首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Use of tsunami waveforms for earthquake source study   总被引:1,自引:0,他引:1  
Tsunami waveforms recorded on tide gauges, like seismic waves recorded on seismograms, can be used to study earthquake source processes. The tsunami propagation can be accurately evaluated, since bathymetry is much better known than seismic velocity structure in the Earth. Using waveform inversion techniques, we can estimate the spatial distribution of coseismic slip on the fault plane from tsunami waveforms. This method has been applied to several earthquakes around Japan. Two recent earthquakes, the 1968 Tokachi-oki and 1983 Japan Sea earthquakes, are examined for calibration purposes. Both events show nonuniform slip distributions very similar to those obtained from seismic wave analyses. The use of tsunami waveforms is more useful for the study of unusual or old earthquakes. The 1984 Torishima earthquake caused unusually large tsunamis for its earthquake size. Waveform modeling of this event shows that part of the abnormal size of this tsunami is due to the propagation effect along the shallow ridge system. For old earthquakes, many tide gauge records exist with quality comparable to modern records, while there are only a few good quality seismic records. The 1944 Tonankai and 1946 Nankaido earthquakes are examined as examples of old events, and slip distributions are obtained. Such estimates are possible only using tsunami records. Since tide-gauge records are available as far back as the 1850s, use of them will provide unique and important information on long-term global seismicity.  相似文献   

2.
The Great Lisbon earthquake has the largest documented felt area of any shallow earthquake and an estimated magnitude of 8.5–9.0. The associated tsunami ravaged the coast of SW Portugal and the Gulf of Cadiz, with run-up heights reported to have reached 5–15 m. While several source regions offshore SW Portugal have been proposed (e.g.— Gorringe Bank, Marquis de Pombal fault), no single source appears to be able to account for the great seismic moment as well as all the historical tsunami amplitude and travel time observations. A shallow east dipping fault plane beneath the Gulf of Cadiz associated with active subduction beneath Gibraltar, represents a candidate source for the Lisbon earthquake of 1755.Here we consider the fault parameters implied by this hypothesis, with respect to total slip, seismic moment, and recurrence interval to test the viability of this source. The geometry of the seismogenic zone is obtained from deep crustal studies and can be represented by an east dipping fault plane with mean dimensions of 180 km (N–S) × 210 km (E–W). For 10 m of co-seismic slip an Mw 8.64 event results and for 20 m of slip an Mw 8.8 earthquake is generated. Thus, for convergence rates of about 1 cm/yr, an event of this magnitude could occur every 1000–2000 years. Available kinematic and sedimentological data are in general agreement with such a recurrence interval. Tsunami wave form modeling indicates a subduction source in the Gulf of Cadiz can partly satisfy the historical observations with respect to wave amplitudes and arrival times, though discrepancies remain for some stations. A macroseismic analysis is performed using site effect functions calculated from isoseismals observed during instrumentally recorded strong earthquakes in the region (M7.9 1969 and M6.8 1964). The resulting synthetic isoseismals for the 1755 event suggest a subduction source, possibly in combination with an additional source at the NW corner of the Gulf of Cadiz can satisfactorily explain the historically observed seismic intensities. Further studies are needed to sample the turbidites in the adjacent abyssal plains to better document the source region and more precisely calibrate the chronology of great earthquakes in this region.  相似文献   

3.
Seafloor irregularities influence rupture behavior along the subducting slab and in the overriding plate, thus affecting earthquake cycles. Whether seafloor irregularities increase the likelihood of large earthquakes in a subduction zone remains contested, partially due to focus put either on fault development or on rupture pattern. Here, we simulate a subducting slab with a seafloor irregularity and the resulting deformation pattern of the overriding plate using the discrete element method. Our simulations illustrate the rupture along three major fault systems: megathrust, splay and backthrust faults. Our results show different rupture dimensions of earthquake events varying from tens to ca. 140 km. Our results suggest that the recurrence interval of megathrust events with rupture length of ca. 100 km is ca. 140 years, which is overall comparable to the paleoseismic records at the Mentawai area of the Sumatran zone. We further propose the coseismic slip amounts decrease and interseismic slip amounts increase from the surface downwards gradually.  相似文献   

