these investigations together with associated drilling data. The data for different velocity levels confirms the concept of layered-block structure of the crust, where large blocks are divided by deep faults penetrating to the upper mantle. Sedimentation within each block is continuous while reverse fault zones, dividing the East European Platform with a crustal thickness of more than 40 km and the Scythian Platform with a crust of about 30 km thick, and the latter from the Black Sea depression with crust of about 20 km, are discontinuous. Therefore, one can speak of a continuous-discontinuous nature of the sedimentation.

An inverse relationship in thicknesses of the “granitic” and sedimentary layers has been established. In places of intensive sedimentation the thickness of the “granitic” layer is less than that within the stable unsagging blocks. On the whole the greater the thickness of “basaltic” layer, the greater is the crustal thickness.

The relationship between the main geological structures of the area should be sought in the nature of structure of these “granitic” and “basaltic” layers.  相似文献   


14.
The present paper provides C- and N-stable isotope characteristics, N-contents and N-aggregation states for alluvial diamonds of known paragenesis from placers along the Namibian coast. The sample set includes diamonds with typical peridotitic and eclogitic inclusions and the recently reported “undetermined” suite of Leost et al. [Contrib. Mineral. Petrol. 145 (2003) 15] which resulted from infiltration of high temperature, carbonate-rich melts. δ13C-values range from −20.3‰ to −0.5‰ (n=48) for peridotitic diamonds and from −38.5‰ to −1.6‰ (n=45) for eclogitic diamonds. Diamonds belonging to the “undetermined” suite span a narrower range in δ13C from −8.5‰ to −2.7‰ (n=13). When compared with previous studies, diamonds from Namibia are characterised by unusually low proportions of N-free (i.e. Type II) peridotitic and eclogitic diamonds (3% and 2%, respectively) and an unprecedented high proportion of N-rich diamonds (15% and 73%, respectively, have N-contents >600 ppm). δ15N-values for diamonds of the peridotitic, eclogitic and “undetermined” suites range from −10‰ to +13‰ without correlations with either N-content or δ13C. The similarity in N-isotopic composition and the N-rich character of diamonds belonging to the eclogitic, peridotitic and “undetermined” suites is striking and suggests a close genetic relationship. We propose that a large part of the diamonds mined in Namibia formed during metasomatic events of similar style that introduced carbon and nitrogen into a range of different host lithologies.  相似文献   

15.
Sven Dahlgren 《Lithos》1994,31(3-4):141-154
Ultramafic dikes with carbonatitic affinities (“damtjernites”) in southern Norway were generated during two magmatic events separated by about 275 Ma. The older event is late Proterozoic and the younger is mid Carboniferous.

More than 50 satellitic damtjernite intrusions occur within a 1500 km2 large region surrounding the Fen Central Complex. Phlogopite macrocrysts from 10 of these satellites yield a Rb---Sr isochron age of 578±24 Ma (2σ expanded errors). This demonstrates that the late Proterozoic carbonatitic magmatism centered at the Fen Central Complex occurred on a regional scale. This region is termed “the Fen Province”. The emplacement of the magmas in the Fen Province most likely occurred in connection with minor extensional tectonic activity on the Baltic platform during the drift-phase after the Proto-Atlantic opening.

Sr-isotopic data also show that a dike mineralogically and chemically similar to the Fen damtjernites was emplaced at 324±4 Ma (mid Carboniferous). This dike very likely dates the initiation of magmatism in the Oslo rift. Consequently very similar carbonate-bearing ultramafic magmas were generated within the south Norwegian mantle during the relatively minor Fen event and in the initial extensional period when the magma production in the Oslo rift was still low.  相似文献   


16.
The compilation of statistical data for 269 seismic crustal sections (total length: 81,000 km) which are available in the U.S.S.R. has shown that the preliminary conclusions drawn on relations between the elevation of the surface relief and Bouguer anomalies on one hand and crustal thickness (depth to the M-discontinuity) on the other hand are not fulfilled for the continental part of the U.S.S.R. The level of isostatic compensation has been found to be much deeper than the base of the earth's crust due to density inhomogeneities of the crust and upper mantle down to a depth of 150 km.

