首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of the Ruseifa municipal landfill on the shallow groundwater aquifers in the area was investigated in two separate sites. The first one was not used since 1994, whereas the other is still being used for dumping. Fourteen electrical resistivity soundings were performed to detect the leachate and its effect on the quality of the groundwater. Results indicated that the solid waste thickness of the landfill was ranged from 3 to 20 m with resistivity value less than 10 Ω m. Based on the resistivity decreases of values less than 5 Ω m, the leachate was detected in the landfill sites at depths ranged from 10 to 50 m. However, the flow direction of the leachate at depth ranging 10–20 m in the terminated site was toward north, whereas the flow direction of the leachate in the site still used for dumping was toward east–northeast which causes the major source of groundwater pollution.  相似文献   

2.
An investigation was conducted at Astrolabe Park landfill, a decommissioned municipal landfill in Sydney, Australia, to assess the physical and chemical processes affecting the distribution of inorganic constituents in the leachate plume. The plume is migrating from the landfill towards a groundwater-fed pond into which leachate-impacted groundwater discharges. Borehole geophysical logging and depth-discrete groundwater sampling were used to delineate the distribution of the leachate plume along two groundwater flow paths between the landfill and the shore of the pond. Borehole geophysical logs indicate a strong correlation between bulk and fluid electrical conductivity (EC) values, and help to identify small-scale heterogeneities that comprise a major constraint on contaminant transport within the aquifer. Variations in the distribution of several indicator parameters (EC, HCO3, pH, Eh, NH4+/NO3, S2–/SO42–) are used to assess the dominant processes affecting contaminant distribution along the flow path, including mixing of fresh and contaminated groundwater, oxidation/reduction reactions and ion exchange.  相似文献   

3.
The El Jadida landfill is one among many uncontrolled dumping sites in Morocco with no bottom liner. About 150 tons/day of solid wastes from mixed urban and industrial origins are placed directly on the ground. At the site of this landfill, the groundwaters circulate deeply (10–15 m) in the Cenomanian rock (calcareous–marl), which is characterised by an important permeability from cracks. The soil is sand–clay characterized by a weak coefficient of retention.The phreatic water ascends to the bottom of three quarries, which are located within the landfill. These circumstances, along with the lack of a leachate collection system, worsen the risks for a potential deterioration of the aquifer.To evaluate groundwater pollution due to this urban landfill, piezometric level and geochemical analyses have been monitored since 1999 on 60 wells. The landfill leachate has been collected from the three quarries that are located within the landfill. The average results of geochemical analyses show an important polluant charge vehiculed by landfill leachate (chloride = 5680 mg l−1, chemical oxygen demand = 1000 mg l−1, iron = 23 000 μg l−1). They show also an important qualitative degradation of the groundwater, especially in the parts situated in the down gradient area and in direct proximity to the landfill. In these polluted zones, we have observed the following values: higher than 4.5 mS cm−1 in electric conductivity, 1620 and 1000 mg l−1 respectively in chlorides and sulfate (), 15–25 μg l−1 in cadmium, and 60–100 μg l−1 in chromium. These concentrations widely exceed the standard values for potable water.Several determining factors in the evolution of groundwater contamination have been highlighted, such as (1) depth of the water table, (2) permeability of soil and unsaturated zone, (3) effective infiltration, (4) humidity and (5) absence of a system for leachate drainage. So, to reduce the pollution risks of the groundwater, it is necessary to set a system of collection, drainage and treatment of landfill leachates and to emplace an impermeable surface at the site of landfill, in order to limit the infiltration of leachate.  相似文献   

4.
 This paper presents the results of field tests of hydrologic parameters in a landfill and the results of numerical simulation to find the efficiency of the pumping method to reduce leachate levels in the landfill. The field hydraulic conductivity and storativity of waste and buried cover soils in the landfill are measured by pumping and slug tests. The hydrologic condition inside the landfill is first calibrated using the drawdown-time curve obtained from the pumping test, and the flow behavior of leachate during pumping in the landfill, when various layers of waste and buried cover soil exist, is analyzed through three-dimensional numerical simulation of flow. The results of the field investigation show that the buried cover soil of low hydraulic conductivity forms an impermeable layer preventing the downward flow of leachate and upward flow of landfill gas. The hydraulic conductivities of the pumping test and slug tests were quite close on the same order of magnitude. It was also possible to match the drawdown-time data of the field tests with those of the model using input data close to the hydrologic property obtained from the field tests. The numerical flow analysis showed that pumping was possible up to 120 tons/day for a single well without a drain, while the pumping rate could be increased to 300 tons/day for the same well with the drain. From the vertical section of the flow vector with a horizontal drain, the barrier role of buried cover soil is identified, which was proposed by examining the water contents of the disposed cover soil and waste in the field. Received: 15 May 1998 · Accepted: 4 January 1999  相似文献   

