首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The palaeoceanographic evolution of the SW Svalbard shelf west of Hornsund over the last 14 000 years was reconstructed using benthic foraminiferal assemblages, stable oxygen and carbon isotopes, and grain‐size and ice‐rafted debris data. The results reveal the complexity of the feedbacks influencing the shelf environment: the inflow of Atlantic and Arctic waters (AW and ArW, respectively), and the influence of sea ice and tidewater glaciers. The inflow of subsurface AW onto the shelf gradually increased with the first major intrusion at the end of the Bølling‐Allerød. During the Younger Dryas, the shelf was affected by fresh water originating from sea ice and glacier discharge. Glaciomarine conditions prevailed until the earliest Holocene with the intense deliveries of icebergs and meltwater from retreating glaciers and the occasional penetration of AW onto the shelf. Other major intrusions of AW occurred before and after the Preboreal oscillation (early Holocene), which resulted in more dynamic and open‐water conditions. Between 10.5 and 9.7 cal. ka BP, the shelf environment transformed from glaciomarine to open marine conditions. Between c. 9.7 and 6.1 cal. ka BP the AW advection reached its maximum, resulting in a highly dynamic and productive environment. At c. 6.1 cal. ka BP, the inflow of AW onto the Svalbard shelf decreased due to the intensification of the Greenland Gyre and the subduction of AW under the sea‐ice‐bearing ArW. Bioproductivity decreased over the next c. 5500 years. During the Little Ice Age, bioproductivity increased due to favourable conditions in the marginal sea‐ice zone despite the effects of cooling. The renewed advection of AW after AD 1850 started the climate warming trend observed presently. Our findings show that δ18O can be used to reconstruct the dominances of different water‐masses and, with some caution, as a proxy for the presence of sea ice in frontal areas over the northwestern Eurasian shelves.  相似文献   

2.
This paper presents the first terrestrial age constraints from the outer continental shelf for the maximum extent of the NW sector of the last British–Irish Ice Sheet. Cosmogenic 10Be ages from eight glacially transported boulders on the island of North Rona show that the Late Devensian (Late Weichselian) British–Irish Ice Sheet overrode the island at its maximal stage and retreated c. 25 ka BP. These new dates, supported by other geological evidence, indicate that the north‐western part of the ice sheet was most extensive between 27 and 25 ka BP, reaching the outer continental shelf during the global eustatic sea‐level minimum at the Last Glacial Maximum. Copyright © 2012 British Geological Survey/Natural Environment Research Council copyright 2012. Reproduced with the permission of BGS/NERC. Published by John Wiley & Sons, Ltd.  相似文献   

3.
We reconstruct the Holocene shore displacement of the Västervik-Gamlebyviken area on the southeast coast of Sweden, characterised by a maritime cultural landscape and archaeological significance since the Mesolithic. Sediment cores were retrieved from four lake basins that have been raised above sea level due to the postglacial land uplift and eustatic sea level changes after the melting of the Fennoscandian Ice Sheet. The cores were radiocarbon dated and analysed for loss on ignition and diatoms. The isolation thresholds of the basins were determined using LiDAR data. The results provide evidence for the initiation of the first Littorina Sea transgression in this area at 8.5 thousand calibrated years before present (cal. ka BP). A relative sea level rise by ∼7 m a.s.l. is recorded between 8.0 and 7.5 cal. ka BP with a highstand at ∼22 m a.s.l. between 7.5 and 6.2 cal. ka BP. These phases coincide with the second and third Littorina Sea transgressions, respectively, in the Blekinge area, southern Sweden and are consistent with the final deglaciation of North America. After 6.2 cal. ka BP, the relative sea level dropped below 22 m a.s.l., and remained at ∼20 m a.s.l. until 4.6 cal. ka BP coinciding with the fourth Littorina Sea transgression in Blekinge. From 4.6 to 4.2 cal. ka BP, the shore displacement shows a regression rate of 10 mm a−1 followed by a slowdown with a mean value of 4.6 mm a−1 until 1.6 cal. ka BP, when the relative sea level dropped below 3.3 m a.s.l. The Middle to Late Holocene highstand and other periods of minor sea level transgressions and/or higher salinity between 6.2 and 1.7 cal. ka BP are attributed to a combination of warmer climate and higher inflow of saline waters in the southern Baltic Sea due to stronger westerlies, caused by variations in the North Atlantic atmospheric patterns.  相似文献   