The results of seismic investigations have revealed a great diversity of relations between shallow geological and deep crustal structures:

Changes in the relief of the M-discontinuity have been found within the ancient platforms which are conformable with the Precambrian structures and which can exceed 20 km. In the North Caspian syneclise, extended areas devoid of the “granitic” layer have been discovered for the first time in continents. The crust was found to be thicker in the syneclises and anteclises of the Turanian EpiHercynian plate. In the West Siberian platforms these relations are reversed to a great extent.

Substantial differences in crustal structure and thickness were found in the crust of the Palaeo zoides and Mesozoides. Regions of substantial neotectonic activity in the Tien-Shan Palaeozoides do not greatly differ in crustal thickness if compared to the Kazakhstan Palaeozoides which were little active in Cenozoic time. The same is true for the South Siberian Palaeozoides.

The Alpides of the southern areas in the U.S.S.R. display a sharply differing surface relief and a strongly varying crustal structure. Mountains with roots (Greater Caucasus, Crimea) and without roots (Kopet-Dagh, Lesser Caucasus) were found there.

The Cenozoides of the Far East are characterized by a rugged topography of the M-discontinuity, a thinner crust and a less-pronounced “granitic” layer. A relatively small thickness of the crust was discovered in the Baikal rift zone.

The effective thickness of the magnetized domains of the crust as well as other calculations show that the temperature at the depth of the M-discontinuity (i.e., at depths of 40–50 km) is not higher than 300–400° C for most parts of the U.S.S.R.  相似文献   


17.
The shallow level pluton of Bressanone is a Late Hercynian multiple intrusion into the South Alpine basement of the Eastern Alps. Most of this complex is composed of anatectic granodiorites and granites intruded in separate stocks 282 ± 14 Ma ago; gabbros and leucogranites occur in smaller quantities. The chronological intrusion sequence is: layered gabbro, granodiorites and granites, two-mica cordierite leucogranite and fayalite leucogranites.

The granodiorites and granites may contain hornblende or garnet. The hornblende and garnet rocks differ both in chemistry and (87Sr/86Sr)i ratio, and may be identified as “I-type” and “S-type”, respectively, according to the Chappell-White classification.

Textural and chemical patterns show that the granites may be linked to the granodiorites by cumulate-like processes. The granodiorite → granite transition, attributed to filter pressing, expresses an increase in the liquid/xenolith ratio in a magma where the liquid fraction was a minimum melt and the solid fraction was restitic material.  相似文献   


18.
Between March 1977 and August 1979 contract No.4 of the Stadtbahnbau (Metro-construction) in Duisburg was executed, making successful use of gap freezing.

The gap freezing was necessary because the Metro-tunnel is crossed by a groundwater stream (flow velocity up to 15 m/d) and it had to be assured that open cut construction of the tunnel was possible and that the original situation could be reinstated as far as possible after completion.

The Duisburg building ground also made a special construction method necessary. Ground strata: from surface to 2–4 m, civilisation deposits; from ˜ 4 m to ≈ 25–28 m below surface, glacial sand and gravel deposits, containing stones with a diameter > 20 cm and even boulders of 1 m3 and more; from approximately 28 m below surface, layers of Tertiary clay and silt; the groundwater table is ˜ 8 m below the surface, the stream flowing within the sand and gravel deposits from SE to NW (towards the Rhine).

Installing a groundwater barrier, for instance by erecting a continuous diaphragm wall enclosure, was already ruled out in early design stages as was the use of driven steelpiles.

At the inception of the design in 1974, it was decided first to carry out a measuring scheme to establish the groundwater flow velocity. This was followed by a large scale (1:1) trial freezing to ascertain the feasibility of the gap-freezing method.