5.
 Two waste-disposal sites (old and new) in Calabar Municipality, SE Nigeria were evaluated to assess their suitability as landfill sites and their impact on the groundwater. The field investigation included surface geological/hydrogeological and geochemical studies. Leachate and groundwater were sampled and analysed for 3 months (April, May and June, 1997) for geochemical characterisation. The results indicate that the two waste-disposal sites in the Calabar Municipality do not meet the requirements as landfill sites. Physico-chemical analyses for temperature, pH, conductivity, dissolved oxygen, biological oxygen demand after 5 days of incubation (BOD5), sulphate, nitrates, nitrite, trace and major elements in the leachate known to impact human health and the environment, indicate high levels of pollution. The values for groundwater in the vicinity of the disposal sites were found to be within the World Health Organisation (WHO) permissible limit. Received: 29 March 1999 · Accepted: 3 January 2000  相似文献   

6.
 The objective in designing lining systems for the containment of the leachate generated within a landfill is the prevention of contamination of groundwater and surface waters. The technology involving the design of these systems has progressed to a point that the integrity of the containment can be relied on over the long term. Double-lined systems provide the additional benefit of being able to quantify the performance of the lining system through the detection of leakage through the upper liner. The difficulty, however, lies with the qualitative evaluation of the system. This paper addresses this issue and offers a practical approach for the design and evaluation of double-lined systems and the leakage that is detected. Received: 16 February 1996 · Accepted: 29 May 1996  相似文献   

7.
Geoelectrical surveys of the Nanjido waste landfill in Seoul,Korea   总被引:3,自引:0,他引:3  
Electrical surveys have routinely been taken to map and monitor groundwater contamination. In 1994-1996, various electrical surveys were applied to investigate contaminant distributions in the ground at the Nanjido landfill. The geophysical survey data were compared with other available information, particularly boring data. Interpretations of electrical survey data show low resistivity zones below 10 ohm-m which appear to be zones fully saturated with leachate. Annual variations of resistivity anomalies clearly indicate that resistivities and thicknesses of layers contaminated by leachate become lower and thicker in and around the Nanjido landfill during one year. In particular, mean thickness of saturated layers with leachate increased by about 3-6 m/year and the resistivity of bedrock decreased. It seems obvious that ground contamination by leachate is in progress. In the area northeast of the landfill, no evidence of bedrock contamination is indicated. Soundings made at one year intervals in this area do not show any evidence of further ground contamination by leachate. From these results, it appears that contamination of the weathered zone and bedrock is in progress mainly southwest of the Nanjido landfill.  相似文献   

8.
Industrial waste landfills produce great impacts on soil and groundwater. There are many industrial waste landfills in Vale dos Sinos, Southern Brazil, which were inadequately planned and maintained since the industry started in the first half of the twentieth century. The largest industrial landfill in the Valley, which causes the most severe impacts on soil and groundwater, is the subject of this paper, which studies the environmental impacts and behavior of contaminants in soil. The landfill was carefully mapped on a scale of 1:1,000; 88 samples were collected from soil probes; the leachate of three samples was comprehensively analyzed; and soils mineralogy and chemistry were studied. Few studies have been made on this landfill. This study shows widespread contamination of soil in the surrounding areas of the landfill. Chromium, chloride and ammonium have the highest contamination levels, reflecting their high contents in landfill leachate. Contamination by petroleum hydrocarbons, cyanide and mercury is registered in more than 65% of soil samples with low concentrations. Lead, copper and barium show low contamination restricted to a few soil samples. Soil contamination occurs mainly in the unsaturated zone of the aquifer at the convergence points of stormwater, showing that the preferential transport of contaminants occurs on surface flow followed by soil infiltration. The results of leaching tests indicate high metal sorption capacity of soil. The remediation of contaminated soil must contain at least the following actions: sealing the top of the landfill, installation of geochemical barriers, removal of the liquid waste basins without sealing the base and collection and treatment of the rainwater drainage.  相似文献   