4.
The interplay between the onshore and offshore areas during the Last Glacial Maximum and the deglaciation of the Scandinavian Ice Sheet is poorly known. In this paper we present new results on the glacial morphology, stratigraphy and chronology of Andøya, and the glacial morphology of the nearby continental shelf off Lofoten–Vesterålen. The results were used to develop a new model for the timing and extent of the Scandinavian Ice Sheet in the study area during the local last glacial maximum (LLGM) (26 to 16 cal. ka BP). We subdivided the LLGM in this area into five glacial events: before 24, c. 23 to 22.2, 22.2 to c. 18.6, 18 to 17.5, and 16.9–16.3 cal. ka BP. The extent of the Scandinavian Ice Sheet during these various events was reconstructed for the shelf areas off Lofoten, Vesterålen and Troms. Icecaps survived in coastal areas of Vesterålen–Lofoten after the shelf was deglaciated and off Andøya ice flowed landwards from the shelf. During the LLGM the relative sea level was stable until 18.5 cal. ka BP, and thereafter there was a sea‐level drop on Andøya. Thus, relative sea level (i.e. a sea level rise) does not seem to be a driving mechanism for ice‐margin retreat in this area but the fall in sea level may have had some importance for the grounding episodes on the banks during deglaciation. The positions of the grounding zone wedges (GZWs) in the troughs are related to the morphology as they are often located where the troughs narrow.  相似文献   

5.
The Sisimiut area was deglaciated in the early Holocene, c. 11 cal. ka BP. At that time the lowlands were inundated by the sea, but the isostatic rebound surpassed the global sea‐level rise, and the lowlands emerged from the sea. The pioneer vegetation in the area consisted of mosses and herbaceous plants. The oldest remains of woody plants (Empetrum nigrum) are dated to c. 10.3 cal. ka BP, and remains of Salix herbacea and Harrimanella hypnoides are found in slightly younger sediments. The maximum occurrence of statoblasts of the bryozoan Plumatella repens from c. 10 to 4.5 cal. ka BP probably reflects the Holocene thermal maximum, which is also indicated in geochemical proxies of the lake sediments. A maximum in organic matter accumulation in one of the three studied lakes c. 3 cal. ka BP can probably be ascribed to a late Holocene short‐duration temperature maximum or a period of increased aridity. Cenococcum geophilum sclerotia are common in the late Holocene, implying increased soil erosion during the Neoglaciation. A comparison with sediment and macrofossil records from inland shows similar Holocene trends and a similar immigration history. It also reveals that there has been a significant gradient throughout the Holocene, from an oceanic and stable climate at the outer coast to a more continental and unstable climate with warmer summers and drier conditions close to the margin of the Greenland ice sheet, where the buffer capacity of the sea is lower.  相似文献   

