首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
The ages for porphyry Mo deposits in south segment of Da Hinggan Mountains,Northeast China,are not well known.Five molybdenite samples from the Aolunhua(奥伦花) porphyry Mo deposit,five molybdenite samples from the Yangchang(羊场) porphyry-quartz vein Mo deposit and two molybdenite samples from the Banlashan(半拉山) porphyry Mo deposit were selected for Re-Os dating.Three deposits are spatial-temporally associated with the granite porphyry stock.Re-Os isochron age of 131.2±1.9 Ma was obtained for the Aolunhua porph...  相似文献   

2.
Located in the eastern part of the East Qinling molybdenum belt, the Donggou deposit is a superlarge porphyry molybdenum deposit discovered in recent years. The authors performed highly precise dating of the mineralized porphyry and ores in the Donggou molybdenum deposit. A SHRIMP U-Pb zircon dating of the Donggou aluminous A-type granite-porphyry gave a rock-forming age of 112±1 Ma, and the ICP-MS Re-Os analyses of molybdenite from the molybdenum deposit yielded ReOs model ages ranging from 116.5±1.7 to 115.5±1.7 Ma for the deposit. The ages obtained by the two methods are quite close, suggesting that the rocks and ores formed approximately at the same time. The Donggou molybdenum deposit formed at least 20 Ma later than the Jinduicheng, Nannihu, Shangfanggou and Leimengou porphyry molybdenum deposits in the same molybdenum belt, implying that these deposits were formed in different tectonic settings.  相似文献   

3.
The Zhashui-Shanyang district is one of the most important sulfide deposits in the Qinling Orogen where the formation of porphyry-skarn Cu-Mo deposits has a close genetic link with the Yanshannian magmatism. Laser Ablation-Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) U-Pb zircon dating of two granodiorite intrusions (Xiaohekou and Lengshuigou deposits) was investigated in the Zhashui-Shanyang district and the rock-forming ages obtained from 148.3±2.8?to 152.6±1.2?Ma, averaging 150.5 Ma, accompanied by a younger disturbance age of 144.3±1.7?Ma in the Lengshuigou intrusion, which is in excellent agreement with published sensitive high resolution ion micro-probe (SHRIMP) zircon date on the later monzodiorite porphyry phase in the Lenshuigou deposit. Two samples were selected for molybdenite ICP-MS Re-Os isotopic analyses from the Lengshuigou granodiorite porphyry, yielding Re-Os model ages from 149.2±2.7 Ma to 150.6±3.4 Ma, with a weighted mean age of 149.7±2.1 Ma. These mineralization ages overlap rock-forming ages of the host intrusions within the error range. This implies that the mineralization occurred in the Late Jurassic, which belongs to the tectonic phase B event of the Yanshan Movement, not Cretaceous as previously thought. Therefore, the Late Jurassic mineralization of the Zhashui-Shanyang district could be connected to the large-scale Yanshan molybdenum metallogenic period, the geodynamic regime of which is attributable to the far field response of convergence of surrounding plates, perhaps the approximately westward subduction of the Izanagi plate beneath the Eurasian continent.  相似文献   

4.
The Huangsha-Tieshanlong quartz-vein tungsten polymetallic ore deposit, located in the northern Pangushan-Tieshanlong tungsten ore field in eastern Ganxian-Yudu prospecting areas of the Yushan metallogenic belt, is a well-known tungsten deposit in southern Jiangxi province, China. SHRIMP-determined dating of zircons from the Tieshanlong granite yields ages of 168.1±2.1 Ma (n=11, MSWD=1.3). Rhenium and osmium isotopic dating of molybdenite from the Huangsha quartz-vein tungsten deposit determined by ICP-MS yields a weighted average ages of 153±3 Ma and model ages of 150.2±2.1 Ma – 155.4±2.3 Ma. The age of the Huangsha tungsten deposit is 10 to 15 Ma later than the Tieshanlong granite, which shows that there might have been another early Late Jurassic magmatic activity between 150 and 160 Ma, a process which is closely related with tungsten mineralization in this area. The Tieshanlong granite, the Huangsha tungsten deposit and the Pangushan-Tieshanlong ore field were all formed around 150–170 Ma, belonging to products of a Mesozoic second large-scale mineralization. According to the collected molybdenite Re-Os dating results in southern Jiangxi province, the timescale of the associated molybdenum mineralization is 2–6 Ma in the tungsten deposit and the timescale of independent molybdenum mineralization is 1–4 Ma, implying the complexity of tungsten mineralization. Times of molybdenum mineralization are mainly concentrated in the Yanshanian, which includes three stages of 133~135 Ma, 150–162 Ma, and 166–170 Ma, respectively. The 150–162 Ma-stage is in accordance with ages of large-scale W-Sn mineralization, which is mainly molybdenum mineralization characterized by associated molybdenum mineralization with development of an even greater-intensity independent molybdenum mineralization. Independent molybdenum mineralization occurred before and after large-scale W-Sn mineralization, which indicates that favorable prospecting period for molybdenum may be in Cretaceous and early late Jurassic.  相似文献   

