首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 146 毫秒
1.
何金  傅成来  束立勇  等 《江苏地质》2021,45(2):189-196
海岸线是陆地与海洋的分界线,海岸侵蚀淤积变化对海岸带的保护与开发利用会产生重要的影响。基于实地调查资料,结合以往调查数据,从典型岸滩剖面、遥感解译等不同角度分析了近30年来盐城海岸侵蚀淤积变化特征,发现盐城海岸侵蚀范围不断南移,明显处于北蚀南淤的动态变化过程。初步探讨了盐城岸线侵蚀淤积变化原因。  相似文献   

2.
人类活动对我国海湾生态环境的影响日趋严重,作为海湾变化的重要表征—海湾岸线自然成为陆海相互作用研究的主要内容之一。本文以西部大开发的前沿—北部湾海湾岸线为对象,利用Landsat系列影像反演1991、2005及2010年北部湾1595km的大陆岸线;选择1991~2010年间北部湾北部变化强烈的40个岸段,分析岸线的冲淤变化。结果表明:北部湾海湾曲折岸线的固有属性已发生改变,岸线平直化趋势明显;海湾岸线冲淤交互存在,相对遮蔽的岸段岸线积极向海推进,年淤积速率为23m/a,无防护地带的岸线以侵蚀为主,年平均侵蚀速率为24m/a;在不同类型的海湾岸线中,生物海岸与砂质海岸表现为向陆蚀退,年平均侵蚀14m/a,淤泥质海岸为向海淤积,年平均淤积速率为9m/a,基岩海湾岸线变化不大。  相似文献   

3.
海南岛三亚湾海滩研究*   总被引:11,自引:1,他引:11       下载免费PDF全文
海南岛三亚湾及其周边海滩可分为两种主要类型:一类是岩礁海岸海滩,发育于基岩和珊瑚礁岛波影区或珊瑚礁平台后侧,多为背叠式砂砾滩,滩窄、坡陡,具有数道陡坎,在岛礁背风侧常发育不同阶段的连岛坝,如白排人工岛西南端海滩、鹿回头湾大洲后侧及对岸的海滩、鹿回头湾和小东海海滩;另一类是沙坝海岸海滩,发育于向外海敞开的大沙坝的向海侧,海湾内砂质沉积物丰富,形成滩脊式或背叠式砂质滩,滩面宽坦,物质较细,如三亚湾和大东海海滩。因湾口朝向与湾内岛礁分布发育情况不同,湾内受常浪和台风强浪作用的强度与频率不同,加之现代泥沙补给情况的差异,这一类海滩的形态结构亦不尽相同。如三亚湾西侧近岬角处,波能辐聚,动力强,侵蚀作用突出,滩面呈近直线形倾斜,并形成两道陡坎;三亚湾中部,受岛礁保护,滩面宽阔,波浪消能空间充足,物质丰富,发育滩脊型海滩,滩面呈上凸形,基本稳定;三亚湾东侧,虽有岛礁掩蔽,但由于人为修建的绿地草坪带和水泥碎砖石小径等,建设高度过低, 束狭了激浪带的自由作用宽度,减小了波浪消能范围,破坏了海滩的整体结构,同时阻断了沙坝向海滩的供沙, 使滩面坡度加大,物质粗化,局部与小径相接处形成侵蚀陡坎、椰树等倾斜,呈侵蚀状态。  相似文献   

4.
渤海湾西岸海岸带现代地质作用及影响因素分析   总被引:3,自引:0,他引:3  
李建芬  康慧  王宏  裴艳东 《华北地质》2007,30(4):295-301
通过对渤海湾西岸粉砂淤泥质海岸带的现代地质作用调查与分析,阐述了渤海湾海岸带在现代地质作用下侵蚀和淤积并存的现状:目前潮间带上部在不断淤高,而潮下带则存在侵蚀,正处于淤蚀过渡期。遥感资料及沉积物粒度的进一步分析,认为渤海湾西岸现代地质作用的影响因素及海岸带淤积泥砂主要来自岸滩下部及浅海区的侵蚀作用。提出在海岸开发中注意防淤的同时,高度重视侵蚀作用可能对海岸带造成的危害。  相似文献   

