首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Sedimentary dykes hosted in ? Ordovician-Devonian strata on the Falkland Islands contain diamictite. The dykes, which are discordant to the host rocks, are sub-vertical, parallel-sided sheets formed by downward injection of a semi-fluidized sediment. On West Falkland palynomorphs present in 2 of the 11 dykes located demonstrate a Late Visean-Early Namurian age. This is older than the main Lafonian Diamictite Formation (Permian) and indicates that the dykes are a rare preservation of sediments formed during the main ice coverage of the Gondwana glaciation. Vitrinite reflectance from organic matter in the dykes indicates a shallow burial history (< 2–3 km) for the southwest Falkland Islands implying deposition of an incomplete or condensed sequence during Late Palaeozoic times, although the stratigraphical relationship of the dykes indicates that this may be extended back into the Mid Palaeozoic. The two diamictite dykes located on East Falkland are shown to be younger; probably Permian in age.  相似文献   

2.
《Gondwana Research》2016,29(4):1530-1542
In this study, we conducted profile measurements, gravel composition analyses, and U–Pb dating on detrital zircons from a representative glacial marine diamictite in the Gangmaco–Dabure area of the Southern Qiangtang–Baoshan block, Tibetan Plateau. We conclude that the diamictite was formed in a glacial marine environment from the outer edge of the continental shelf to the continental slope and deep sea, in what is now the Southern Qiangtang–Baoshan block. Four distinct glacial–interglacial cycles were identified in the diamictite, which record a minimum of four stages of Gondwana glaciation in the area of the Southern Qiangtang–Baoshan block. Combined with regional geological information, we also conclude that during the Carboniferous–Permian, sediments containing the glacial marine diamictite derived from Gondwana, in the region extending from India to the Tethys Himalaya area, and Lhasa and Southern Qiangtang–Baoshan blocks, recorded the transition from continental, neritic to abyssal environments. Gravel assemblages and U–Pb dating of detrital zircons in the glacial marine diamictite indicate that the provenance of the diamictite was Indian Gondwana. We infer that during the Late Paleozoic, the northern margin of the Indian Gondwana continued to be influenced by the Early Palaeozoic tectonic set-up, when Indian Gondwana was under an erosional regime, and the Tethys Himalaya area, and Lhasa and Southern Qiangtang–Baoshan blocks were deposited on a passive continental margin.  相似文献   

3.
As integral parts of du Toit’s (1927) “Samfrau Geosyncline”, the Sauce Grande basin–Ventana foldbelt (Argentina) and Karoo basin–Cape foldbelt (South Africa) share similar paleoclimatic, paleogeographic, and paleotectonic aspects related to the Late Paleozoic tectono-magmatic activity along the Panthalassan continental margin of Gondwanaland. Late Carboniferou-earliest Permian glacial deposits were deposited in the Sauce Grande (Sauce Grande Formation) and Karoo (Dwyka Formation) basins and Falkland–Malvinas Islands (Lafonia Formation) during an initial (sag) phase of extension. The pre-breakup position of the Falkland (Malvinas) Islands on the easternmost part of the Karoo basin (immediately east of the coast of South Africa) is supported by recent paleomagnetic data, lithofacies associations, paleoice flow directions and age similarities between the Dwyka and the Lafonia glacial sequences. The desintegration of the Gondwanan Ice Sheet (GIS) triggered widespread transgressions, reflected in the stratigraphic record by the presence of inter-basinally correlatable, open marine, fine-grained deposits (Piedra Azul Formation in the Sauce Grande basin, Prince Albert Formation in the Karoo basin and Port Sussex Formation in the Falkland Islands) capping glacial marine sediments. These early postglacial transgressive deposits, characterised by fossils of the Eurydesma fauna and Glossopteris flora, represent the maximum flooding of the basins. Cratonward foreland subsidence was triggered by the San Rafael orogeny (ca. 270 Ma) in Argentina and propogated along the Gondwanan margin. This subsidence phase generated sufficient space to accommodate thick synorogenic sequences derived from the orogenic flanks of the Sauce Grande and Karoo basins. Compositionally, the initial extensional phase of these basins was characterized by quartz-rich, craton-derived detritus and was followed by a compressional (foreland) phase characterized by a paleocurrent reversal and dominance of arc/foldbelt-derived material. In the Sauce Grande basin, tuffs are interbedded in the upper half of the synorogenic, foldbelt-derived Tunas Formation (Early–early Late? Permian). Likewise, the first widespread appearance of tuffs in the Karoo basin is in the Whitehill Formation, of late Early Permian (260?Ma) age. Silicic volcanism along the Andes and Patagonia (Choiyoi magmatic province) peaked between the late Early Permian and Late Permian. A link between these volcanics and the consanguineous airborne tuffs present in the Sauce Grande and Karoo basins is suggested on the basis of their similar compositions and ages.  相似文献   

