首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
浅成低温热液金矿研究现状及其趋势   总被引:8,自引:0,他引:8  
庞奖励 《黄金地质》1995,1(3):34-38
浅成低温热液金矿指产于陆相火山岩系中或相邻岩石中,形成温度低于300℃,成矿流体是大气降水与岩浆热液形成的混合热液的一类金矿床。近几年对浅成低温热液金矿研究结果突破了浅成低温热液金矿只形成于中一新生代火山岩系中的概念,在石炭纪陆相火山岩中发现了浅成低温热液金矿。浅成低温热液矿床一般产于岛弧环境或大陆边缘环境中一酸性陆相火山夺系及相邻岩石中。根据矿物组合及蚀变特征,浅成低温热液矿床可分为高硫型、低硫  相似文献   

2.
皖南东至查册桥金矿岩浆岩锆石U Pb年龄及其成矿意义   总被引:2,自引:0,他引:2  
安徽省东至县查册桥金矿是近年来在江南过渡带上新发现的具一定规模的金矿床,包括多个矿段(点)。矿体受NNE向、NE向及近EW向断裂控制。矿化类型以高硫浅成低温热液型金(锑)矿化为主。其矿床的形成与燕山期岩浆活动有密切的时空和成因联系,区内岩浆岩主要有花岗斑岩、花岗闪长岩、花岗闪长斑岩、闪长玢岩及英安玢岩。本文通过对区内岩浆岩LA-ICP-MS锆石U-Pb测年,确定了区内岩体成岩时间晚侏罗世到早白垩世之间,花岗闪长斑岩在143~148Ma侵位,花岗闪长岩侵位年龄为145Ma,闪长玢岩略晚(142Ma),金多金属矿化稍晚,且持续时间较长。矿区岩浆岩中均发育大量继承锆石,反映有大量成岩物质来源于古老地壳基底,与岩浆岩的成因类型(壳幔同熔型)对应,并与所处的江南过渡带的大地构造位置(江南过渡带)及地质构造发展历史有关。(2522±72Ma)古老的继承锆石年龄,指示本区存在太古代基底物质;较为广泛的新元古代600~1000Ma继承锆石年龄数据,反映了江南过渡带晋宁期扬子陆块与华夏陆块碰撞造山过程所形成的物质再循环到本区燕山期岩浆活动与成矿过程中去。查册桥金矿成矿作用与岩浆期后大规模热液蚀变相联系,并在持续的岩浆活动和热液作用下富集和成矿。综合成矿地质背景、成岩成矿年代学,可以认为,查册桥金矿是一个受断裂构造控制的、与燕山期中酸性岩浆作用密切相关的浅成低温热液型金矿床。  相似文献   

3.
新西兰科罗曼德尔半岛火山岩带是世界知名的浅成低温热液型金矿成矿省,也是新西兰最为重要的金银矿矿集区,在环太平洋成矿带内占有重要的地位。科罗曼德尔半岛浅成低温热液型金矿主要赋存于科罗曼德尔群中新世安山岩和英安岩中,矿化类型主要为石英脉型和角砾岩型2种。矿床的成矿流体特征表现出明显的大气降水特征,并显示有少量的岩浆水加入,成矿物质具岩浆来源特征,为石英±方解石±冰长石±伊利石亚型浅成低温热液型金矿。区内金矿成矿时代为16.3-2.0Ma,主要集中于7.0-6.0Ma之间,金矿的大规模形成与诺特兰德火山弧与科尔维一劳火山弧共同作用有关,区域构造背景由挤压转变为伸展环境的转折期,为金矿形成的高峰期。区内零星出露与浅成低温热液型金矿化有关的斑岩型铜矿化表明,该地区具有较好的斑岩型铜矿化潜力。  相似文献   