6.
Core 2011804‐0010 from easternmost Lancaster Sound provides important insights into deglacial timing and style at the marine margin of the NE Laurentide Ice Sheet (LIS). Spanning 13.2–11.0 cal. ka BP and investigated for ice‐rafted debris (IRD), foraminifera, biogenic silica and total organic carbon, the stratigraphy comprises a lithofacies progression from proximal grounding line and sub‐ice shelf environments to open glaciomarine deposition; a sequence similar to deposits from Antarctic ice shelves. These results are the first marine evidence of a former ice shelf in the eastern Northwest Passage and are consistent with a preceding phase of ice streaming in eastern Lancaster Sound. Initial glacial float‐off and retreat occurred >13.2 cal. ka BP, followed by formation of an extensive deglacial ice shelf during the Younger Dryas, which acted to stabilize the retreating margin of the NE LIS until 12.5 cal. ka BP. IRD analyses of sub‐ice shelf facies indicate initial high input from source areas on northern Baffin Island delivered to Lancaster Sound by a tributary ice stream in Admiralty Inlet. After ice shelf break‐up, Bylot Island became the dominant source area. Foraminifera are dominated by characteristic ice‐proximal glaciomarine benthics (Cassidulina reniforme, Elphidium excavatum f. clavata), complemented by advected Atlantic water (Cassidulina neoteretis, Neogloboquadrina pachyderma) and enhanced current indicators (Lobatula lobatula). The biostratigraphy further supports the ice shelf model, with advection of sparse faunas beneath the ice shelf, followed by increased productivity under open water glaciomarine conditions. The absence of Holocene sediments in the core suggests that the uppermost deposits were removed, most likely due to mass transport resulting from the site's proximity to modern tidewater glacier margins. Collectively, this study presents important new constraints on the deglacial behaviour of the NE Laurentide Ice Sheet, with implications for past ice sheet stability, ice‐rafted sediment delivery, and ice−ocean interactions in this complex archipelago setting.  相似文献   

7.
Based on geological and archaeological proxies from NW Russia and NE Estonia and on GIS‐based modelling, shore displacement during the Stone Age in the Narva‐Luga Klint Bay area in the eastern Gulf of Finland was reconstructed. The reconstructed shore displacement curve displays three regressive phases in the Baltic Sea history, interrupted by the rapid Ancylus Lake and Litorina Sea transgressions c. 10.9–10.2 cal. ka BP and c. 8.5–7.3 cal. ka BP, respectively. During the Ancylus transgression the lake level rose 9 m at an average rate of about 13 mm per year, while during the Litorina transgression the sea level rose 8 m at an average rate of about 7 mm per year. The results show that the highest shoreline of Ancylus Lake at an altitude of 8–17 m a.s.l. was formed c. 10.2 cal. ka BP and that of the Litorina Sea at an altitude of 6–14 m a.s.l., c. 7.3 cal. ka BP. The oldest traces of human activity dated to 8.5–7.9 cal. ka BP are associated with the palaeo‐Narva River in the period of low water level in the Baltic basin at the beginning of the Litorina Sea transgression. The coastal settlement associated with the Litorina Sea lagoon, presently represented by 33 Stone Age sites, developed in the area c. 7.1 cal. ka BP and existed there for more than 2000 years. Transformation from the coastal settlement back to the river settlement indicates a change from a fishing‐and‐hunting economy to farming and animal husbandry c. 4.4 cal. ka BP, coinciding with the time of the overgrowing of the lagoon in the Narva‐Luga Klint Bay area.  相似文献   

8.
AMS 14C ages of post-glacial core sediments from the subaqueous Yangtze delta, along with sedimentary structures and distributions of grain size, pollen spores, and dinoflagellate cysts, show an estuarine depositional system from 13 to 8.4 cal ka BP and a deltaic system from 5.9 cal ka BP to the present. The estuarine system consists of intertidal to subtidal flat, estuarine, and estuarine-front facies, characterized by sand–mud couplets and a high sedimentation rate. The deltaic system includes nearshore shelf and prodelta mud featured by lower sedimentation rate, markedly fewer coastal wetland herbaceous pollens, and more dinoflagellate cysts. We explain the extremely high sedimentation rate during 9.2–8.4 cal ka BP at the study site as a result of rapid sea-level rise, high sediment load due to the unstable monsoonal climate, and subaqueous decrease of elevation from inner to outer estuary. A depositional hiatus occurred during 8.2–5.9 cal ka BP, the transition from estuarine to deltaic system, caused possibly by a shortage of sediment supply resulting from delta initiation in paleo-incised Yangtze valley and strong tidal or storm-related reworking in offshore areas. The subsequent development of deltaic system at the study site indicates accelerated progradation of Yangtze delta post-5.9 cal ka BP.  相似文献   