4.
Early Cretaceous intracontinental movements within Africa and/or South America, to account for misfit problem in the pre-drift reconstruction of Western Gondwana, have been tested using palaeomagnetic poles from both continents. Each continent has been considered as comprising separate subplates according to the boundaries proposed by Pindell and Dewey (1982) and Curie (1983): i.e., northern Africa ( ), southern Africa ( ), northern South America (nsa) and southern South America ( ). Visual and statistical distribution of Late Permian to Jurassic poles from the African subplates indicate two distinct groups before rotating relative to , while after the rotation they become indistinguishable. The distribution and sparsity of data from South America limit the study in this continent as the data are statistically indistinguishable before and after rotation of with respect to . When the test is extended to the reconstruction of Western Gondwana, the tightest grouping of the poles occurs when an intracontinental movement is assumed within Africa. This suggests that the misfit between the two continents is probably due to intracontinental deformation within Africa and not in South America. If confirmed, this may have profound implications in the kinematics of the processes related to the opening of the South and Central Atlantic Oceans and also the origin of the West African Rift System.  相似文献   

5.
The well-refined Permian palynozonation of Western and eastern Australia is the current standard biostratigraphic scheme for the Southern Hemisphere, but intra-Gondwanan floristic provincialism means that several stratigraphically useful palynomorph taxa are rare or absent elsewhere in Gondwana. Radio-isotopic ages for both Australia and the main Karoo Basin of South Africa demonstrate that key marker taxa appear diachronously in the two countries, or they are absent in one of the countries. The establishment of new plant taxa in the Gondwanan Permian realm was strongly tied to palaeolatitude, with floral distributions primarily affected by temperature, precipitation, and seasonality. This spatio-temporal variation of floras hinders global biostratigraphic correlations. Both South Africa and Australia have excellent long-ranging Permo-Triassic terrestrial sedimentary successions, and although vertebrate biostratigraphy has been the focus of much research endeavour in the South African Karoo, palynological studies have lagged. Accordingly, a new South African palynozonation should be established that is based on the first appearances of key index taxa in the main Karoo Basin, rather than elsewhere in Gondwana. In the interim, the diachronous ranges of palynomorphs must be considered when correlating South African rocks to other global sections by means of the Australian spore‐pollen zonation.  相似文献   