4.
Two recent and three historical earthquakes which occurred along the Nankai trough, marking the northern plate boundary between the Philippine Sea and the Asian Plate, are studied mainly on the basis of the data of crustal deformations and tsunami waves. These earthquakes are the 1946 Nankaido, the 1944 Tonankai, the 1854 Ansei I, II and the 1707 Hoei earthquakes. They are all interpreted as low-angle thrust faults at the plate boundary, with the oceanic side underthrusting northwestward against southwestern Japan. The fault parameters of the historical earthquakes are assumed here to be common to those of the recent two earthquakes, except for the magnitude of dislocation.The entire fault region, which extends for 530 km from western Shikoku Island in the west to the Tokai district in the east, is divided into four fault planes, which are denoted the planes A, B, C and D, from west to east, respectively. Then, the five earthquakes may be attributed to the planes A, B, C and D, in the following manner: the Nankaido earthquake, A + B; the Tonankai earthquake, C; the Ansei II earthquake, A + B; the Ansei I earthquake, C + D; and the Hoei earthquake, A + B + C + D.The latest cycle of earthquake migration seems incomplete as proved by the recent inactivity in D. Consequently, the future major earthquake next to occur is expected there, off the Tokai district. Eight further ancient earthquakes from A.D. 684 to 1605 are also discussed. Taking the results of the foregoing studies into consideration, their sequence is well interpreted by the four migration cycles. Topographical data, tilt of coastal terraces and location of hinge lines, prove that the thrusting has continued all along the extension of the Nankai trough for at least 300,000 years.  相似文献   

5.
Deterministic analysis of local tsunami generated by subduction zone earthquakes demonstrates the potential for extensive inundation and building damage in Napier, New Zealand. We present the first high-resolution assessments of tsunami inundation in Napier based on full simulation from tsunami generation to inundation and demonstrate the potential variability of onshore impacts due to local earthquakes. In the most extreme scenario, rupture of the whole Hikurangi subduction margin, maximum onshore flow depth exceeds 8.0 m within 200 m of the shore and exceeds 5.0 m in the city centre, with high potential for major damage to buildings. Inundation due to single-segment or splay fault rupture is relatively limited despite the magnitudes of MW 7.8 and greater. There is approximately 30 min available for evacuation of the inundation zone following a local rupture, and inundation could reach a maximum extent of 4 km. The central city is inundated by up to three waves, and Napier Port could be inundated repeatedly for 12 h. These new data on potential flow depth, arrival time and flow kinematics provide valuable information for tsunami education, exposure analysis and evacuation planning.  相似文献   

6.
We interpret the GPS-derived velocity field in southwest Japan by a superposition of the elastic deformation caused by fault interactions (slips or slip deficits) on the rigid motion of tectonic blocks (or plates). Based on the strain rate field and crustal seismicity, we apply a model with three blocks (Inner Arc, Outer Arc, and the northern Ryukyu block) and slip deficits along the block boundaries.Several characteristics of the synthesized contributions are found:
(1) Westward motion of the outer arc relative to the Amurian plate and the inner arc,
(2) southeastward motion of the northern Ryukyu block relative to the Amurian plate,
(3) 2−4 mm/yr deficits of left lateral slip rates along the boundary at 32°N in southern Kyushu,
(4) 0−8 mm/yr deficits of right lateral slip rates along the Median Tectonic Line and the Beppu-Shimabara Graben,
(5) slip deficit rates on the plate interface smaller than those in the case without any consideration for rigid block motions,
(6) clockwise deflection of slip deficit rate vector on the plate interface from that estimated when not taking rigid block motions into consideration.
Keywords: Oblique subduction; Sliver motion; Backarc spreading; Interplate coupling; Euler vector  相似文献   