5.
The Xianghualing Sn-polymetallic orefield in Hunan Province, southern China, is a large-size tin orefield. Although numerous studies have been undertaken on this orefield, its genesis, mineralization age, and tectonic setting are still controversial, mainly because of the lack of reliable geochronological data on tin mineralization. The 40Ar/39Ar stepwise heating dating method was first employed on muscovite from different deposits in this orefield. The muscovite sample from the Xianghualing Sn-polymetallic deposit defines a plateau age of 154.4±1.1 Ma and an isochron age of 151.9±3.0 Ma; muscovite from the Xianghuapu W-polymetallic deposit yields a plateau age of 161.3±1.1 Ma and an isochron age of 160.0±3.2 Ma; muscovite from the Jianfengling greisen-type Sn-polymetallic deposit gives a plateau age of 158.7±1.2 Ma and an isochron age of 160.3±3.2 Ma. The tungsten-tin mineralization ages in the Xianghualing area are therefore restricted within 150-160 Ma. The tungsten -tin mineralization in Xianghualing occurred at the same time as the regional tin-tungsten mineralization including the Furong tin orefield, Shizhuyuan tungsten-tin polymetallic deposit and Yaogangxian tungsten-polymetallic deposit. Thus, the large-scale tungsten-tin metallogenesis in South China occurring at 160-150 Ma. probably is closely related to asthenospheric upwelling and crust-mantle interaction under a geodynamic setting of crustal extension and lithosphere thinning during the transformation of tectonic regimes during the Mid-Late Jurassic.  相似文献   

6.
In recent years, several large and medium-sized ore deposits have been discovered in the shallow cover of Xuancheng, Anhui Province, indicating that this area has a productive metallogenic geological background and may be a potential prospecting region. Based on systematic investigation, the geological and mineralization characteristics of porphyry Cu-Au deposits and skarn Cu-Mo-W deposits in this region have been summarized. Zircon U-Pb dating (LA-ICP-MS) of the Chating quartz-diorite porphyry and the Kunshan biotite pyroxene diorite yield concordia ages of 145.5 ± 2.1 Ma and 131.8 ± 2.1 Ma, respectively. Meanwhile, the Re-Os dating analyses for molybdenite from the Shizishan and Magushan skarn Cu-Mo deposits yielded 133.81 ± 0.86 Ma and 143.8 ± 1.4 Ma ages, respectively. When viewed in conjunction with previous studies, it is suggested that twostage (the early stage of 145–135 Ma and the late stage of 134–125 Ma) magmatism may have occurred during the Mesozoic in Xuancheng region. Early stage intrusive rocks are distributed along both sides of the Jiangnan deep fault (JDF).The intrusive rocks to the north of the JDF are mainly quartz-diorite porphyry and granodiorite (porphyry) rocks, related to porphyry Cu-Au deposits and skarn-type Cu-Mo-W deposits. These deposits belong to the first stage of the porphyry-skarn copper gold metallogenic belt of the Middle-Lower Yangtze Metallogenic Belt (MLYB), associated with the high potassium calc-alkaline intermediate-acid intrusions. The magmatic and ore-forming materials are mainly derived from the enriched lithospheric mantle. South of the JDF, the Magushan granodiorite is a representative intrusive rock of the first stage I-type granite, which hosts the Magushan Cu-Mo skarn deposit, similar to the W-Mo-Cu skarn deposits in the Eastern Segment of the Jiangnan Uplift Metallogenic Belt (ESJUB). The magmatic and metallogenic materials mainly came from the Neoproterozoic basement, with the possible participation of a small amount of mantle components. The late stage magmatism was dominated by volcanic rocks with a small amount of intrusive rocks, which were consistent with the limited volcanic-intrusive activities in the second stage of the MLYB. The H-O stable isotopes of ore deposits in the region indicate that the ore-forming hydrothermal fluids of the porphyry and skarn deposits were mostly of magmatic water for the ore-forming stage, the percentage of meteoric water obviously increasing during the late ore-forming stage. The ore-forming materials of the deposits are mainly from the deep magma with a few sedimentary wall rocks, according to the stable carbon isotopes of the carbonates in the ore deposits. Additionally, according to previous research, the molybdenite from the MLYB has a higher Re content than that of the ESJUB. The higher content of Re in the molybdenite from the Shizishan deposit is identical to that of MLYB rather than ESJUB, whereas Re characteristics in molybdenite of Magushan deposit are similar to that of ESJUB. The differences in Re characteristics indicate the different deep processes and ore-forming material sources (mainly mantle composition for the former and crustal materials for the latter) of these ore deposits on opposite sides of the JDF.  相似文献   