6.
It generally is assumed that the Early Permian Gondwana deglaciation in South Africa started with a collapse of the marine ice‐sheet. The northeast part of the Karoo Basin became ice‐free as a result of this collapse. The deglaciation here probably took place under temperate glacial conditions. Three glacial phases have been identified. Phase 1: the marine ice retreat of 400 km over the northeast Karoo Basin, which may have been completed over a few thousand years. The glaciers grounded in the shallower areas around the shore of the basin. Phase 2: the smaller, now mainly continental ice‐sheet here re‐stabilised and remained more or less stationary for several tens of thousand years. During this phase, between 50 and 200 m of massive glaciomarine mud with dropstones accumulated in the open, marine basin that became ice‐free during Phase 1. Isostatic uplift, as a response to the first rapid deglaciation phase, can be traced in the inland part of the region. Phase 3: the final deglaciation may have taken 10 to 20 kyr. After this time no new ice sheet was built up over southern Africa. The entire Early Permian deglaciation of the northeast Karoo Basin was completed within thousands rather than millions of years. Phases 1 and 3 had lengths similar to typical Quaternary deglaciations, whereas Phase 2 was a long, stable phase, more similar to a full Quaternary glaciation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
Recent work on the Late Palaeozoic Ice Age in eastern Australia has shown the Joe Joe Group in the eastern Galilee Basin, Queensland, to be of critical importance as it is one of few records of Pennsylvanian glacial activity outside South America. This paper presents detailed sedimentological data, from which the Late Palaeozoic environment of the region is reconstructed and which, consequently, allows for robust comment on the broader Gondwanan glaciation. The Jericho Formation, in the lower Joe Joe Group, was deposited in an active extensional basin in lacustrine to fluvial environments, during the mid‐Namurian to early Stephanian. The region experienced a cool climate during this time, and polythermal mountain or valley‐type glaciers periodically advanced into the area from highlands to the north‐east. The Jericho Formation preserves a suite of proglacial to terminal glacial facies that is characterized by massive and stratified diamictites deposited from debris flows, massive and horizontally laminated conglomerates and sandstones deposited from hyperconcentrated density flows, laminated siltstones with outsized clasts and interlaminated siltstone/conglomerate deposited through ice‐rafting into lakes, and sedimentary dykes and breccias deposited through overpressurization of groundwater beneath permafrost. Non‐glacial facies are dominated by fluvial sandstones and lacustrine/overbank siltstones. The glacigenic rocks of the Jericho Formation are confined to discrete packages, recording three separate glacial advances during the latest Namurian to late Westphalian. This arrangement is consistent with the temporal distribution of glacigenic rocks from around the remainder of Australia and Gondwana, which supports the theory that glacial deposits occurred in discrete intervals. The Joe Joe Group is a key succession in the world in this context as, at this time, eastern Australia provides the only unequivocal evidence of a Namurian/Westphalian glaciation outside South America. The continuous record of sedimentation through the Pennsylvanian and Early Permian is indicative of significant warming between glacial intervals, which is difficult to reconcile with the development of long‐lived, cold‐based ice sheets across the supercontinent.  相似文献   

8.
Many of the controversies that arise in global reconstructions for Permian–Triassic time could be resolved by taking into account the large latitudinal and counter-clockwise movement of Gondwana during that interval of time. The proper trace of the apparent polar wander curve should differentiate one position for the Early Permian, another position for the Late Permian and yet another for the Triassic. By doing so and comparing the Apparent Polar Wander Paths (APWP) of South America and Africa it is easy to see that both curves have the same shape, therefore it is possible to arrive at a good fit between them, which previous analyses were unable to achieve. This new proposed Permian–Triassic track of the APWP reveals a hook not hitherto recognized that should be accounted for in global reconstructions.  相似文献   

9.
The Early Permian Gondwana regime succession of the Nilawahan Group is exposed only in the Salt Range of Pakistan. After a prolonged episode of non-deposition that spanned much of the Palaeozoic, the 350?m thick predominantly clastic sequence of the Nilawahan Group records a late glacial and post-glacial episode in which a range of glacio-fluvial, marine and fluvial environments evolved and accumulated. The Early Permian succession of the Salt Range has been classified into four formations, which together indicates a changing climatic regime during the Early Permian in the Salt Range region. The lower-most, Tobra Formation unconformably overlies a Cambrian sequence and is composed of tillite, diamictite and fresh water facies, which contain a floral assemblage (Gangamopteris and Glossopteris) that confirms an Asselian age. The Tobra Formation is overlain by marginal marine deposits of the Dandot Formation (Sakmarian), which contain an abundant brachiopods assemblage (Eurydesma and Conularia). Accumulation of the Dandot Formation was terminated by a regional sea-level fall and a change to the deposition of the fluvial deposits of the Warchha Sandstone (Artinskian). The Warchha Sandstone was deposited by high sinuosity meandering, avulsion prone river with well developed floodplains. This episode of fluvial sedimentation was terminated by a widespread marine transgression, as represented by the abrupt upward transition to the overlying shallow marine Sardhai Formation (Kungurian). The Early Permian Gondwana sequence represented by the Nilawahan Group is capped by predominantly shallow shelf carbonate deposits of the Tethyan realm. The sedimentologic and stratigraphic relationship of these four lithostratigraphic units in the Salt Range reveals a complex stratigraphic history for the Early Permian, which is mainly controlled by eustatic sea-level change due to climatic variation associated with climatic amelioration at the end of the major Gondwana glacial episode, and the gradual regional northward drift to a lower latitude of the Indian plate.  相似文献   