7.
To explore the local tsunami hazard from the Cascadia subduction zone we (1) evaluate geologically reasonable variability of the earthquake rupture process, (2) specify 25 deterministic earthquake sources, and (3) use resulting vertical coseismic deformations for simulation of tsunami inundation at Cannon Beach, Oregon. Maximum runup was 9–30 m (NAVD88) from earthquakes with slip of ~8–38 m and M w ~8.3–9.4. Minimum subduction zone slip consistent with three tsunami deposits was 14–15 m. By assigning variable weights to the source scenarios using a logic tree, we derived percentile inundation lines that express the confidence level (percentage) that a Cascadia tsunami will not exceed the line. Ninety-nine percent of Cascadia tsunami variation is covered by runup ≤30 m and 90% ≤16 m with a “preferred” (highest weight) value of ~10 m. A hypothetical maximum-considered distant tsunami had runup of ~11 m, while the historical maximum was ~6.5 m.  相似文献   

8.
Recently, the occurrence of slow earthquakes such as low-frequency earthquakes and very low-frequency earthquakes have been recognized at depths of about 30 km in southwest Japan and Cascadia. These slow earthquakes occur sometimes in isolation and sometimes break into chain-reaction, producing tremor that migrates at a speed of about 5–15 km/day and suggesting a strong interaction among nearby small asperities. In this study, we formulate a 3-D subduction plate boundary model with two types of small asperities chained along the trench at the depth of 30 km. Our simulation succeeds in representing various types of slow earthquakes including low-frequency earthquakes and rapid slip velocity in the same asperity, and indicates that interaction between asperities may cause the very low-frequency earthquakes. Our simulation also shows chain reaction along trench with propagation speed that can be made consistent with observations by adjusting model parameters, which suggests that the interactions also explain the observed migration of slow earthquakes.  相似文献   

9.
The 2011 Tohoku earthquake and tsunami motivated an analysis of the potential for great tsunamis in Hawai‘i that significantly exceed the historical record. The largest potential tsunamis that may impact the state from distant, Mw 9 earthquakes—as forecast by two independent tsunami models—originate in the Eastern Aleutian Islands. This analysis is the basis for creating an extreme tsunami evacuation zone, updating prior zones based only on historical tsunami inundation. We first validate the methodology by corroborating that the largest historical tsunami in 1946 is consistent with the seismologically determined earthquake source and observed historical tsunami amplitudes in Hawai‘i. Using prior source characteristics of Mw 9 earthquakes (fault area, slip, and distribution), we analyze parametrically the range of Aleutian–Alaska earthquake sources that produce the most extreme tsunami events in Hawai‘i. Key findings include: (1) An Mw 8.6 ± 0.1 1946 Aleutian earthquake source fits Hawai‘i tsunami run-up/inundation observations, (2) for the 40 scenarios considered here, maximal tsunami inundations everywhere in the Hawaiian Islands cannot be generated by a single large earthquake, (3) depending on location, the largest inundations may occur for either earthquakes with the largest slip at the trench, or those with broad faulting over an extended area, (4) these extremes are shown to correlate with the frequency content (wavelength) of the tsunami, (5) highly variable slip along the fault strike has only a minor influence on inundation at these tele-tsunami distances, and (6) for a given maximum average fault slip, increasing the fault area does not generally produce greater run-up, as the additional wave energy enhances longer wavelengths, with a modest effect on inundation.  相似文献   

10.
Shmuel Marco   《Tectonophysics》2007,445(3-4):186-199
The location of the active fault strands along the Dead Sea Transform fault zone (DST) changed through time. In the western margins of Dead Sea basin, the early activity began a few kilometers west of the preset shores and moved toward the center of the basin in four stages. Similar centerward migration of faulting is apparent in the Hula Valley north of the Sea of Galilee as well as in the Negev and the Sinai Peninsula. In the Arava Valley, seismic surveys reveal a series of buried inactive basins whereas the current active strand is on their eastern margins. In the central Arava the centerward migration of activity was followed by outward migration with Pleistocene faulting along NNE-trending faults nearly 50 km west of the center. Largely the faulting along the DST, which began in the early–middle Miocene over a wide zone of up to 50 km, became localized by the end of the Miocene. The subsidence of fault-controlled basins, which were active in the early stage, stopped at the end of the Miocene. Later during the Plio-Pleistocene new faults were formed in the Negev west of the main transform. They indicate that another cycle has begun with the widening of the fault zone. It is suggested that the localization of faulting goes on as long as there is no change in the stress field. The stresses change because the geometry of the plates must change as they move, and consequently the localization stage ends. The fault zone is rearranged, becomes wide, and a new localization stage begins as slip accumulates. It is hypothesized that alternating periods of widening and narrowing correlate to changes of the plate boundaries, manifest in different Euler poles.  相似文献   