5.
全面准确评估海滩的时空演变,是海滩侵蚀防护的前提;基于卫星图像资源全面准确评估海滩的时空演变,对于缺乏长期连续实测数据的海滩的侵蚀防护具有重要意义。本研究基于谷歌地球引擎合成并下载灵南海滩(灵山湾南部海滩)1984—2021年的880幅卫星图像,聚焦海滩剖面提取干湿线和水边线在剖面上的位置;结合模拟潮位分析海滩剖面形态,计算海滩坡度和平均高、低潮线等,采用多指标研究灵南海滩的时空演变;结合历史资料分析影响灵南海滩演变的主要因素,并利用海滩实测数据评估利用卫星图像提取的海滩岸线的误差。结果表明,大量卫星图像的应用提高了研究结果的时间分辨率、精度和可靠性。在1984—2021年间,灵南海滩部分岸段发生了阶段性快速侵蚀,侵蚀速率为5.2~60 m/a,总侵蚀量达30~78 m,持续时间为0.5~11年,该快速侵蚀主要是挖沙、养殖场改建和废弃等人为因素造成的,风暴潮起次要的辅助作用。除上述快速侵蚀时段外,灵南海滩普遍发生慢速侵蚀,侵蚀速率一般小于2 m/a,这是相对海平面上升和河流入海泥沙锐减等的结果。  相似文献   

6.
三亚海岸演变与人工海滩设计研究*   总被引:12,自引:0,他引:12  
三亚海岸位于海南岛南部,属弱潮海区,以来自开阔外海的偏南向风浪为海岸优势动力。三亚海岸经历了从基岩港湾海岸到岬角与港湾相间的海蚀-海积海岸的发育演化过程,沙坝(沙咀)发育始于中更新世初期,珊瑚礁发育始于8kaB.P. ,目前海岸总体处于相对平衡发展阶段。对三亚地区海岸地貌、动力及泥沙运动的调查研究,总结三亚湾及其周边不同类型海滩的特点,提取其海滩参数。依据处于不同发展时期的自然海滩形成演变的条件和规律,设计建构三亚白排人工海滩的关键参数。设计海滩总长度约400m,宽度\{40~\}50m,坡度4.5°~5.0°,相对高度约2m,填砂M为0.5,以粒径1.0~\}0.5mm的粗砂为主,总填砂量48000m3。从滩面物质和滩面坡度两个关键方面,利用代表性的数学模型,检验了设计海滩的稳定性。本项研究旨在服务白排人工海滩建设,研究方法对海滩侵蚀防护与同类海岸工程建设等具有参考价值。  相似文献   

7.
围海造地工程对香港维多利亚港现代沉积作用的影响   总被引:17,自引:1,他引:16  
对采自香港维多利亚港的 4个 6m长的沉积柱状样作了2 10 Pb及Pb、Zn、Cu含量分析。结果表明,维多利亚港开阔区域现代沉积速率在 0.3~ 2cm/a之间变化,西部大于东部。在九龙海峡主航道上,基本上处于冲淤平衡状态。由于近百年来围海造地、海岸工程建设,使维多利亚港的岸线发生了较大的变化,在台风避风塘等潮流作用较弱的区域及靠近城市排污口的地方沉积速率可达 3~ 5cm/a,这表明围海造地、海岸工程等造成的岸线变化是影响维多利亚港堆积侵蚀的主要因素。Pb、Zn、Cu等重金属在沉积柱状样中的分布表明,在沉积速率较快的区域,重金属的污染也较为严重。  相似文献   

8.
大型水库运行改变了坝下游水沙条件,引起河床冲淤、洲滩形态等适应性调整,尤其是近坝段沙质河床的响应最为敏感。以三峡大坝下游近坝段沙质河段为研究对象,采用1955-2018年水沙数据与1975-2018年地形资料,研究了河床冲淤量及河床形态、洲滩形态演变及联动关系等。研究表明:伴随流域来沙量减少,1975-2018年河床为累积冲刷态势,枯水河槽冲刷量占总冲刷量的93.1%,同步发生洲滩面积减少、深泓下切;以2009年分界,滩槽冲淤逐渐由"低滩冲刷,高滩淤积"逐渐向"低滩、高滩均冲"转变;受来沙量锐减、河道采砂活动等影响,2013年以来河床冲刷强度显著增大,疏浚抛泥对滩槽冲淤的影响较小;航道工程实施前滩群演变关联性强,太平口心滩发育与头部下移引起腊林洲边滩上段面积减小并后退,对应腊林洲边滩尾部面积增大且淤宽,使得三八滩面积减小且右缘蚀退,金城洲逐渐由边滩演变为心滩;航道工程实施后太平口心滩与腊林洲边滩上段关联性减弱,受航道工程及疏浚抛泥等影响腊林洲边滩下段淤宽,引起三八滩维持面积持续减小、右缘后退及左移态势,促使金城洲萎缩且分散。  相似文献   