10.
The Upper Carboniferous Zhanjin Formation has attracted much attention from geoscientists for containing glacial–marine diamictite and cold-water fauna typified by the bivalve Eurydesma.The presence of this Formation has provided important evidence for determining the northern border of Gondwana.Previous researchers have classified those strata north of Niangrong Co in the Gêrzê region as part of the Zhanjin Formation based on the presence of glacial–marine diamictite, although the absence of biological fossil evidence has defied clear age determination.Our field investigations first discovered large quantities of corals, sponges and bryozoans.All coral fossils were identified as belonging to the Hexacorallia subclass including 13 genera and 25 species, primarily including Conophyllia guiyangensis Deng et Kong, Coryphyllia regularis Cuif, Cuifia columnaris Roniewicz, Distichophyllia norica Frech, Distichophyllia gigas Vinassa de Regny, Pamiroseris rectilamellosa Winkler, Retiophyllia clathrata Emmrich, and Retiophyllia paraclathrata Roniewicz.Extensive biostratigraphic correlations show that the hexacorallia should belong to the Late Triassic, thereby negating the presence of the Zhanjin Formation in the study area.Based on analyses of sedimentary facies and detailed study of the glacial–marine diamictite as supposed by earlier researchers, the limestone blocks and gravels within the facies are slope facies olistostromes and waterway sediments from lime slurry debris flows in the submarine fan rather than primary sedimentary products.Among them, lenticular sandstone should be sequentially distributed waterway sand bodies, indicating that the strata have no glacial–marine diamictite.In addition, the rocks containing the mentioned fossils are just limestone blocks from olistostromes, and limestone gravels from waterways of submarine fans.Such a result further negates the presence of the Zhanjin Formation in the study area, and indicates that the age of the studied strata should be youner than the Late Triassic.Through regional stratigraphic comparisons and the study of tectonic settings of the strata, the sedimentary characteristics of the subject strata, including lithology, lithofacies and fossils, are confirmed to be similar to the widely distributed Sêwa Formation in this region.We thus infer that the strata belong to the Middle–Lower Jurassic Sêwa Formation.This finding is important for both studying paleogeography of Tibet and determining the northern boundary of Gondwana.  相似文献   

11.
通过对保山地块北部西邑地区下石炭统香山组和下二叠统丁家寨组详细的野外剖面实测与钻孔编录,并结合层序地层学、沉积相以及碳氧同位素分析结果认为,下石炭统香山组自下向上可分为三个岩性段,分别对应台前斜坡下部、台前斜坡上部、碳酸盐岩台地三种沉积环境。下二叠统丁家寨组为滨岸冰水沉积,下部为冰碛含砾钙质杂砂岩,发育落石构造。下石炭统香山组δ13CPDB值自下而上逐渐升高,环境可能较稳定,有机质埋藏增加。综合前人古地磁、生物区系对比、大地构造学等研究成果认为早石炭世保山地块较稳定,仍属冈瓦纳大陆北缘。丁家寨组冰碛含砾钙质杂砂岩结束后δ13CPDB值出现强烈负偏,与研究区冰期结束、早二叠世初次温度上升、大量玄武岩喷发等时限高度一致,共同说明了保山地块在早二叠世开始从冈瓦纳大陆北缘裂解出来,并开始向北漂移。该项研究的开展为探讨Submasu地块晚古生代的古海洋、古地理和气候演化具有重要意义,为全球同时期碳氧同位素数据库提供了新资料。  相似文献   