4.
为探究延边地区闹枝铜金矿区是否发育多期火山作用,笔者对矿区发育的火山岩开展详细的地质学、岩相学和锆石LA-ICP-MS U-Pb年代学研究。结果表明:矿区出露的安山岩与英安质晶屑岩屑凝灰岩之间存在明显的沉积间断,即安山岩的形成时间应早于英安质凝灰岩。其中,安山岩的岩浆结晶锆石U-Pb年龄为(125.8±2.5) Ma,含有(179.9±4.6) Ma的捕获锆石;英安质角砾凝灰岩的形成年龄为(107.6±2) Ma,英安质晶屑岩屑凝灰岩的形成年龄为(107.5±1.5) Ma。地球化学特征表明两类火山岩均形成于活动大陆边缘板块俯冲环境下,由壳幔混合而成,分别对应于早白垩世屯田营组与金沟岭组。屯田营期岩浆与地壳物质的混染作用、火山喷发与次火山热液活动可能是导致闹枝中硫化型铜金矿床成矿的主要因素,金沟岭组的火山喷发与浅成作用是导致富金斑岩铜矿-浅成热液金矿床成矿的前提。  相似文献   

5.
东安金矿床是环太平洋成矿域的一处大型低硫型浅成低温热液金矿床,赋存于燕山期碱长花岗岩和中酸性火山岩中。本文通过LA-ICP-MS锆石U-Pb同位素定年,获得赋矿的碱长花岗岩和光华组流纹岩的加权平均年龄分别为183.2±1.3Ma和109.1±1.2Ma,表明碱长花岗岩的侵位年代为早侏罗世,光华组火山岩的喷出时代为早白垩世。在地球化学组成上,东安碱长花岗岩具高硅、高钾和低磷的特征,富集Rb、Th和K,亏损Nb、Ta、Sr、P和Ti,属于高分异的I型花岗岩,是太平洋板块俯冲作用的产物。光华组中酸性火山岩富集Rb、Th、U和K,亏损Nb、Ta、P和Ti,为太平洋板块俯冲方向发生改变后的岩石圈伸展减薄环境下,镁铁质下地壳部分熔融而形成的。东安金矿床成矿年龄(107~108Ma)与光华组火山岩的成岩年龄在误差范围内一致,表明成矿与成岩作用为同一地质事件,均形成于早白垩世太平洋板块俯冲背景下的拉张构造环境中。结合区内其他浅成低温热液型金矿床的赋矿围岩特征,认为早白垩世陆相火山岩是东北地区寻找浅成低温热液金矿床的有利场所。  相似文献   

6.
九三沟金矿区石英闪长玢岩在火山盆地内呈脉状或岩株状产出,与金矿化空间上密切伴生。本文通过岩石地球化学和LA-ICP-MS锆石U-Pb年代学研究,讨论了石英闪长玢岩的成因、源区和构造背景,厘定了成岩时代。研究表明,九三沟石英闪长玢岩属于钙碱性、过铝质系列岩石,富集大离子亲石元素(Ba、Sr)、活泼的不相容元素Th、U和轻稀土元素,亏损高场强元素Ta、Nb、Ti和重稀土元素。岩石的Nb/Ta、La/Nb、Th/La比值都显示其具壳源特征,在Al_2O_3-MgO-FeO_t和R1-R2判别图解上均表现为活动大陆边缘岩浆岩特征。石英闪长玢岩LA-ICP-MS锆石U-Pb年龄为104.2±1.4 Ma,MSWD=0.17,为早白垩世晚期(燕山晚期),形成于太平洋板块斜向俯冲引起的东亚大陆走滑伸展的构造环境。而吉黑东部中生代浅成低温热液成矿作用与该期钙碱性–碱性火山岩–浅成浅成侵位活动密切相关,因此早白垩世晚期的火山机构和浅成钙碱性–碱性侵入体是吉黑东部中生代浅成低温热液的找矿目标。  相似文献   

7.
新疆阿吾拉勒陆相火山岩型铜矿成矿研究   总被引:8,自引:2,他引:8  
阿吾拉勒陆相火山岩型铜矿分为火山热液型、次火山热液型和中低温热液充填脉型,认为岩浆和成矿物质来源于深部地壳或上地幔,成矿与华力西晚期火山一次火山作用密切相关,铜矿是在同一构造环境下同一岩浆源分异演化不同阶段的产物。矿床成因属中低温火山一次火山热液成因。  相似文献   