11.
A few cases of occurrence of normal aftershocks after strike slip earthquakes in compressive regime have been reported in the literature. Occurrence of such aftershocks is intriguing as they occurred despite the apparent stabilizing influence of compressive plate tectonic stresses on the normal faults. To investigate the occurrence processes of such earthquakes, we calculate change in static stress on optimally oriented normal and reverse faults in the dilational and compressional step over zones, respectively, due to slip on a vertical strike slip fault under compressive regime. We find that change in static stress is much more pronounced on normal faults as compared to that on reverse faults, for all values of fault friction. Change in static stress on reverse fault is marginally positive only when the fault friction is low, whereas for normal faults it is positive for all values of fault friction, and is maximum for high fault friction. We suggest that strike slip faulting in compressive regime creates a localized tensile environment in the dilational step over zone, which causes normal faulting in that region. The aftershocks on such normal faults are considered to have occurred as an almost instantaneous response of stress transfer due to strike slip motion.  相似文献   

12.
A few cases of occurrence of normal aftershocks after strike slip earthquakes in compressive regime have been reported in the literature. Occurrence of such aftershocks is intriguing as they occurred despite the apparent stabilizing influence of compressive plate tectonic stresses on the normal faults. To investigate the occurrence processes of such earthquakes, we calculate change in static stress on optimally oriented normal and reverse faults in the dilational and compressional step over zones, respectively, due to slip on a vertical strike slip fault under compressive regime. We find that change in static stress is much more pronounced on normal faults as compared to that on reverse faults, for all values of fault friction. Change in static stress on reverse fault is marginally positive only when the fault friction is low, whereas for normal faults it is positive for all values of fault friction, and is maximum for high fault friction. We suggest that strike slip faulting in compressive regime creates a localized tensile environment in the dilational step over zone, which causes normal faulting in that region. The aftershocks on such normal faults are considered to have occurred as an almost instantaneous response of stress transfer due to strike slip motion.  相似文献   

13.
During two distinct earthquakes occurred on March 7, 1867 and October 6, 1944, tsunami waves were also observed at some localities around the Gulf of Edremit, NE Aegean Sea. The first event (M w = 6.8) mostly affected the city of Mitilini of Lesvos Island while the Gulf of Edremit-Ayvacık earthquake (M S = 6.8) largely affected the northern and eastern coastal areas of the Gulf of Edremit. In 1944 earthquake, numerous surface cracks and water gushes were reported. The coastal neighborhoods of the town of Ayvalık in the east were flooded by tsunami waves. At the WSW extend of the main fault observed on land, which is parallel to the present-day slip vectors, some normal-oblique faults were observed close and subparallel to the northern coast. On the basis of historical documents, reports, interviews, geological setting, field observations and marine seismic reflection data, the 1944 earthquake was not triggered by one of the main fault segments but by a secondary fault or fault group which was described in this study. Depending on the distribution of tensional and compressional forces in the region, which rotates clockwise under the control of the middle strand of the North Anatolian fault, secondary fault groups become important. The moment tensor parameters of such small-size events have been determined and have obtained consistent results with the faults proposed in this study.  相似文献   