12.
 Basins within the African sector of Gondwana contain a Late Palaeozoic to Early Mesozoic Gondwana sequence unconformably overlying Precambrian basement in the interior and mid-Palaeozoic strata along the palaeo-Pacific margin. Small sea-board Pacific basins form an exception in having a Carboniferous to Early Permian fill overlying Devonian metasediments and intrusives. The Late Palaeozoic geographic and tectonic changes in the region followed four well-defined consecutive events which can also be traced outside the study area. During the Late Devonian to Early Carboniferous period (up to 330 Ma) accretion of microplates along the Patagonian margin of Gondwana resulted in the evolution of the Pacific basins. Thermal uplift of the Gondwana crust and extensive erosion causing a break in the stratigraphic record characterised the period between 300 and 330 Ma. At the end of this period the Gondwana Ice Sheet was well established over the uplands. The period 260–300 Ma evidenced the release of the Gondwana heat and thermal subsidence caused widespread basin formation. Late Carboniferous transpressive strike-slip basins (e.g. Sierra Australes/Colorado, Karoo-Falklands, Ellsworth-Central Transantarctic Mountains) in which thick glacial deposits accumulated, formed inboard of the palaeo-Pacific margin. In the continental interior the formation of Zambesi-type rift and extensional strike-slip basins were controlled by large mega-shear systems, whereas rare intracratonic thermal subsidence basins formed locally. In the Late Permian the tectonic regime changed to compressional largely due to northwest-directed subduction along the palaeo-Pacific margin. The orogenic cycle between 240 and 260 Ma resulted in the formation of the Gondwana fold belt and overall north–south crustal shortening with strike-slip motions and regional uplift within the interior. The Gondwana fold belt developed along a probable weak crustal zone wedged in between the cratons and an overthickened marginal crustal belt subject to dextral transpressive motions. Associated with the orogenic cycle was the formation of mega-shear systems one of which (Falklands-East Africa-Tethys shear) split the supercontinent in the Permo-Triassic into a West and an East Gondwana. By a slight clockwise rotation of East Gondwana a supradetachment basin formed along the Tethyan margin and northward displacement of Madagascar, West Falkland and the Gondwana fold belt occurred relative to a southward motion of Africa. Received: 2 October 1995 / Accepted: 28 May 1996  相似文献   

13.
Evidence is presented for a more extensive ice cover over South Georgia, the South Orkney Islands, the South Shetland Islands, and the tip of the Antarctic Peninsula. Ice extended across the adjacent submarine shelves to a depth of 200 m below present sea level. Troughs cut into the submarine shelves by ice streams or outlet glaciers and ice-scoured features on the shelf areas suggest that the ice caps were warm-based. The South Shetland Islands appear not to have been overrun by continental ice. Geomorphological evidence in two island groups suggests that the maximum ice cover, which was responsible for the bulk of glacial erosion, predates at least one full glaciation. Subsequently there was a marine interval and then a glaciation which overran all of the lowlying peninsulas. The Falkland Islands, only 2° of latitude north of South Georgia, were never covered by an ice cap and supported only a few slightly enlarged cirque glaciers. This suggests that the major oceanographic and atmospheric boundary represented by the Antarctic Convergence, which is presently situated between the Falkland Islands and South Georgia, has remained in a similar position throughout the glacial age. Its position is probably bathymetrically controlled.  相似文献   