9.
大型水库运行改变了坝下游水沙条件,引起河床冲淤、洲滩形态等适应性调整,尤其是近坝段沙质河床的响应最为敏感。以三峡大坝下游近坝段沙质河段为研究对象,采用1955-2018年水沙数据与1975-2018年地形资料,研究了河床冲淤量及河床形态、洲滩形态演变及联动关系等。研究表明:伴随流域来沙量减少,1975-2018年河床为累积冲刷态势,枯水河槽冲刷量占总冲刷量的93.1%,同步发生洲滩面积减少、深泓下切;以2009年分界,滩槽冲淤逐渐由"低滩冲刷,高滩淤积"逐渐向"低滩、高滩均冲"转变;受来沙量锐减、河道采砂活动等影响,2013年以来河床冲刷强度显著增大,疏浚抛泥对滩槽冲淤的影响较小;航道工程实施前滩群演变关联性强,太平口心滩发育与头部下移引起腊林洲边滩上段面积减小并后退,对应腊林洲边滩尾部面积增大且淤宽,使得三八滩面积减小且右缘蚀退,金城洲逐渐由边滩演变为心滩;航道工程实施后太平口心滩与腊林洲边滩上段关联性减弱,受航道工程及疏浚抛泥等影响腊林洲边滩下段淤宽,引起三八滩维持面积持续减小、右缘后退及左移态势,促使金城洲萎缩且分散。  相似文献   

10.
滨海新区海岸线时空变化特征及成因分析   总被引:5,自引:1,他引:4  
利用多期遥感数据,监测天津滨海新区近10年来海岸线的冲淤变化及潮滩利用,结合历史海岸线资料,对其变迁特征和成因进行分析。结果表明,近10年来,该地区海岸线总体快速向海推进,特别是在2007年以后推进速率明显增大,最大规模推进集中在海滨浴场至永定新河河口岸段,约13.7 km。围海造陆、港口建设等人为活动是其快速推进的主导因素。海岸侵蚀作用多发生在歧口河至青静黄排水渠岸段和大神堂村至涧河口岸段,且大神堂村至涧河口岸段比较显著,平均侵蚀速率约10m/a,需要密切关注和重点防范。  相似文献   

11.
《China Geology》2018,1(4):512-521
Shandong has more than 70% of natural coasts are under erosion. Coastal erosion started from the 1970’s and became a very serious problem at 1990’s. The dramatic decrease of sediment supplies from rivers caused rapid erosion at the delta and estuary areas, especially in the abandoned Yellow River Delta. Most sandy coasts along the Peninsula were eroded due to lack of sand supply and interruption of alongshore sediment drift, sand dredging from the beach or the offshore area caused serious erosion during short time. Sea-level rise causes slow but constant shoreline retreats and became a more serious threat. Different types of hard solutions for coastal protection against erosion were used in Shandong. Seawalls are most widely used, especially at the Yellow River Delta and city center waterfront. Groynes, jetties and breakwater are used on the north and east sandy coast of the Peninsula. Hard approaches are effective to protect the coast erosion but not change the erosion causes and led secondary impact on the coast. Soft engineering solution or the combined solutions are taken into acts. Beach nourishment is mostly considered as the better soft solution, especially to those tourists attracting sandy beaches along the Shandong coast. Long term monitoring and continuous lessons learning from the coastal erosion management will be adaptive for better coast solution in the future.  相似文献   

12.
Coastal erosion and management attract much conern all around the world as coastal erosion is a problem at many coastal sites exacerbated by human activities and its adaptability through reasonable mitigation measures. This paper summarizes the main factors causing coastal erosion including reduction of sediment discharged by rivers trapped coastal structures, sand mining and reclaimation, relative sea-level rise, destruction of coastal ecosystem and weakening of coastal defenses. Mechanisms causing erosion of coastal dune, soft rock coast and muddy coast are identified and discussed. Sandy coastal erosion, soft rock coastal erosion, muddy coastal erosion, biological coastal erosion and coastal structural erosion are identified according to the characteristics of erosion in China. This study supplements the theory and methodology for coastal erosion management and provides information for managers and stakeholders.  相似文献   