7.
Late Mesozoic volcanic-subvolcanic rocks and related iron deposits, known as porphyry iron deposits in China, are widespread in the Ningwu ore district (Cretaceous basin) of the middle–lower Yangtze River polymetallic ore belt, East China. Two types of Late Mesozoic magmatic rocks are exposed: one is dioritic rocks closely related to iron mineralization as the hosted rock, and the other one is granodioritic (-granitic) rocks that cut the ore bodies. To understand the age of the iron mineralization and the ore-forming event, detailed zircon U-Pb dating and Hf isotope measurement were performed on granodioritic stocks in the Washan, Gaocun-Nanshan, Dongshan and Heshangqiao iron deposits in the basin. Four emplacement and crystallization (typically for zircons) ages of granodioritic rocks were measured as 126.1±0.5 Ma, 126.8±0.5 Ma, 127.3±0.5 Ma and 126.3±0.4 Ma, respectively in these four deposits, with the LA-MC-ICP-MS zircon U-Pb method. Based on the above results combined with previous dating, it is inferred that the iron deposits in the Ningwu Cretaceous basin occurred in a very short period of 131–127 Ma. In situ zircon Hf compositions of εHf(t) of the granodiorite are mainly from ?3 to ?8 and their corresponding 176Hf/177Hf ratio are from 0.28245 to 0.28265, indicating similar characteristics of dioritic rocks in the basin. We infer that granodioritic rocks occurring in the Ningwu ore district have an original relationship with dioritic rocks. These new results provide significant evidence for further study of this ore district so as to understand the ore-forming event in the study area.  相似文献   

8.
<正>The Central Asian metallogenic domain(CAMD) is a multi-core metallogenic system controlled by boundary strike-slip fault systems.The Balkhash metallogenic belt in Kazakhstan,in which occur many large and super-large porphyritic Cu—Mo deposits and some quartz vein- and greisen-type W—Mo deposits,is a well-known porphyritic Cu—Mo metallogenic belt in the CAMD.In this paper 11 molybdenite samples from the western segment of the Balkhash metallogenic belt are selected for Re—Os compositional analyses and Re—Os isotopic dating.Molybdenites from the Borly porphyry Cu deposit and the three quartz vein-greisen W—Mo deposits—East Kounrad.Akshatau and Zhanet—all have relatively high Re contents(2712—2772μg/g for Borly and 2.267—31.50μg/g for the other three W—Mo deposits),and lower common Os contents(0.670—2.696 ng/g for Borly and 0.0051—0.056 ng/g for the other three).The molybdenites from the Borly porphyry Cu—Mo deposit and the East Kounrad,Zhanet,and Akshatau quartz vein- and greisen-type W—Mo deposits give average model Re—Os ages of 315.9 Ma,298.0 Ma,295.0 Ma,and 289.3 Ma respectively.Meanwhile,molybdenites from the East Kounrad,Zhanet,and Akshatau W—Mo deposits give a Re—Os isochron age of 297.9 Ma,with an MSWD value of 0.97.Re-Os dating of the molybdenites indicates that Cu—W—Mo metallogenesis in the western Balkhash metallogenic belt occurred during Late Carboniferous to Early Permian(315.9—289.3 Ma),while the porphyry Cu—Mo deposits formed at—316 Ma,and the quartz vein-greisen W—Mo deposits formed at ~298 Ma.The Re—Os model and isochron ages thus suggest that Late Carboniferous porphyry granitoid and pegmatite magmatism took place during the late Hercynian movement.Compared to the Junggar-East Tianshan porphyry Cu metallogenic belt in northwestern China,the formation of the Cu—Mo metallogenesis in the Balkhash metallogenic belt occurred between that of the Tuwu-Yandong in East Tianshan and the Baogutu porphyry Cu deposits in West Junggar. Collectively,the large-scale Late Carboniferous porphyry Cu—Mo metallogenesis in the Central Asian metallogenic domain is related to Hercynian tectono-magmatic activities.  相似文献   