14.
珠穆朗玛峰北坡冈瓦纳相地层的发现   总被引:4,自引:0,他引:4       下载免费PDF全文
尹集祥  郭师曾 《地质科学》1976,11(4):291-322
于1975年我国再次登上珠穆朗玛峰的科学考察活动中,在地质方面获得了地层、古生物、岩石、构造等方面比较珍贵的资料。珠峰科考资料研究的新成果是在反击右倾翻案风斗争取得伟大胜利的大好形势推动下取得的。本刊将发表《珠穆朗玛峰北坡冈瓦纳相地层的发现》等相互联系的一组文章,从地层、沉积、古生物的角度,以较丰富的资料证实了珠峰北坡冈瓦纳相地层的存在,这对于探讨珠穆朗玛峰及喜马拉雅山的隆起和地质发展史具有重要价值。  相似文献   

15.
世界上约60%的油气产自碳酸盐岩。全球哪些地区、哪些时代碳酸盐岩发育?其时空分布受哪些因素控制?弄清这些问题,不仅对我国海外油气勘探战略选区有指导作用,而且可为了解全球古地理环境演化提供重要信息。根据全球179个碳酸盐岩盆地的数据统计分析,对全球显生宙碳酸盐岩时空分布规律进行了研究,并探讨了其控制因素。在显生宙的各个地质时期,碳酸盐岩均有分布,但不同时期,碳酸盐岩发育程度不同。在泥盆纪、白垩纪和古近纪,碳酸盐岩分布广泛,而在志留纪、二叠纪、三叠纪和侏罗纪,分布局限。不同时期,碳酸盐岩发育地区不同。寒武纪-奥陶纪,碳酸盐岩主要分布于俄罗斯、中国、北美洲、澳大利亚;三叠纪以后,碳酸盐岩发育区域转移至中东、北欧、北非、南美洲;至古近纪和新近纪,碳酸盐岩发育区主要分布于中东、北非、南亚地区。研究表明,全球碳酸盐岩时空分布受大陆漂移和全球海平面变化控制。古生代,古劳亚大陆、西伯利亚、中国华南地区、澳大利亚均位于赤道附近温暖浅海地带,碳酸盐岩发育,上述地区是这一时期碳酸盐岩分布主要区域;冈瓦纳大陆在古生代位于高纬度区,碳酸盐岩少。中生代,古劳亚大陆漂移至高纬度区,碳酸盐岩减少;冈瓦纳大陆解体为南美板块、非洲板块并漂移至低纬度区,发育碳酸盐岩。新生代,碳酸盐岩在南亚地区的增多,这也和板块的位置相印证。另外,当全球海平面上升时,海侵形成广阔的陆表海,碳酸盐岩广泛发育;当全球海平面下降时,海退形成陆缘海,碳酸盐岩发育面积减小。  相似文献   

16.
The Cantabrian Zone of NW Iberia preserves a voluminous, almost continuous, sedimentary sequence that ranges from Neoproterozoic to Early Permian in age. Its tectonic setting is controversial and recent hypotheses include (i) passive margin deposition along the northern margin of Gondwana or (ii) an active continental margin or (iii) a drifting ribbon continent. In this paper we present detrital zircon U–Pb laser ablation age data from 13 samples taken in detrital rocks from the Cantabrian Zone sequence ranging from Early Silurian to Early Permian in depositional age. The obtained results, together with previously published detrital zircon ages from Ediacaran–Ordovician strata, allow a comprehensive analysis of changing provenance through time. Collectively, these data indicate that this portion of Iberia was part of the passive margin of Gondwana at least from Ordovician to Late Devonian times. Zircon populations in all samples show strong similarities with the Sahara Craton and with zircons found in Libya, suggesting that NW Iberia occupied a paleoposition close to those regions of present-day northern Africa during this time interval. Changes in provenance in the Late Devonian are attributed to the onset of the collision between Gondwana and Laurussia.Additionally, the Middle Carboniferous to Permian samples record populations consistent with the recycling of older sedimentary sequences and exhumation of the igneous rocks formed before and during the Variscan orogeny. Late-Devonian to Permian samples yield zircon populations that reflect topographic changes produced during the Variscan orogeny and development of the lithospheric scale oroclinal buckling.  相似文献   