8.
甲乌拉铅锌银矿床是大兴安岭西坡得尔布干铜(钼)-银铅锌成矿带内大型铅锌银矿床之一,长期以来被认为是一个与火山-次火山热液作用有关的浅成低温热液矿床.在野外调研的基础上,对含矿岩体石英二长斑岩开展年代学研究,结果表明:与成矿关系密切的石英二长斑岩的LA-ICP-MS锆石U-Pb年龄为152.2±1.5 Ma (MSWD=4.7,n=31).结合前人成岩、成矿年代学研究,认为甲乌拉矿床为晚侏罗世-早白垩世早期成矿,与区域上同类矿床产于同一时代,形成于蒙古-鄂霍次克洋闭合碰撞造山后的伸展构造背景.  相似文献   

9.
关于广西龙头山金矿矿质来源的讨论   总被引:3,自引:1,他引:2  
李福春  朱桂田  朱金初 《矿床地质》1998,17(Z2):335-338
龙头山金矿为陆相火山-次火山岩型中低温热液金矿床,以电气石化普遍发育而有别于其它陆相火山岩型金矿。通过对金属元素地球化学背景、稳定同位素、稀土元素配分和电气石化特征等的研究和讨论,认为龙头山金矿矿质具有多来源特征,Au、S、REE主要来自深部岩浆,PI,、B主要来自上地壳,成矿热液中的水为岩浆水和大气降水、同生水的混合水。  相似文献   

10.
新西兰科罗曼德尔半岛火山岩带是世界知名的浅成低温热液型金矿成矿省,也是新西兰最为重要的金银矿矿集区,在环太平洋成矿带内占有重要的地位。科罗曼德尔半岛浅成低温热液型金矿主要赋存于科罗曼德尔群中新世安山岩和英安岩中,矿化类型主要为石英脉型和角砾岩型2种。矿床的成矿流体特征表现出明显的大气降水特征,并显示有少量的岩浆水加入,成矿物质具岩浆来源特征,为石英±方解石±冰长石±伊利石亚型浅成低温热液型金矿。区内金矿成矿时代为16.3~2.0Ma,主要集中于7.0~6.0Ma之间,金矿的大规模形成与诺特兰德火山弧与科尔维—劳火山弧共同作用有关,区域构造背景由挤压转变为伸展环境的转折期,为金矿形成的高峰期。区内零星出露与浅成低温热液型金矿化有关的斑岩型铜矿化表明,该地区具有较好的斑岩型铜矿化潜力。  相似文献   

11.
小土尔根是近年来阿尔泰诺尔特盆地发现的首例斑岩铜矿床,其成岩成矿年代学的研究可以对矿床模型构建、区域成矿规律的总结提供制约。矿区侵入岩发育,矿化受花岗闪长斑岩控制,少部分赋存在地层中。文章利用LA-ICP-MS锆石U-Pb测年法对矿区岩体进行了成岩年代学研究。含矿花岗闪长斑岩、黑云二长花岗岩和花岗斑岩中锆石的206Pb/238U年龄的加权平均值分别为(401.0±2.9)Ma、(398.1±2.2)Ma和(400.5±2.0)Ma,为早泥盆世同一岩浆侵入活动形成的不同侵入岩。侵入岩年龄结合凝灰岩年龄,将矿区地层划归早泥盆世诺尔特组。含矿花岗闪长斑岩锆石U-Pb年龄限定小土尔根斑岩铜矿床成矿时代略晚于401 Ma,即矿床形成于早泥盆世。  相似文献   