14.
Geodynamic status, seismo-tectonic environment, and geophysical signatures of the Bay of Bengal do not support the occurrence of seismogenic tsunami. Since thrust fault and its intensity and magnitude of rupture are the key tectonic elements of tsunamigenic seismic sources, the study reveals that such characteristics of fault-rupture and seismic sources do not occur in most of the Bay of Bengal except a small segment in the Andaman–Nicobar subduction zone. The inferred segment of the Andaman–Nicobar subduction zone is considered for generating a model of the deformation field arising from fluid-driven source. The model suggests local tsunami with insignificant inundation potential along the coast of northern Bay of Bengal. The bathymetric profile and the sea floor configuration of the northern Bay of Bengal play an important role in flattening the waveform through defocusing process. The direction of motion of the Indian plate makes an angle of about 30° with the direction of the opening of Andaman Sea. The opening of Andaman Sea and the direction of plate motion of the Indian plate results in the formation of Andaman trench where the subducting plate dives more obliquely than that in the Sunda trench in the south. The oblique subduction reduces significantly the possibilities of dominant thrust faulting in the Andaman subduction zone. Further, north of Andaman subduction in the Bengal–Arakan coast, there is no active subduction. On the otherhand, much greater volume of sediments (in excess of 20 km) in the Bengal–Arakan segment reduces the possibilities of mega rupture of the ocean floor. The water depth (≈1,000 m) along most of the northern Bay of Bengal plate margin is not optimum for any significant tsunami generation. Hence, very weak possibility of any significant tsunami is suggested that based on the interpretation of geodynamic status, seismo-tectonic environment, and geophysical signatures of the Andaman subduction zone and the Bengal–Arakan coast.  相似文献   

15.
This paper describes an investigation of the subfault distribution along the Japan–Kuril–Kamchatka subduction zone for the implementation of a far-field tsunami forecast algorithm. Analyses of seismic data from 1900 to 2000 define the subduction zone, which in turn is divided into 222 subfaults based on the fault characteristics. For unit slip of the subfaults, a linear long-wave model generates a database of mareograms at water-level stations along the subduction zone and at warning points in the North Pacific. When a tsunami occurs, an inverse algorithm determines the slip distribution from near-source water-level records and predicts the waveforms at the warning points using the pre-computed mareograms. A jackknife resampling scheme uses combinations of input water-level records to provide a series of waveform predictions for the computation of the confidence-interval bounds. The inverse algorithm is applied to hindcast two major tsunamis generated from the Japan–Kuril–Kamchatka source and the computed tsunami heights show good agreement with recorded water-level data.  相似文献   

16.
The Woodlark Basin, located south of the Solomon Islands arc region, is a young (5 Ma) oceanic basin that subducts beneath the New Britain Trench. This region is one of only a few subduction zones in the world where it is possible to study a young plate subduction of several Ma. To obtain the image of the subducting slab at the western side of the Woodlark Basin, a 40-day Ocean Bottom Seismometer (OBS) survey was conducted in 1998 to detect the micro-seismic activity. It was the first time such a survey had been performed in this location and over 600 hypocenters were located. The seismic activity is concentrated at the 10–60 km depth range along the plate boundary. The upper limit just about coincides with the leading edge of the accretionary wedge. The upper limit boundary was identified as the up-dip limit of the seismogenic zone, whereas the down-dip limit of the seismogenic zone was difficult to define. The dip angle of the plate at the high seismicity zone was found to average about 30°. Using the Cascadia subduction zone for comparison, which is a typical example of a young plate subduction, suggests that the subduction of the Woodlark Basin was differentiated by a high dip angle and rather landward location of the seismic front from the trench axis (30 km landward from the trench axis). Furthermore, as pointed out by previous researchers, the convergent margin of the Solomon Islands region is imposed with a high stress state, probably due to the collision of the Ontong Java Plateau and a rather rapid convergence rate (10 cm/year). The results of the high angle plate subduction and inner crust earthquakes beneath the Shortland Basin strongly support the high stress state. The collision of the Ontong Java Plateau, the relatively rapid convergence rate, and moderately cold slab as evidenced by low heat flow, rather than the plate age, may be dominantly responsible for the geometry of the seismogenic zone in the western part of the Woodlark Basin subduction zone.  相似文献   

17.
李理  赵利  刘海剑  房贤云 《地质科学》2015,50(2):446-472
渤海湾盆地是一个在早白垩世被动裂陷盆地基础上发育起来的新生代主动裂陷盆地, 走滑作用贯穿始终, 特别是在兰聊-盐山断层以东, 使这个裂陷盆地具有鲜明的走滑特征。伸展和走滑作用此消彼长, 伸展构造和走滑构造相互叠加、转换, 垂向上相互叠置、交切, 并由此导致变换带的产生。晚中生代以来太平洋板块向欧亚板块俯冲的方向和速度变化、后撤以及板片窗效应、中始新世印欧板块碰撞导致的地幔上涌是控制盆地形成的深部背景, 郯庐断裂带早白垩世强烈的左行走滑、古新世-早始新世弱的左行走滑以及中始新世后的右行走滑活动也深刻地控制和影响着盆地的发育, 盆地内晚中生代-新生代的伸展和走滑构造的演化则是其浅部响应, 并由此控制着岩浆活动以及油气生成、运聚和分布的时空迁移。  相似文献   