9.
The Dongchuang gold deposit in the Xiaoqinling area is an orogenic-type lode gold deposit. It is one of the few superlarge (>100 t Au) deposits in China. Although it has been argued that it was formed in the Mesozoic, related isotopic age data have not been reported in previous studies. Based on detailed geological study, the authors have carried out isotopic dating on various metallogenic generations. The ore-forming process of the Dongchuang gold deposit consists of four stages: coarse-grained pyrite-bearing quartz veins (stage Ⅰ), fine-grained pyrite-quartz veinlets (stage Ⅱ), multi-sulfides (stage Ⅲ) and carbonate-quartz veinlets (stage IV). Ar-Ar dating on mineral separates of stages Ⅰ, Ⅱ and Ⅲ yields plateau ages of 142.9±2.9 Ma, 132.2±2.6 Ma and 128.3±6.2 Ma, respectively. Sericite separates from stage Ⅱ assemblage also yield an Ar-Ar isochron age of 132.6±2.7 Ma, similar to the Ar-Ar plateau age. These results suggest that the Dongchuang gold deposit was mainly formed during 143-128 M  相似文献   

10.
The Yaogangxian tungsten deposit is located in the central part of the Nanling polymetailic metallogenic province. The orebodies occur as veins. Wolframite and molybdenite are the dominant ore minerals. Two samples were selected for molybdenite Re-Os dating in order to elucidate the timing of mineralization. Re-Os datings of molybdenite from quartz-woiframite veins and disseminated in granite yield ages of 153±7 Ma and 163.2±4.2 Ma respectively. The results indicate that the Yaogangxian tungsten deposit is the product of large-scale metallogenesis in the middle Yanshanian period in South China, and that the evolution from late magmatic to postmagmatic hypothermal mineralization occurred at about 10 Ma. The rhenium content of molybdenite in the Yaogangxian tungsten deposit suggests that the ore materials originated from the crust.  相似文献   

11.
Mesozoic ore deposits in Zhejiang Province, Southeast China, are divided into the northwestern and southeastern Zhejiang metallogenic belts along the Jiangshan–Shaoxing Fault. The metal ore deposits found in these belts are epithermal Au–Ag deposits, hydrothermal‐vein Ag–Pb–Zn deposits, porphyry–skarn Mo (Fe) deposits, and vein‐type Mo deposits. There is a close spatial–temporal relationship between the Mesozoic ore deposits and Mesozoic volcanic–intrusive complexes. Zircon U–Pb dating of the ore‐related intrusive rocks and molybdenite Re–Os dating from two typical deposits (Tongcun Mo deposit and Zhilingtou Au–Ag deposit) in the two metallogenic belts show the early and late Yanshanian ages for mineralization. SIMS U–Pb data of zircons from the Tongcun Mo deposit and Zhilingtou Au–Ag deposit indicate that the host granitoids crystallized at 169.7 ± 9.7 Ma (2σ) and 113.6 ± 1 Ma (2σ), respectively. Re–Os analysis of six molybdenite samples from the Tongcun Mo deposit yields an isochron age of 163.9 ± 1.9 Ma (2σ). Re–Os analyses of five molybdenite samples from the porphyry Mo orebodies of the Zhilingtou Au‐Ag deposit yield an isochron age of 110.1 ± 1.8 Ma (2σ). Our results suggest that the metal mineralization in the Zhejiang Province, southeast China formed during at least two stages, i.e., Middle Jurassic and Early Cretaceous, coeval with the granitic magmatism.  相似文献   