When these experiments were scientifically valued it was established, that the risk involved was acceptable. The contract documents were prepared prescribing a combination of “cover and cut” with gap-freezing, which is tentatively called the “Duisburg method of Metro-construction”.

During the construction a large scale measuring and scientific research programme was carried out.  相似文献   


19.
F. Mattern 《Sedimentary Geology》2002,150(3-4):203-228
Hydraulic differences between channelized and unchannelized flows in sand-rich submarine fans result in different distributions of amalgamation surfaces, bed thicknesses, and dish structures in successions of these two different environments. Distribution trends of these fabrics were quantified for the sand-rich fans of the Reiselsberger Sandstein (Cenomanian–Turonian). These trends can be used as criteria to distinguish channelized from unchannelized paleoenvironments of sand-rich submarine fans.

Amalgamation surfaces in the studied fans' channelized regions are considerably more abundant than in the unchannelized fan areas. In unchannelized deposits, tabular amalgamation surfaces outnumber nontabular ones, whereas the opposite occurs in channelized successions. These results indicate a higher degree of erosive power of gravity-driven sediment flows in channels as a result of a greater flow thickness, higher flow velocity, and turbulence.

The average turbidite layer thickness in channelized successions is markedly greater than in unchannelized deposits (“layer” as defined herein). This is mainly attributed to the combined effects of differences in sediment fall-out rate and the inefficiency of sand-rich suspensions to transport sand. In the proximal and channelized fan areas, more sediment is deposited from a flow in the form of a layer than in distal unchannelized fan regions despite a higher degree of erosion in channels. The greater average bed thickness in channel fills is a function of layer thickness and more frequent amalgamations (“bed” as defined herein).

Dish structures seem to be considerably more common in midfan than in outer-fan successions. This may indicate a higher sedimentation rate from individual suspension currents in midfan areas.  相似文献   


20.
Sellafield in West Cumbria was a potential site for the location of the UK's first underground repository for radioactive, intermediate level waste (ILW). The repository was to lie around 650 m beneath the ground surface within rocks of the Borrowdale volcanic group (BVG), a thick suite of SW dipping, fractured, folded and metamorphosed Ordovician meta-andesites and ignimbrites. These are overlain by an onlapping sequence of Carboniferous and Permo-Triassic sediments. In situ borehole measurements showed that upward trending fluid pressure gradients exist in the area of the potential repository site, and that there are three distinct fluid types in the subsurface; fresh, saline and brine (at depth, to the west of the site). Simulations of fluid flow in the Sellafield region were undertaken with a 2D, steady-state, coupled fluid and heat flow simulation code (OILGEN). In both simplified and geologically complex models, topographically driven flow dominated the regional hydrogeology. Fluids trended persistently upwards through the potential repository site. The dense brine to the west of the site promoted upward deflection of topographically driven groundwaters. The inclusion in hydrogeological models of faults and variably saline sub-surface fluids was essential to the accurate reproduction of regional hydraulic head variations. Sensitivity analyses of geological variables showed that the rate of groundwater flow through the potential repository site was dependent upon the hydraulic conductivity of the BVG, and was unaffected by the hydraulic conductivity of other hydrostratigraphic units. Calibration of the model was achieved by matching simulated subsurface pressures to those measured in situ. Simulations performed with BVG hydraulic conductivity 100 times the base case median value provided the “best-fit” comparison between the calculated equivalent freshwater head and that measured in situ, regardless of the hydraulic conductivity of other hydrostratigraphic units. Transient mass transport simulations utilising the hydraulic conductivities of this “best fit” simulation showed that fluids passing through the potential repository site could reach the surface in 15 000 years. Simple safety case implications drawn from the results of the study showed that the measured BVG hydraulic conductivity must be less than 0.03 m year−1 to be simply declared safe. Recent BVG hydraulic conductivity measurements showed that the maximum BVG hydraulic conductivity is around 1000 times this safety limit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号