12.
通过对安徽省东至县兆吉口铅锌矿区岩浆岩的LA-ICP MS锆石U-Pb年龄测定,获得矿区北部戴村花岗闪长岩体的年龄为145.5±1.3 Ma,花岗斑岩脉的年龄为143.5±4.3 Ma,细晶闪长岩脉的年龄为129.0±2.3 Ma和128.4±2.7 Ma,前两者为同一期岩浆作用的产物,后者为赋矿岩石之一,铅锌矿化与该期岩浆作用关系密切。矿区所有中酸性侵入岩体和岩脉中均发育大量继承锆石,反映有大量成岩物质来源于古老地壳基底。继承锆石核的同位素年龄集中于890~740 Ma,揭示出该区晋宁期华夏板块与扬子板块之间的构造-岩浆事件,少量大于1 000 Ma甚至2 500 Ma的锆石年龄数据反映该区可能存在早元古代甚至太古代古老陆壳基底。  相似文献   

13.
江西冷水坑火山-侵入杂岩LA-ICP-MS锆石U-Pb年龄及地质意义   总被引:3,自引:0,他引:3  
江西冷水坑矿田是武夷山地区重要的银铅锌矿集中区之一,以斑岩型矿床和火山沉积-热液改造型矿床为特色,前人对冷水坑矿床的成岩成矿作用、控矿构造、成矿模式等开展了大量的研究,但对不同地质体与成矿的先后关系、岩浆活动期次与成矿作用的关系研究相对薄弱。本文对打鼓顶组火山岩和含矿花岗斑岩进行了激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)锆石U-Pb年代学研究,结果表明打鼓顶组底板、顶板晶屑凝灰岩形成时代分别为161.3±1.3 Ma、160.75±0.96 Ma,含矿花岗斑岩形成时代为168.09±0.80 Ma,结合以往研究资料,将冷水坑矿田火山-侵入岩岩浆活动划分为3个期次:第Ⅰ期火山-侵入岩浆活动形成于164~170 Ma;第Ⅱ期火山-侵入岩浆活动发生于157~161 Ma,为火山沉积-热液改造型矿床和斑岩型矿体的主要成矿时代,岩浆活动和成矿时代基本一致;第Ⅲ期火山-侵入岩浆活动时限为140~146 Ma。也暗示华南冷水坑等地晚侏罗世火山岩形成于华南中生代构造体制转换的关键时期,为华南晚中生代构造背景的研究提供了重要地质依据。  相似文献   

14.
打加错银多金属矿床是在冈底斯成矿带西段新发现的首例以银为主的多金属矿床.为了查明该矿床成岩成矿时限、含矿岩石成因及成矿意义,对该矿区出露的含矿(次)火山岩(流纹质晶屑凝灰岩与流纹斑岩)开展了锆石U-Pb年代学、微量元素及Hf同位素、全岩地球化学、辉钼矿Re-Os年代学等分析.研究表明,含矿(次)火山岩形成时代为66.6~67.4 Ma,晚期辉钼矿同位素Re-Os模式年龄为61.0±0.8 Ma,结合含矿地质体的矿化特征、石英-黄铁矿-辉钼矿脉与含矿流纹斑岩的穿插关系等,证实打加错矿区存在两期成矿作用,即早期形成的强硅化(次)火山岩型和矽卡岩型银多金属成矿作用及晚期石英脉型银多金属成矿作用,成矿时限介于66.6~61.0 Ma,构成了与(次)火山期后热液相关的浅成低温热液成矿系统;(次)火山岩地球化学数据表明其属高钾钙碱性-钾玄岩系列,具准铝质-过铝质特征,富集轻稀土元素和大离子亲石元素(K、Rb、Pb)、亏损重稀土元素和高场强元素(Nb、Ta、Ti),锆石Ti的平均温度为712 ℃,εHf(t)值均为负值(-16.5~-3.6)且TDMC为1.2~2.1 Ga;成矿岩石具低氧逸度和贫含水性特征,属于典型S型花岗岩,源于中-古元古代古拉萨地壳的部分熔融,并与中拉萨地体发育的银铅锌矿床成矿岩体特征一致,而与南拉萨地体中爆发的、与Ⅰ型花岗岩相关的铜多金属矿化明显不同,据此揭示出南拉萨地体也与中拉萨地体一样具有与S型花岗岩相关的成矿潜力,这对丰富南拉萨地体的成矿类型及促进该类型矿床的进一步找矿新发现具有重要的理论及现实意义.   相似文献   