9.
The Baltic Sea (~393 000 km2) is the largest brackish sea in the world and its hydrographic and environmental conditions are strongly dependent on the frequency of saline water inflows from the North Sea. To improve our understanding of the natural variability of the Baltic Sea ecosystem detailed reconstructions of past saline water inflow changes based on palaeoecological archives are needed. Here we present a high‐resolution study of benthic foraminiferal assemblages accompanied by sediment geochemistry (loss on ignition, total organic carbon) and other microfossil data (ostracods and cladocerans) from a well‐dated 8‐m‐long gravity core taken in the Bornholm Basin. The foraminiferal diversity in the core is low and dominated by species of Elphidium. The benthic foraminiferal faunas in the central Baltic require oxic bottom water conditions and salinities >11–12 PSU. Consequently, shell abundance peaks in the record reflect frequent saline water inflow phases. The first appearance of foraminiferal tests and ostracods in the investigated sediment core is dated to c. 6.9 cal. ka BP and attributed to the first inflows of saline and oxygenated bottom waters into the Bornholm Basin during the Littorina Sea transgression. The transgression terminated the Ancylus Lake phase, reflected in the studied record by abundant cladocerans. High absolute foraminiferal abundances are found within two time intervals: (i) c. 5.5–4.0 cal. ka BP (Holocene Thermal Maximum) and (ii) c. 1.3–0.75 cal. ka BP (Medieval Climate Anomaly). Our data also show three intervals of absent or low saline water inflows: (i) c. 6.5–6.0 cal. ka BP, (ii) c. 3.0–2.3 cal. ka BP and (iii) c. 0.5–0.1 cal. ka BP (Little Ice Age). Our study demonstrates a strong effect of saline and well‐oxygenated water inflows from the Atlantic Ocean on the Baltic Sea ecosystem over millennial time scales, which is linked to the major climate transitions over the last 7 ka.  相似文献   

10.
渤海湾西岸BT113孔35ka以来的沉积环境演化与海陆作用   总被引:1,自引:0,他引:1  
根据渤海湾西岸有孔虫和介形虫与年代学(AMS14C和OSL测年)研究,将该段岩心自下而上划分为6个沉积单元(U1—U6),它们依次形成于晚更新世的河流及全新世的潮滩、浅海、前三角洲、三角洲前缘和三角洲平原沉积环境,结束于约35 ka的U1单元的陆相环境,证实晚更新世低海面时渤海湾西岸未受海水影响。U1和U2单元之间,存在历时约27 ka的沉积间断(35~8.5 ka cal BP),研究区因此缺失早全新世沉积。U2单元的潮滩环境指示全新世海侵于8.5 ka cal BP到达渤海湾西岸,当时相对海平面为-16.7 m。U3单元为浅海环境,约6 ka cal BP时相对海平面上升到-6.8~-1.8 m。8.5~6 ka cal BP期间的海面上升速率是0.4~0.6 cm/a,可能与MWP1C事件有关。U4—U5单元,转为三角洲环境,沉积速率增大,反映自3.7 ka cal BP河流输入影响加强,约1.3 ka cal BP时成陆,形成U6单元。晚更新世35 ka以来的陆海环境演化,总体上是对气候变化控制下的海面变化的响应。  相似文献   