9.
The leachate produced by the Municipal Solid Waste Landfill of São Pedro da Aldeia (State of Rio de Janeiro, Brazil) flows almost entirely in one direction guided by a natural ditch in the bottom of a gentle valley. This landfill has been in operation with no concern to environmental protection, such as containment systems or leachate drainage and treatment. This inadequate operation causes severe damage to flora, wildlife and local farmers, due to continuous propagation of contaminants in the groundwater. Field and laboratory measurements of ionic concentrations of several contaminants found in the groundwater adjacent the landfill are presented and interpreted in this paper. Several farms are located adjacent to the landfill, comprising about 1,000 inhabitants that use the ground water for personal use and land farming activities. The main purpose of this paper is to assess the environmental hazard to the surrounding properties as the landfill is still in operation. This is accomplished by estimating the maximum distance travelled by the leachate plume based on the statistical interpretation of the measured ionic concentration of several contaminants found commonly in landfills. The main recommendation coming from the statistical assessment is that safe groundwater consumption should be limited to a minimum distance of 400 m from the contamination source, provided that the quality of ground water is continuously monitored while the MSW landfill is still in operation.  相似文献   

10.
The influence of local hydrogeology on natural attenuation of contaminants from landfill leachates in shallow aquifer underlying the active Olusosun landfill base in Lagos was investigated. In addition, the level of groundwater contamination in the vicinity of the landfill and of leachate migration pattern in groundwater down gradient of the landfill base was equally assessed. Landfill leachate and groundwater samples were collected and analyzed and characterized. Physico-chemical analyses of sampled water followed standard analytical methods. Analytical results showed a measurable impact of leachate outflows on groundwater quality. Elevated levels of anions: nitrate, chloride and sulphate in the groundwater body and heavy metals: Cr3. Cd and Cu, were detected at measurable levels in groundwater down gradient of the landfill location without any particular attenuation pattern. The migration pattern and dispersion of leachates down gradient, 750 m away from the landfill location are irregular and difficult to predict as depicted by levels of contaminants present in groundwater. The study highlighted the importance of soil stratigraphy beneath the landfill base as an important factor in the natural attenuation of leachate constituents in the groundwater body.  相似文献   

11.
 Cover systems are widely used to safeguard landfills and contaminated sites. The evaluation of the water balance is crucial for the design of landfill covers. The Hydrologic Evaluation of Landfill Performance (HELP) model of the US Environmental Protection Agency was developed for this purpose. This paper discusses some limitations of version 2 of this model and some operational difficulties for the use of this model in Germany, which has been developed for the United States. The model results are tested against field data of the water balance, measured on test fields on the Georgswerder landfill in Hamburg. Theoretically, HELP considers gravitational forces as driving forces of water flow only. Therefore capillary barriers cannot be simulated. Furthermore, the formation of and the flow through macropores are not considered, a main critical process that the diminishes the effectiveness of compacted soil liners. In the output comparison, the matching of measured and simulated data is quite good for lateral drainage, but failed for surface runoff and liner leakage through compacted soil liners. A further validation study is planned for HELP version 3 using a broader range of test field data. Received: 10 January 1995 · Accepted: 14 November 1995  相似文献   

12.
A geochemical assessment of groundwater quality and possible contamination in the vicinity of the Bhalswa landfill site was carried out by using a hydrochemical approach with graphical and multivariate statistical methods with the objective of identifying the occurrence of various geochemical processes and understanding the impact of landfill leachates on groundwater quality. Results indicate that nitrate, fluoride and heavy-metal pollution are in an alarming state with respect to the use of groundwater for drinking purposes. Various graphical plots and statistical analyses have been applied to the chemical data based on the ionic constituents, water types, and hydrochemical facies to infer the impact of the landfill on groundwater quality. The statistical analysis and spatial and temporal variations indicate the leaching of contaminants from the landfill to the groundwater aquifer system. The concentrations of heavy metals in the landfill leachates are as follows: Fe (22 mg/l), Mn (~20 mg/l), Cu (~10 mg/l), Pb (~2 mg/l), Ni (0.25 mg/l), Zn (~10 mg/l), Cd (~0.2 mg/l), Cl (~4,000 mg/l), SO42− (~3,320 mg/l), PO43− (~4 mg/l), NO3 (30 mg/l) and fluoride (~50 mg/l); all were much higher than the standards. The study reveals that the landfill is in a depleted phase and is affecting groundwater quality in its vicinity and the surrounding area due to leaching of contaminants.  相似文献   