15.
黑龙江洋灰洞子斑岩型铜矿床地处兴蒙造山带东段、吉黑褶皱带北部,矿体主要赋存在花岗闪长斑岩和构造角砾岩中。为厘定洋灰洞子铜矿床的成岩成矿时代和构造背景,笔者对洋灰洞子花岗闪长斑岩进行了元素地球化学和LA--ICP--MS锆石U--Pb年代学的相关研究。岩石地球化学特征显示,花岗闪长斑岩富硅贫镁,属于过铝质钙碱性系列,富集轻稀土元素(LREE),(La/Yb)N=10.49~19.79,Eu显示弱负异常或正异常,高Sr低Y和Yb,富集大离子亲石元素(LILE),相对亏损高场强元素(HFSE),具有埃达克岩或埃达克质岩的特征。LA--ICP--MS锆石U--Pb测年结果显示,花岗闪长斑岩锆石206Pb/238U加权平均年龄为204.4±2.8 Ma和201.2±1.7 Ma。综合研究认为,洋灰洞子斑岩型铜矿床的成岩成矿时代可能为晚三叠世—早侏罗世之交,该矿床形成于古亚洲洋闭合后的陆陆碰撞造山环境,是加厚下地壳部分熔融形成的岩浆流体作用的结果。  相似文献   

16.
滇西普洱大平掌铜多金属矿床为典型的与中酸性火山岩有关的VHMS型矿床。侵入于含矿火山岩系中的花岗闪长斑岩岩体规模较大,在野外调研的基础上,对该岩体的产出特征、岩石学、岩石化学和年代学开展了较系统的分析研究。研究表明,花岗闪长斑岩体与火山岩呈典型的侵入接触关系;岩石化学特征显示属钙碱性岩系过钙性岩,微量元素及稀土元素配分模式显示火山弧花岗岩特征;岩体中锆石的LA-ICP-MS U-Pb年龄为401.0±1.7 Ma,相当于志留纪末—泥盆纪初,说明矿区花岗闪长斑岩体并非印支期产物。本文的研究结果同时证实,矿区含矿火山岩及其中的火山喷流沉积矿床的形成时代应属中晚志留世,而非晚泥盆世—早石炭世。  相似文献   

17.
内蒙古白乃庙铜金矿床位于华北板块北缘中段陆缘增生带,区内侵入岩发育,主要岩性有花岗闪长岩、白云母花岗岩、石英闪长岩,对其中5件样品采用LA-MC-ICP-MS锆石U-Pb方法测年,获得花岗闪长岩加权平均年龄(443.2±1.7)Ma、(447.6±1.8)Ma,白云母花岗岩加权平均年龄(429.1±2.7)Ma、(43...  相似文献   

18.
争光金矿床(伴生锌)位于我国东北地区黑龙江省多宝山Cu-Au-Mo成矿带南东端,构造上处于古亚洲成矿构造域和滨太平洋成矿构造域的叠加部位。该金矿距北西向的多宝山铜金矿和铜山铜矿分别约为10km和5km,因此,深入研究其成矿时代、成因类型归属,理清与多宝山铜金矿-铜山铜矿的关系具有重要科学价值。争光金矿赋矿围岩为奥陶系多宝山组安山质火山岩地层,发育爆发相、溢流相、火山碎屑流相、火山沉积相等,且爆发相和喷溢相交替出现,具有喷发时期熔岩溢流与火山碎屑物的喷发交替进行或具多旋回火山活动的特征;根据火山集块岩、火山角砾岩、火山碎屑岩的空间展布及岩相变化特征,推测矿区内发育有古火山机构。受后期北西向构造影响,火山岩地层具北西向弱定向变形特征。含金脉系呈脉状、网脉状沿北西向、北东向及南北向构造产出;矿石矿物以黄铁矿、闪锌矿、黄铜矿、方铅矿为主,金以裂隙金、粒间金和包裹金的形式赋存于上述硫化物中,部分赋存在石英中。综合脉系特征、矿物组合、蚀变类型、闪锌矿Fe含量等,本文明确提出该矿床为中硫型浅成低温热液型金矿。对矿区内发育的成矿后闪长玢岩、花岗闪长斑岩及长石斑岩等脉岩的锆石U-Pb测年结果初步厘定争光金矿金成矿作用早于454Ma。综合判断争光金矿与多宝山含金斑岩铜矿、铜山铜矿同形成于480~454Ma受古亚洲洋俯冲作用控制的岛弧背景,构成完整的斑岩Cu-Au与中硫化型浅成低温热液Au成矿系统。  相似文献   