11.
Fifty‐six new radiocarbon dates from driftwood (mainly Larix, Picea and Populus spp.) collected from the modern and raised shorelines of Melville and Eglinton islands (western Canadian High Arctic) are presented and compared to other driftwood collections from the Canadian Arctic Archipelago (CAA) and Greenland. By documenting the species (provenance) and spatio‐temporal distribution of driftwood at various sites across the Arctic, regional characterizations of former sea‐ice conditions and changes in Arctic Ocean circulation patterns may be deduced. The earliest postglacial invasion of the Canadian Arctic Archipelago by driftwood is recorded on central Melville Island at c. 11 cal. ka BP, suggesting that the modern circulation pattern of Arctic Ocean surface water southeast through the archipelago was established >1000 years earlier than previously proposed. Throughout most of the Holocene until c. 1.0 cal. ka BP, the rate of driftwood delivery to the western Arctic islands was low (~1 recorded stranding event per 200 years) and intermittent, with the longest break in the record occurring between c. 3.0 and 5.0 cal. ka BP. This 2000‐year hiatus is attributed to a period of colder temperatures causing severe sea‐ice conditions and effectively making the coasts of the western Arctic islands inaccessible. After c. 1.0 cal. ka BP, driftwood incursion increased to maximum Holocene levels (~1 recorded stranding event every 20 years). Driftwood identified to the genus level as Larix that was delivered at this time suggests that the Trans Polar Drift current was regularly in its most southwestern position, related to a dominantly positive Arctic Oscillation mode. The Little Ice Age appears to have had little impact on driftwood entry to the western Canadian Arctic Archipelago, indeed the general abundance in the latest Holocene may record infrequent landfast sea ice.  相似文献   

12.
Determining the relative influence of eustasy versus local sedimentary processes on strata formation is a fundamental challenge in the study of continental margin stratigraphy. In this paper, the relative contribution of these factors on continental margin evolution during the Middle to Late Pleistocene is evaluated using samples from Integrated Ocean Drilling Program Expedition 317. Core‐logging, biostratigraphy and quantitative X‐ray diffraction mineralogy are used to delineate continental shelf sedimentary systems. Major lithological unconformities bound stratigraphic sequences that contain recurring compositional patterns and that resemble other examples of Middle to Upper Pleistocene sequences. However, a preliminary chronology suggests that sequence boundary formation cannot be linked ‘one to one’ with eustatic cycles and therefore these sequences can contain multiple ca 100 ka eustatic cycles. Smaller amplitude, higher frequency transitions in sediment composition are interpreted as stratigraphic sequences driven by more rapid perturbations in the interplay of accommodation and sediment supply; their stratigraphy is variable in time and across the shelf, suggesting a strong influence of local sedimentary forcing in their formation. Changes in sediment composition after the Middle Pleistocene Transition indicate that sediment transfer from onshore sources in the glaciated Southern Alps to the middle‐shelf occurred over a single 100 ka glacio‐eustatic cycle, with an additional 100 ka lag before the mineralogical signal was preserved on the outer‐shelf. This phenomenon is coincident with rapid shelf progradation in this basin, suggesting a causal relation between across‐shelf sediment transport and margin progradation. This is one of very few studies that provide insights at the core scale into the processes driving continental margin evolution during the Middle to Late Pleistocene. This work shows that compositional changes in mud‐dominated successions can lead to a sequence stratigraphic interpretation and the identification of high‐frequency sequences, which may not be possible using a conventional stratigraphic approach.  相似文献   

13.
We present marine sedimentologic and radiocarbon data for the timing of retreat of the largely marine-based Antarctic Peninsula Ice Sheet since the Last Glacial Maximum (LGM). Our findings indicate minimum estimates of deglaciation between 18,000 and 9000 calibrated years before present (cal yr BP), roughly in phase with the Northern Hemisphere deglaciation and eustatic sea-level rise. Our findings show this retreat occurred progressively from the outer, middle, and inner continental shelf regions, as well as progressively from the north to the south. Retreat initiated on the outer shelf of the northern Peninsula by 18,000 cal yr BP and continued southward by 14,000 cal yr BP on the outer shelf of Marguerite Bay, several thousand years earlier than estimated by numeric models. While individual cores yield estimates of glacial retreat that may vary up to ±1100 years, we note steps in the data occur at 14,000 and possibly 11,000 cal yr BP, coincidental to rapidly rising (eustatic) sea level, including the well documented melt water pulses (MWP 1a and 1b). These data support the hypothesis that rapidly rising sea level is associated with marine ice sheet destabilization, although additional dates are necessary to substantiate this finding. This study highlights problems with radiocarbon dating acid insoluble organic (AIO) matter in proximal Lateglacial sediments as well as the need for more accurate dating techniques.  相似文献   