12.
The Huaheitan molybdenum deposit in the Beishan area of northwest China consists of quartz‐sulfide veins. Orebodies occur in the contact zone of the Huaniushan granite. LA‐ICPMS U–Pb zircon dating constrains the crystallization of the granite at 225.6 ± 2.2 Ma (2σ, MSWD = 4.5). Re–Os dating of five molybdenite samples yield model ages ranging from 223.2 ± 3.5 Ma to 228.6 ± 3.4 Ma, with an average of 225.2 ± 2.4 Ma. The U–Pb and Re–Os ages are identical within the error, suggesting that the granite and related Huaheitan molybdenum deposit formed in the Late Triassic. Our new data, combined with published geochronological results from the other molybdenum deposits in this region, imply that intensive magmatism and Mo mineralization occurred during 240 Ma to 220 Ma throughout the Beishan area.  相似文献   

13.
Xihuashan tungsten deposit is one of the earliest explored tungsten deposits in southeastern China. It is a vein type deposit genetically associated with the Xihuashan granite pluton. Here we report new dating and zircon geochemistry results. Re–Os isotopic dating for molybdenite intergrowth with wolframite in the oldest generation of the Xihuashan pluton yielded an isochron age of 157.0 ± 2.5 Ma (2σ). Zircon U–Pb laser ablation inductively coupled plasma mass spectrometry (LA‐ICP‐MS) dating shows that the pluton crystallized at 155.7 ± 2.2 Ma (2σ). This age is similar to the molybdenite Re–Os age for the ore deposit within error. This, together with published data, suggests that the major W(Mo)‐Sn mineralization occurred between 160–150 Ma in southeastern China. These deposits constitute a major part of the magmatic‐metallogenic belt of eastern Nanlin. The lower Re content in molybdenite of the Xihuashan tungsten deposit shows crustal origin for the ore‐forming material. The limited direct contributions from the subducting slab for the tungsten mineralization in the Nanling region suggest a change of the style of the paleo‐Pacific plate beneath southeastern China.  相似文献   

14.
Jilin Province in NE China lies on the eastern edge of the Xing–Meng Orogenic Belt. Mineral exploration in this area has resulted in the discovery of numerous large, medium, and small sized Cu, Mo, Au, and Co deposits. To better understand the formation and distribution of both the porphyry and skarn types Cu deposits of the region, we examined the geological characteristics of the deposits and applied zircon U–Pb and molybdenite Re–Os isotope dating to constrain the age of the mineralization. The Binghugou Cu deposit yields a zircon U–Pb age for quartz diorite of 128.1 ± 1.6 Ma; the Chang'anpu Cu deposit yields a zircon U–Pb age for granite porphyry of 117.0 ± 1.4 Ma; the Ermi Cu deposit yields a zircon U–Pb age for granite porphyry of 96.8 ± 1.1 Ma; the Tongshan Cu deposit yields molybdenite Re–Os model ages of 128.7 to 130.2 Ma, an isochron age of 129.0 ± 1.6 Ma, and a weighted mean model age of 129.2 ± 0.7 Ma; and the Tianhexing Cu deposit yields molybdenite Re–Os model ages of 113.9 to 115.2 Ma, an isochron age of 114.7 ± 1.2 Ma, and a weighted mean model age of 114.7 ± 0.7 Ma. The new ages, combined with existing geochronology data, show that intense porphyry and skarn types Cu mineralization was coeval with Cretaceous magmatism. The geotectonic processes responsible for the genesis of the Cu mineralization were probably related to lithospheric thinning. By analyzing the accumulated molybdenite Re–Os, zircon U–Pb, and Ar–Ar ages for NE China, it is concluded that the Cu deposits formed during multiple events coinciding with periods of magmatic activity. We have identified five phases of mineralization: early Paleozoic (~476 Ma), late Paleozoic (286.5–273.6 Ma), early Mesozoic (~228.7 Ma), Jurassic (194.8–137.1 Ma), and Cretaceous (131.2–96.8 Ma). Although Cu deposits formed during each phase, most of the Cu mineralization occurred during the Cretaceous.  相似文献   