19.
紫金山矿田内,自地表往深部,发育早白垩世中酸性火山岩、次火山英安斑岩、浅成相花岗闪长斑岩、中深成相花岗闪长岩,构成中酸性火山-侵入岩系列。围绕着紫金山火山机构发育强烈的蚀变矿化,形成高硫型浅成低温热液铜金矿、低硫型浅成低温热液银金矿和斑岩型铜(钼)矿床。矿田内各类铜金银矿床存在着密切的时空及物源联系,它们在时间、空间上连续演化,都是同源含矿中酸性岩浆在同一成矿背景之下于不同演化阶段的产物。含矿热液的物化性质及时空迁移决定了它们在不同地质部位产出不同的矿床类型,构成与中酸性次火山-斑岩有关的浅成低温-斑岩铜金银矿成矿系统。  相似文献   

20.
The Zijinshan ore district occurs as one of the largest porphyry-epithermal Cu–Au–Mo ore systems in South China, including the giant Zijinshan epithermal Cu–Au deposit and the large Luoboling porphyry Cu–Mo deposit. The mineralization is intimately related to Late Mesozoic large-scale tectono-magmatic and hydrothermal events. The Cu–Au–Mo mineralization occurs around intermediate-felsic volcanic rocks and hypabyssal porphyry intrusions. In this study, we summarize previously available Re–Os isotopes, zircon U–Pb age and trace elements, and Sr–Nd–Pb isotope data, and present new Pb–S and Re–Os isotope data and zircon trace elements data for ore-related granitoids from the Zijinshan high-sulfidation epithermal Cu–Au deposit and the Luoboling porphyry Cu–Mo deposit, in an attempt to explore the relationship between the two ore systems for a better understanding of their geneses. The ore-bearing porphyritic dacite from the Zijinshan deposit shows a zircon U-Pb age of 108–106 Ma and has higher zircon Ce4+/Ce3+ ratios (92–1568, average 609) but lower Ti-in-zircon temperatures (588–753 °C, average 666 °C) when compared with the barren intrusions in the Zijinshan ore district. Relative to the Zijinshan porphyritic dacite, the ore-bearing granodiorite porphyry from the Luoboling deposit show a slightly younger zircon U–Pb age of 103 Ma, but has similar or even higher zircon Ce4+/Ce3+ ratios (213–2621, average 786) and similar Ti-in-zircon temperatures (595–752 °C, average 675 °C). These data suggest that the ore-bearing magmatic rocks crystallized from relatively oxidized and hydrous magmas. Combined with the high rhenium contents (78.6–451 ppm) of molybdenites, the Pb and S isotopic compositions of magmatic feldspars and sulfides suggest that the porphyry and ore-forming materials in the Luoboling Cu–Mo deposit mainly originated from an enriched mantle source. In contrast, the ore-bearing porphyritic dacite in the Zijinshan Cu–Au deposit might be derived from crustal materials mixing with the Cathaysia enriched mantle. The fact that the Zijinshan Cu–Au deposit and the Luoboling Cu–Mo deposit show different origin of ore-forming materials and slightly different metallogenic timing indicates that these two deposits may have been formed from two separate magmatic-hydrothermal systems. Crustal materials might provide the dominant Cu and Au in the Zijinshan epithermal deposit. Cu and Au show vertical zoning and different fertility because the gold transports at low oxygen fugacity and precipitates during the decreasing of temperature, pressure and changing of pH conditions. It is suggested that there is a large Cu–Mo potential for the deeper part of the Zijinshan epithermal Cu–Au deposit, where further deep drilling and exploration are encouraged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号