14.
Pollen analyses (pollen, dinocysts and others) were combined with high‐resolution seismic‐stratigraphy sequences to reconstruct environmental dynamics and regional sea‐level (RSL) changes in a ria in NW Iberia. The chronological framework was established using radiocarbon dating and pollen markers that are related to a number of historical events. Major intensifications of the regional upwelling regime occurred during predominant NAO positive stages, dated to c. 4600–4300, 3800–3600, 3200–2700 and 2600–2400 cal. a BP. The regional Early Highstand System Tract spans from before 4500 to c. 3200 cal. a BP. During this period RSL was still rising, but several short episodes of higher terrestrial influence were detected between c. 4300–3800 and 3600–3200 cal. a BP. A readjustment occurred between 3200 and 2300 cal. a BP, including the first stage of relative sea‐level drop (2.8 ka event) dated to 3200–2800 cal. a BP, with the RSL recovering between 2800 and 2300 cal. a BP. The subsequent Later Highstand System Tract, after 2300 cal. a BP, corresponds to a final period of rising sea level that caused the final inundation of San Simón Bay. Since then, only minor changes in relative sea level can be postulated (e.g. towards the end of the Roman Period, in the Middle Ages and during the Little Ice Age). This new evidence is consistent with most of the available palaeoecological and historical information, but it provides a more detailed, near‐complete succession of simultaneous changes occurring in both the terrestrial and the marine ecosystems.  相似文献   

15.
Nioghalvfjerdsfjorden in North-East Greenland is at present covered by a floating glacier. Raised marine deposits in the surrounding area contain shells of marine molluscs, bones of marine mammals and pieces of driftwood. A fairly systematic sampling of such material has been conducted, followed by extensive radiocarbon dating. We suggest that the Greenland ice sheet extended onto the shelf offshore North-East Greenland during isotope stage 2, perhaps even reaching the shelf break. During the subsequent recession of the ice sheet, the entrance of Nioghalvfjerdsfjorden had become ice-free by 9.7 cal. ka BP. The recession culminated between 7.7 and 4.5 cal. ka BP, during which time the fjord was glacier-free along its entire 80 km length. No dates younger than 4.5 cal. ka BP are available on marine material from the fjord, and it seems probable that the fjord has been continuously covered by the floating glacier since this time. The maximum glaciation was attained around AD 1900, after which thinning and recession took place. The marine limit increases from c. 40 m above sea level near the present margin of the Inland Ice to c. 65 m above sea level at the outer coast. These figures fit into the regional pattern of the marine limit for areas both to the south and north. The marine fauna comprise two bivalves, Macoma calcarea and Serripes groenlandicus, that may represent a southern element present during the Holocene temperature optimum. Remains of three taxa of southern extralimital terrestrial and limnic plants were dated to 5.1 cal. ka BP, and remains of another extralimital plant were dated to 8.8 and 8.5 cal. ka BP. The known Holocene time ranges of the willow Salix arctica and the lemming Dicrostonyx torquatus have been extended back to 8.8 and 6.4 cal. ka BP, respectively, providing minimum dates for their immigration to Greenland.  相似文献   