13.
Groundwater is inherently susceptible to contamination from anthropogenic activities and remediation is very difficult and expensive. Prevention of contamination is hence critical in effective groundwater management. In this paper an attempt has been made to assess aquifer vulnerability at the Russeifa solid waste landfill. This disposal site is placed at the most important aquifer in Jordan, which is known as Amman-Wadi Sir (B2/A7). The daily-generated leachate within the landfill is about 160 m3/day and there is no system for collecting and treating this leachate. Therefore, the leachate infiltrates to groundwater and degrades the quality of the groundwater. The area is strongly vulnerable to pollution due to the presence of intensive agricultural activity, the solid waste disposal site and industries. Increasing groundwater demand makes the protection of the aquifer from pollution crucial. Physical and hydrogeological characteristics make the aquifer susceptible to pollution. The vulnerability of groundwater to contamination in the study area was quantified using the DRASTIC model. The DRASTIC model uses the following seven parameters: depth to water, recharge, aquifer media, soil media, topography, impact on vadose zone and hydraulic conductivity. The water level data were measured in the observation wells within the disposal site. The recharge is derived based on precipitation, land use and soil characteristics. The aquifer media was obtained from a geological map of the area. The topography is obtained from the Natural Resources Authority of Jordan, 1:50,000 scale topographic map. The impact on the vadose zone is defined by the soil permeability and depth to water. The hydraulic conductivity was obtained from the field pumping tests. The calculated DRASTIC index number indicates a moderate pollution potential for the study area.  相似文献   

14.
 An engineering geological investigation has been undertaken of a proposed landfill site in coastal southwestern Ghana which is characterized by torrential rains, high relative humidity, shallow groundwater conditions and almost surrounded by a ridge. The study shows that the site has some desirable characteristics such as availability of suitable soils for the construction of the capping and bottom liners of the landfill, a large tract of land for landfilling operation and its location close to a major highway. However, the groundwater table was shallow and there was a high potential for leachate intrusion into and consequent contamination of nearby groundwater abstraction wells and surface potable water sources thereby constituting serious threat to life. Construction costs could be prohibitive as extensive dewatering and backfilling of vast portions of the project site would be required to enable the provision of a separation between the shallow water table and the bottom of the landfill. Received: 20 January 1998 · Accepted: 26 May 1998  相似文献   

15.
Frequent flow cutoff has a serious effect on the eco-environment of the region along the Lower Yellow River. The authors study the impact on lateral seepage quantity and groundwater cycling caused by cutoff of the Yellow River and compare it with that of the year 1999 through the numerical simulation model of groundwater flow system of the affected zone. The lateral seepage quantity decreased 53.8% on flow cutoff stage from Huayuankou to the river entrance and breaking time of 300 d. The lateral seepage quantity will decrease 46.3% if flow cutoff is from Jiahetan to the river entrance and breaking time is 300 d, and it will decrease 75.2% if flow cutoff occurs throughout the year. The lateral seepage quantity will decrease 19.8% if flow cutoff is from Luokou to the river entrance and breaking time is 300 d, and it will decrease 25.1% if flow cutoff occurs throughout the year. The lateral seepage quantity will decrease 4.7% if flow cutoff is from Lijin to the river entrance and flow cutoff occurs throughout the year. Flow cutoff of the Yellow River has a minor effect on the shape of groundwater flow domain of the affected zone. Thus, the boundary condition of the shallow groundwater system will not change. Although flow cutoff has a major influence on the riverside source fields in the Lower Yellow River, it will not have a significant effect on groundwater resources macroscopically in the affected zone of the Yellow River due to its large storage capacity. __________ Translated from Journal of Jilin University (Earth Science Edition), 2007, 37(5): 937–942 [译自: 吉林大学学报(地球科学版)]  相似文献   