13.
A field investigation of temporal and spatial changes in wind and wave characteristics, runup and beach water table elevation was conducted on the foreshore of an estuarine beach in Delaware Bay during neap (April 9, 1995) and spring (April 16, 1995) tides under low wave-energy conditions. The beach has a relatively steep, sandy foreshore and semi-diurnal tides with a mean range of 1.6 m and a mean spring range of 1.9 m. Data from a pressure transducer placed on the low tide terrace reveal a rate of rise and fall of the water level on April 16 of 0.09 mm s−1 resulting in a steeper tidal curve than the neap tide on April 9. Data from three pressure transducers placed in wells in the intertidal foreshore reveal that the landward slope of the water table during the rising neap tide was lower than the slope during spring tide, and there was a slower rate of fall of the beach water table relative to the fall of the tide. Wave heights were lower on April 9 (significant height from 17.1 min records <0.16 m). The water table elevation was 0.08 m higher than the water in the bay at the time of high water, when maximum runup elevation was 0.29 m above high water and maximum runup width was 2.0 m. The elevation of the water table was 0.13 m higher than the maximum elevation of water level in the bay 74 min after high water, when wave height was 0.12 m and wave period was 2.7 s. The use of mean bay water level at high tide will underpredict the elevation of the water table in the beach, and demarcation of biological sampling stations across the intertidal profile based on mean tide conditions will not accurately reflect the water content of the sandy beach matrix.  相似文献   

14.
在烟台第一海水浴场,利用经纬仪进行2条海滩横剖面形态测量,并在不同地貌单元采集沉积物样品进行粒度分析。测量显示,该海滩仅有小规模沙坝和沟槽体系。后滨上有风成沉积,但滩肩和海岸沙丘发育均不明显。粒度分析结果表明,海滩沉积物以中砂、粗砂为主,杂以砾或细砂,比山东半岛其他海滩沉积物明显要粗。由陆向海沉积物呈带状分布,平均高潮线附近和沙坝迎水坡侵蚀作用均显著。因此认为缺乏沙源供应的基岩岬湾式海岸是导致沙滩地貌发育不典型、海滩侵蚀作用显著的主要原因。  相似文献   

15.
Coastal erosion at Sagar Island of Sunderban delta, India, has been critically studied. The area is in the subtropical humid region. There are mainly three seasons viz: winter, summer and the monsoon. Different wave dynamic parameters were measured from theodolite observations with leveling staff and measuring gauges during lunar days at two sections of the western and eastern parts of the coastal zone during post-and pre-monsoons. A comparative study was made on the erosion/depositional pattern between the two sections in relation to different hydrodynamic parameters prevailing in these two sections. Plane table mapping was carried out to demarcate the different geomorphic units. The marine coastal landforms show dune ridges with intervening flats bordered by gently sloping beach on one side and a flat beach on the other side. The western part of the beach is mainly sandy; whereas the eastern part is silty and clayey with mud bank remnants. Actual field measurements indicate that the coastal dune belt has retreated to the order by about 20 m since 1985. The eastern part of the beach has lowered by about 2 m since 1985 and the western part was raised almost to the same tune. It is observed that accretion in the western and central parts of the beach took place; whereas severe erosion in the eastern part made the beach very narrow with remnants of mud banks and tree roots. Frequent embankment failures, submergence and flooding, beach erosion and siltation at jetties and navigational channels, cyclones and storm surges made this area increasingly vulnerable.  相似文献   

16.
The coastal zone of the Sagar island has been studied. The island has been subjected to erosion by natural processes and to a little extent by anthropogenic activities over a long period. Major landforms identified in the coastal area of the Sagar island are the mud flats/salt marshes, sandy beaches/dunes and mangroves. The foreshore sediments are characterized by silty, slightly sandy mud, slightly silty sand and silty sand. Samples 500 m inland from high waterline are silty slightly sandy mud, and by clayey slightly sandy mud. The extent of coastline changes are made by comparing the topographic maps of 1967 and satellite imageries of 1996, 1998 and 1999. Between 1967 and 1999 about 29.8 km2 of the island has been eroded and the accreted area is only 6.03 km2. Between 1996 and 1998 the area underwent erosion of 13.64 km2 while accretion was 0.48 km2. From 1998 to 1999, 3.26 km2 additional area was eroded with meager accretion. Erosion from 1997 to 1999 was estimated at 0.74 km2 /year; however, from 1996 to 1999, the erosion rate was calculated as 5.47 km2/year. The areas severely affected by erosion are the northeastern, southwestern and southeastern faces of the island. As a consequence of coastal erosion, the mud flats/salt marshes, sandy beaches/dunes and mangroves have been eroded considerably. Deposition is experienced mainly on the western and southern part of the island. The island is built primarily by silt and clay, which can more easily be eroded by the waves, tides and cyclonic activities than a sandy coast. Historic sea level rises accompanied by land subsidence lead to differing rates of erosion at several pockets, thus periodically establishing new erosion planes.  相似文献   