16.
The growth and decay of the end‐Ordovician Gondwanan glaciation is globally reflected by facies changes in sedimentary sequences, which record a major eustatic fall and subsequent rise in the Hirnantian Stage at the end of the Ordovician. However, there are different reported estimates of the magnitude and pattern of sea‐level change. Particularly good evidence for end‐Ordovician sea‐level change comes from a sequence at Meifod in central Wales, which has a karstified limestone unit within a channel incised into marine shelf sediments. Pre‐glacial (Rawtheyan) mudstones have a diverse fauna suggesting a mid‐to‐deep‐shelf water depth of c. 60 m. The channel, 20 m deep, was incised into these mudstones and partially filled with a mixture of fine sand and detrital carbonate. The taphonomy of bioclasts and intraclasts indicates that many had a long residence time on the sea floor or suffered diagenesis after shallow burial before being resedimented into the channel. The presence of carbonates on the Welsh shelf is atypical and they are interpreted as having accumulated as patches during a minor regression prior to the main glacio‐eustatic fall. Comparison of the carbon stable‐isotopic values of the bioclast material with the global isotopic record confirms that most of the material is of Rawtheyan age, but that some is Hirnantian. The resedimented carbonates lithified rapidly and formed a limestone, several metres thick, in the deepest parts of the channel. As sea‐level fell, this limestone was exposed and eroded into karstic domes and pillars with a relief of over 2 m. The overall, glacio‐eustatic, sea‐level fall is estimated to be in excess of 80 m. A succeeding sea‐level rise estimated to be 40–50 m is recorded in the laminated crust that mantles the karstic domes and pillars. The crust is formed of encrusting bryozoans, associated cystoids, crinoid holdfasts and clusters of the brachiopod Paromalomena, which is normally associated with mid‐shelf environments. Fine sands buried the karst topography and accumulated to fill the channel. In the sandstones at the base of the channel there is a Hirnantia fauna, while in the sandstones high in the channel‐sequence there is cross‐stratification characteristic of mid‐shoreface environments. This would indicate a fall of sea‐level of c. 30 m. The subsequent major transgression marking the end of the glaciation is not recorded at the Meifod locality, but nearby exposures of mudstones suggest a return to mid‐to‐deep‐shelf environments, similar to those that prevailed before the Hirnantian regression. The Meifod sequence provides strong evidence for the magnitude of the Hirnantian sea‐level changes and by implication confirm larger estimates for the size of the ice sheets. Smaller oscillations in relative sea‐level seen at Meifod may be local phenomena or may reflect eustatic changes that have not been widely reported elsewhere. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
The impact of the Laurentide Ice Sheet (LIS) deglaciation on Northern Hemisphere early Holocene climate can be evaluated only once a detailed chronology of ice history and sea‐level change is established. Foxe Peninsula is ideally situated on the northern boundary of Hudson Strait, and preserves a chronostratigraphy that provides important glaciological insights regarding changes in ice‐sheet position and relative sea level before and after the 8.2 ka cooling event. We utilized a combination of radiocarbon ages, adjusted with a new locally derived ΔR, and terrestrial in‐situ cosmogenic nuclide (TCN) exposure ages to develop a chronology for early‐Holocene events in the northern Hudson Strait. A marine limit at 192 m a.s.l., dated at 8.1–7.9 cal. ka BP, provides the timing of deglaciation following the 8.2 ka event, confirming that ice persisted at least north of Hudson Bay until then. A moraine complex and esker morphosequence, the Foxe Moraine, relates to glaciomarine outwash deltas and beaches at 160 m a.s.l., and is tightly dated at 7.6 cal. ka BP with a combination of shell dates and exposure ages on boulders. The final rapid collapse of Foxe Peninsula ice occurred by 7.1–6.9 cal. ka BP (radiocarbon dates and TCN depth profile age on an outwash delta), which supports the hypothesis that LIS melting contributed to the contemporaneous global sea‐level rise known as the Catastrophic Rise Event 3 (CRE‐3).  相似文献   