16.
The role of municipal solid waste (MSW) landfill leachate on the genesis of minor amounts of pyrite associated with gypsum in an otherwise predominantly evaporitic sequence was studied in geological and geochemical terms. The potential association between landfill leachate and the conditions required for bacterial reduction of sulfate and fixation of H2S as pyrite were examined. The lithological column was generally found to contain little or no Fe. The δ34S values for sulfates were consistent with previously reported data; however, the measured δ18O values were slightly higher. Sulfides disseminated in the marl/lutite exhibited higher δ34S values (≈−8‰) than gypsum-coating pyrite crystals (δ34S < −30‰). Dissolution of gypsum to sulfate and the supply of metabolizable organic matter and Fe required for H2S fixation as sulfides may have originated from landfill leachate. Intermittent availability of leachate, a result of the precipitation regime, can facilitate sulfur disproportionation and lead to fractionations as high as   相似文献   

17.
顾华 《地质与资源》2017,26(1):62-66
垃圾填埋是目前处理城市生活垃圾普遍使用的方式,由此产生的垃圾渗滤液成为主要的地下水污染源.本文以上海市某生活垃圾填埋场作为研究对象,研究垃圾填埋对地下水的影响.通过监测该场地垃圾填埋前后2年内场区及周边地下水水质的变化情况,以垃圾填埋前调查区的地下水样品分析结果为本底值,采用本底法对地下水水质进行评价来判定地下水是否受到垃圾渗滤液的影响.评价结果显示,对于本研究的水质动态监测阶段,调查区内的浅层地下水水质暂未受到垃圾渗滤液的影响,个别监测井水质发生较大变化是由于填埋场施工建设过程中,破坏了监测井井盖及挖穿了井边含水层顶层.随着整个垃圾填埋场运行时间的延长,防渗漏措施的有效性以及垃圾渗滤液对周边地下水的影响还需要进一步研究.  相似文献   

18.
The leachate levels in the landfills in southern China are generally high. Field monitoring was carried out in the Suzhou landfill to investigate the leachate mound. The saturated hydraulic conductivity and soil–water characteristic curve (SWCC) of municipal solid waste were measured using samples taken from different depths of the landfill. Field monitoring reveals that a perched leachate mound and a substantial main leachate mound existed in the landfill. The saturated hydraulic conductivities of wastes in shallow, middle and deep depth were measured to be 4.81 × 10?2, 3.50 × 10?3 and 3.56 × 10?4 cm/s, respectively. The results of SWCC tests show that the SWCC curve was steep when matric suction was low, and the shallower the waste the steeper would be the curve. In addition to the field and laboratory tests, an unsaturated–saturated seepage analysis was conducted to simulate the development of the high leachate mound and to calculate the annual leachate production. The simulated volumetric water content in the unsaturated zone was about 40 %, which agreed well with the test result. The calculated leachate mound was consistent with the field measurement. The calculated annual and daily leachate productions were all more reasonable than the results of the HELP model.  相似文献   

19.
垃圾的堆存和填埋会产生大量的渗滤液。渗滤液对垃圾填埋场周围环境能够造成严重污染,尤其使地下水质污染而丧失利用价值。通过阜新市垃圾填埋场现场采集新鲜渗滤液水样、垃圾堆体附近土样的实验研究,获得了新鲜渗滤液的各组分浓度和垃圾堆体附近土壤的性质。结合当地地理气候等情况揭示了垃圾渗滤液中污染溶质在地下水系统中的迁移转化的动态过程,定量化预测了污染范围及时空分布,为研究该地区地下水污染控制、管理和评价提供了可靠依据。  相似文献   

20.
The present work demonstrates the environmental problems associated with the development and operation of a lined and unlined landfill site, both used for municipal solid waste landfilling, that are situated next to the city of Patra, Greece. Findings from a detailed site investigation as well calculations on hydrologic evaluation of landfill’s performance and measurements on leachate composition proved that the lined landfill site is more secure and environmental friendly compared with the unlined landfill site. Even though, until today, there is no evidence from near boreholes for severe contamination problems generated by any of the two landfills, in the forthcoming future several environmental problems are expected to occur from the unlined site. In addition the prevailing hydrogeotechnical conditions indicated that the unlined site is a potential source of contamination; hence extra remedial measures should be received by the local authorities to prevent severe contamination in soil and groundwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号