17.
Absolute radiometric data obtained recently in Upper Paleozoic basins of South America and Southern Africa are available to constrain the age of some palynological biozones defined in the Western Gondwana. Some dates obtained from Argentina coincide with southern Africa's and are useful to constrain the palynological associations. In this way, the Permian Argentinian LueckisporitesWeylandites (LW) Biozone is compared with the Lueckisporites virkkiae Biozone of Brazil and Zone 3 of South Africa. On the other hand, the palynofloras from Dwyka (South Africa) are comparable with Argentinian and Brazilian associations recovered near the Carboniferous–Permian boundary. Tuffaceous intervals of the Dwyka Group in South Africa suggest the beginning of that sequence at 307 Ma reaching the 290 Ma at the top. The available palynological, paleoenvironmental and radiometric data from these three western Gondwanan areas are analyzed and compared.  相似文献   

18.
This paper comprises of two sections. The first section describes challenges in the Carboniferous–Permian Gondwanan stratigraphic palynology, and progress in techniques such as presence of the ‘rare-marine intervals’, and ‘radiometric dating’ in some Gondwanan successions, e.g., South Africa, Australia and South America, as tools to confidently calibrate these palynozones. The second section describes developments in the palynological work on the Carboniferous–Permian Nilawahan Group of the Salt Range, Pakistan, and summarises their correlation with the coeval succession of the Gondwana continents and with the Russian/International stages.  相似文献   

19.
牛志军  吴俊 《地球科学》2015,40(2):346-356
冈瓦纳与欧亚大陆间的昌都地块构造属性存在争议,解决问题的关键是生物古地理区系判别.青海南部二叠纪类化 石群的研究表明昌都地块该生物群一直表现为暖水的特提斯型,与华南地区始终表现出更多的相似性,其生物古地理归属应 为特提斯大区华夏-特提斯区华南亚区.昌都地块南界龙木错-双湖-澜沧江缝合带在早二叠世为划分青藏高原暖水型特提 斯区的南界,不仅是华南亚区与藏北冷暖混合亚区的分界线,也是特提斯大区与冈瓦纳大区的分界线.中二叠世以后该带不再 构成大区界线,但在确定次一级分区界线上仍是一个很好的划分标志;北界金沙江缝合带二叠纪两侧生物群表现出一致性, 未形成浅海底栖生物自由迁移的障碍,不具有生物古地理分区意义.   相似文献   

20.
中国北方从东到西绵延3000 km范围上的华北克拉通、塔里木克拉通及其中间微地块上都保存有埃迪卡拉纪冰川沉积记录,但有关它的年代学、冰川规模、古地理重建和大地构造背景等存有争论。本文基于中国北方埃迪卡拉纪冰碛岩空间分布、地层与沉积层序,沉积环境与沉积相等,结合以往国内外文献,系统分析了埃迪卡拉纪冰川上述有关问题。研究揭示,埃迪卡拉纪时期,国内外应存在年轻于(Gaskiers)580 Ma的冰期;中国北方埃迪卡拉纪冰川时限约562.5~551 Ma,堆积了冰下、冰缘和冰前沉积相(物),构成垂向上(由下至上)从冰下至冰前与海相冰碛物沉积层序,符合大陆冰川(盖)沉积响应样式;此外,国内外埃迪卡拉纪冰碛岩及冰川剥蚀地貌均十分发育;部分冰碛岩之上还可见盖帽白云岩,并呈现与成冰纪盖帽白云岩类似的沉积构造,但彼此碳同位素剖面却不尽相同;本研究推测,埃迪卡拉纪时期,原特提斯洋及周缘大陆(群)可能普遍存在至少是洲际性大陆冰盖,甚至是全球性的冰期。研究认为,埃迪卡拉纪时期的亚洲陆块群应与冈瓦纳大陆缺乏构造亲缘性的若干重要证据。本文研究结果在埃迪卡拉纪大陆及其古地理重建和大地构造背景恢复方面具有重要科学意义...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号