18.
This paper investigates the processes governing bedrock bedform evolution in ice sheet and ice stream areas in central West Greenland, and explores the evidence for a cross‐shelf ice stream at the Last Glacial Maximum (LGM). To the east of Sisimiut the formation of streamlined bedforms with high elongation ratios and high bedform density has been controlled by geological structure and topography in slow‐flowing ice sheet areas. At the coast, the effects of regional flow convergence, caused by coastal fjord orientation, routed ice into the Sisimiut/Itilleq area where it formed an ice stream onset zone. This funnelled ice into an offshore trough (Holsteinsborg Dyb), resulting in a southwesterly regional ice flow direction and the formation of a topographically routed ice stream (Holsteinsborg Isbrae). To the south of this, striae and bedform evidence show that local valley glaciers initially flowed east to west across the coast, but were later redirected by the Itilleq Fjord ice which turned southwestward due to diffluent flow and deflection by Holsteinsborg Isbrae. Roches moutonnées in this area have low elongation ratios and high bedform density, but do not provide unequivocal support for ice streaming, as they are a product of both bedrock structure and changes in ice flow direction, rather than enhanced flow velocities. Cosmogenic surface exposure ages limit maximum ice sheet surface elevation to ca. 755–810 m above sea level in this region. Such ice thickness enabled Holsteinsborg Isbrae to reach the mid/outer continental shelf during the LGM, and to contribute to the formation of a trough mouth fan and the Outer Hellefisk moraines. Initial deglaciation across this region was driven by rising sea level and increasing air temperatures prior to the Bølling Interstadial at ca. 14.5 cal. ka BP. Between 12 and 10 cal. ka BP both increased air and ocean temperatures post the Younger Dryas, and peak sea‐level rise up to the marine limit, caused accelerated thinning and marginal retreat through calving, although dating evidence suggests ice streams remained along the inner shelf/coast boundary until at least ca. 10 cal. ka BP, their longevity maintained by increased ice thickness and ice discharge. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Palynological and sedimentological analyses were performed on the sediment core HH16-1205-GC retrieved from the central Isfjorden, West Spitsbergen. The sequence, which spans the last 7000 years, revealed an overall cooling trend with an important climate shift between 4.4 and 3.8 cal. ka BP, in addition to millennial-scale oscillations. Sea-surface reconstruction from dinocyst assemblages indicates a decrease in summer sea-surface temperature, from 2.5 to 1.5 °C, and primary productivity, from 750 to 650 gC m−2 a−1 over the last 7000 years. From around 6.8 to 5.8 cal. ka BP, the sedimentological and palynological data suggest a predominant sediment supply from the inner part of the fjord, ice rafting, dense sea ice cover, strongly stratified water masses and high primary productivity. The interval from 4.4 to 3.8 cal. ka BP is marked by a layer of coarser material and a significant decrease in the grain-size mode. Our geochemical data show large-amplitude fluctuations after 2.0 cal. ka BP, while an increase in the dinocysts Impagidinium pallidum and Spiniferites elongatus from 2.0 to 1.2 cal. ka BP suggests enhanced Atlantic Water inflow. The dinocyst-based reconstructions also reveal large-amplitude millennial fluctuations in sea ice cover, summer sea-surface temperature and salinity. Wavelet analysis and cross-wavelet analysis on K/Ti ratio coupled with sea-ice estimates confirm a strong signal with a periodicity of 1200–1500 years.  相似文献   

20.
Phreatomagmatic volcanoes and their sedimentary products can preserve high‐resolution records of earth surface processes because of their high deposition rate. Songaksan, Jeju Island, Korea, is a phreatomagmatic volcano, which erupted c. 3.7 ka BP in a coastal setting. Its tuff ring preserves a record of intertidal to supratidal facies transition in the basal part, which reveals the position of palaeo‐high‐tide level for at least 13 high‐tide events, and a record of a storm‐surge event in the middle part of the tuff ring, which lasted approximately three tidal cycles. Based on these features, the phreatomagmatic eruption of Songaksan is estimated to have taken place over a month. The sea level at the time was almost identical to that at present. This study shows that coastal phreatomagmatic volcanoes can preserve high‐resolution records of eruption duration and palaeo‐sea level, and can provide accurately levelled and dated data points to the Quaternary sea‐level curve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号