18.
Determining factors that limit coseismic rupture is important to evaluate the hazard of powerful subduction zone earthquakes such as the 2011 Tohoku‐Oki event (Mw = 9.0). In 1960 (Mw = 9.5) and 2010 (Mw = 8.8), Chile was hit by such powerful earthquakes, the boundary of which was the site of a giant submarine slope failure with chaotic debris subducted to seismogenic zone depth. Here, a continuous décollement is absent, whereas away from the slope failure, a continuous décollement is seismically imaged. We infer that underthrusting of inhomogeneous slide deposits prevents the development of a décollement, and thus the formation of a thin continuous slip zone necessary for earthquake rupture propagation. Thus, coseismic rupture during the 1960 and 2010 earthquakes seems to be limited by underthrusted upper plate mass‐wasting deposits. More generally, our results suggest that upper plate dynamics and resulting surface processes can play a key role for determining rupture size of subduction zone earthquakes.  相似文献   

19.
Tsunamis are numerically modeled using the nonlinear shallow-water equations for three hypothetical Cascadia subduction zone earthquakes. Maximum zero-to-peak tsunami amplitudes and currents are tabulated for 131 sites along the North American coast. Earthquake source parameters are chosen to satisfy known subduction zone configuration and thermal constraints. These source parameters are used as input to compute vertical sea-floor displacement. The three earthquakes modeled are moment magnitude 8.8, 8.5, and 7.8. Maximum zero-to-peak tsunami amplitude for theMw = 8.8 earthquake is near 6 m normal to the fault break and maximum current is near 3.5 m/s. Maximum amplitudes decrease by about one-half north and south of the fault break in the source region. Tsunami amplitudes vary along the Alaskan coast from less than 0.5 to 1.6 m. The modeled amplitudes for theMw = 8.8 quake decrease to less than 0.4 m south of Point Conception, CA. TheMw = 7.8 earthquake generates a tsunami with a maximum amplitude of less than 1 m normal to the source. North and south of the fault break the maximum amplitude again decreases by about one-half. In all the models, amplitudes and currents arc less than one-sixth of the outer coast value within Puget Sound.  相似文献   

20.
Large earthquakes along the Kuril subduction zone in northern Japan are known to have caused damaging tsunami, although there is a little information on historical earthquakes and tsunami in this area because no documents exist before the 19th century that might refer to tsunami events. To determine the likely timing and size of future events we need information on their recurrence intervals and to do this for the prehistoric past we have investigated sediments located in the Kiritappu marsh in eastern Hokaido that we interpret as laid down by tsunami. Using reliable multiple lines of evidence from sedimentological, geomorphological, micropaleontological, and chronological results, we identify 13 tsunami sands. Two of these lie within a peat bed above a historical tephra, Ta-a (AD 1739); the upper one probably corresponds to the AD 1843 Tempo Tokachi-oki earthquake (M 8.2) tsunami, and the lower to either the AD 1952 Tokachi-oki earthquake (M 8.2) tsunami or the AD 1960 Chilean earthquake (M 9.5) tsunami. Underlying are 11 prehistoric tsunami sand beds (nine large sand beds and two smaller sand beds) deposited during the past 4000 years. Because of the wide spatial distribution of the large sand beds, and inundation distances inland of between 1200 to 3000 m, we suggest that they record unusually large tsunamis along the Kuril subduction zone. According to our analyses, these tsunami sands were derived from the coastal area and, although they do not show clear graded bedding, they commonly have gradational upper boundaries and erosional bases and include internal sedimentary structures such as plane beds, dunes, and current ripples, reflecting bedload transportation. Based on our results we calculate the recurrence interval of unusually large earthquakes (probably M 8.6) along the Kuril subduction zone as about 365–553 years and estimate the youngest large event to have occurred in the 17th century.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号