17.
A sand budget for the Alexandria coastal dunefield, South Africa   总被引:5,自引:0,他引:5  
The sand in the Alexandria coastal dunefield is derived from the sandy beach which forms the seaward boundary of the dunefield. Sand is blown off the beach onto the dunefield by the high-energy onshore-directed dominant wind. The dunefield has been forming over the past 6500 years. Sand transport rates calculated from dune movement rates and wind data range from 15 to 30 m3 m -1 yr-1 in an ENE direction. The sand transport rate decreases with increasing distance from the sea due to a reduction in wind speed resulting from the higher drag imposed upon the wind by the land surface. Aeolian sand movement rates of this order are typical of dunefields around the world. The total volume of sand blown into the dunefield is 375 000 m3 yr-1. Sand is being lost to the sea by wave erosion along the eastern third of the dunefield at a rate of 45 000 m3 yr -1. The dunefield thus gains 330 000 m3 of sand per year. This results in dunefield growth by vertical accretion at about 1.5 mm yr-1 and landward movement at about 0.25 m yr-1. The dunefield is a significant sand sink in the coastal sand transport system. The rate of deposition in coastal dunefields can be 10 times as high as rates of deposition in continental sand seas. The higher rate of deposition may result from the abundant sand supply on sandy beaches, and the higher energy of coastal winds. Wind transport is slow and steady compared to fluvial or longshore drift transport of sediment, and catastrophic aeolian events do not seem to be significant in wind-laid deposits.  相似文献   

18.
J.A.G. Cooper  J. McKenna 《Geoforum》2008,39(1):294-306
Coastal erosion management is primarily based on economic considerations (cost-benefit analysis). From the perspective of social justice (as a particular expression of the wider concept of human rights), however, several arguments can be advanced regarding public intervention in coastal defence management when private property is threatened by coastal erosion. In this paper we examine these arguments at both the short-term local scale and the long-term large spatial scale and consider the merits of inclusion of a social justice dimension in coastal erosion management. The coast provides a range of resources that benefit society as a whole. Coastal residents and property owners face a direct financial loss from coastal erosion but the general public also stands to incur losses other than purely financial if it there is public intervention for the benefit of these property owners. The arguments for public intervention are strongest at the local and short-term scales but they weaken (and even reverse) at geographically larger and longer time scales. At larger scales, the costs to society increase as intergenerational equity, non-coastal residents, climate and sea level change, and the environment are considered. Because of the intensity of interest involved at the local level, we argue that the necessary hard decisions must be made nationally if a sustainable policy is to be adopted. Social justice considerations provide a potential improvement on the traditional economic cost/benefit-based decision-making process of coastal erosion management but they only contribute to sustainability if viewed at the national level.  相似文献   

19.
This study evaluates the impacts resulting from the construction of two large-scale detached breakwater systems on the Nile delta coast of Egypt at Baltim and Ras El Bar beaches (~18.3 km shoreline length). The two protective systems were installed in a water depth of between 3 and 4 m and consist of 17 units in total (each ~250 m long). A comprehensive monitoring program spanning the years 1990 to 2002 was implemented and included beach-nearshore profiles, grain size distribution of seabed sand and information related to the background coastal processes. Evaluation of these systems concentrates on the physical impacts on coastal morphodynamics, mitigation and their design implications. The beach and nearshore sedimentation (erosion/accretion patterns) and grain texture of seabed sediment in the study areas have been substantially disrupted due to the interruption of longshore transport by the shore-parallel detached breakwaters. Rate of shoreline and seabed changes as well as alongshore sediment volume have been substantially affected, resulting in accretion in the breakwater landward sides (tombolo or salient) followed by downdrift erosion. The preconstruction beach erosion at Baltim (–5 m/year) and at Ras El Bar (–6 m/year) has been replaced, respectively, by the formation of sand tombolo (35 m/year) and salient (9 m/year). On the other hand, beach erosion has been substantially increased in the downdrift sides of these protective systems, being –20 m/year at Baltim and –9 m/year at Ras El Bar. Further seaward, the two protective systems at Baltim and Ras El Bar have accumulated seabed sand at maximum rates of 30 and 20 cm/year and associated with downdrift erosion of –45 and –20 cm/year, respectively. Strong gyres and eddies formed in the breakwater gabs have drastically affected swimmers and subsequently caused a significant number of drownings each summer, averaging 35 and 67 victims/year at Baltim and Ras El Bar beaches, respectively. This study provides baseline information needed to help implement mitigation measures for these breakwater systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号