15.
《International Geology Review》2012,54(14):1763-1785
Central Jilin Province lies along the eastern edge of the Xing–Meng orogenic belt of northeast China. At least 10 Mo deposits have been discovered in this area, making it the second-richest concentration of Mo resources in China. To better understand the formation and distribution of porphyry Mo deposits in the area, we investigated the geological characteristics of the deposits and applied zircon UPb and molybdenite Re–Os isotope dating to constrain the age of mineralization. Our new geochronological data show the following: the Jidetun Mo deposit yields molybdenite Re–Os model ages of 164.6–167.1 Ma, an isochron age of 168 ± 2.5 Ma, and a weighted mean model age of 165.9 ± 1.2 Ma; the Houdaomu Mo deposit yields molybdenite Re–Os model ages of 167.4–167.7 Ma, an isochron age of 168 ± 13 Ma, and a weighted mean model age of 167.5 ± 1.2 Ma; and the Chang’anpu Mo deposit yields a zircon U–Pb age for granodiorite porphyry of 166.9 ± 1.5 Ma (N = 16). These new age data, combined with existing molybdenite Re–Os dates, show that intense porphyry Mo mineralization was coeval with magmatism during the Middle Jurassic (167.8 ± 0.4 Ma, r > 0.999). The geotectonic mechanisms responsible for Mo mineralization were probably related to subduction of the Palaeo-Pacific plate beneath the Eurasian continent. Combining published molybdenite Re–Os and zircon U–Pb ages for northeast China, the Mo deposits are shown to have been formed during multiple events coinciding with periods of magmatic activity. We identified three phases of mineralization, two of which had several stages: the Caledonian (485–480 Ma); the Indosinian comprising the Early–Middle Triassic (248–236 Ma) and Late Triassic (226–208 Ma) stages; and the Yanshanian phase comprising the Early–Middle Jurassic (202–165 Ma), Late Jurassic–early Early Cretaceous (154–129 Ma), and Early Cretaceous (114–111 Ma) stages. Although Mo deposits formed during each phase/stage, most of the mineralization occurred during the Early–Middle Jurassic.  相似文献   

16.
The Karamay porphyry Mo–Cu deposit, discovered in 2010, is located in the West Junggar region of Xinjiang of northwest China. The deposit is hosted within the Karamay granodiorite porphyry that intruded into Early Carboniferous sedimentary strata and its exo‐contact zone. The LA‐ICPMS U–Pb method was used to date the zircons from the granodiorite samples of the porphyry. Analyses of 12 spots of zircons from the granodiorite samples yield a U–Pb weighted mean age of 300.8 ± 2.1 Ma (2σ). Re–Os dating for five molybdenite samples obtained from two prospecting trenches and three outcrops in the deposit yield a Re–Os isochron age of 294.6 ± 4.6 Ma (2σ), with an initial 187Os/188Os of 0.0 ± 1.1. The isochron age is within the error of the Re–Os model ages, demonstrating that the age result is reliable. The Re–Os isochron age of the molybdenite is consistent with the U–Pb age of the granodiorite porphyry, which indicates that the deposit is genetically related with an Early Permian porphyry system. The ages of the Karamay Mo–Cu deposit and the ore‐bearing porphyry are similar to the ages of intermediate‐acid intrusions and Cu–Mo–Au polymetallic deposits in the West Junggar region. This consistency suggests the same geodynamic process to the magmatism and related mineralization.  相似文献   

17.
The Middle–Lower Yangtze Region (MLYR) is one of the most important metallogenic belts in China that hosts numerous Cu–Fe–Au–S deposits. The Hucunnan deposit in the central part of MLYR is a newly discovered porphyry–skarn‐type copper–molybdenum deposit during recent drilling exploration. Laser ablation ICP–MS analysis carried out in this study yields U–Pb isotopic ages of 137.5 ± 1.2 Ma for the Cu–Mo bearing granodiorite rock and 125.0 ± 1.5 Ma for the Cu‐bearing quartz diorites. The Re–Os isotopic dating of seven molybdenite samples gave an isochron age of 139.5 ± 1.1 Ma, suggesting a syn‐magma mineralization of molybdenite in the Hucunnan deposit. Since porphyry‐type molybdenum deposits are rare in central MLYR, the discovery of the Hucunnan deposit suggests possible molybdenite mineralizations in the deep places of the Cu–Mo bearing granitoids. In addition, the U–Pb isotopic age of 125 Ma for the Cu‐bearing quartz diorites implies a new Cu mineralization period for the MLYR that was rarely reported by previous studies.  相似文献   

18.
Molybdenum is an economically important subproduct of North Chilean porphyry‐type deposits, and thus spatial and temporal distribution of molybdenite as the primary Mo‐bearing mineral in the Escondida and Escondida Norte deposits were characterized using several mineralogical and chemical techniques and the Re‐Os dating method. Molybdenum is distributed extensively in the two deposits, and high molybdenum concentrations (>500 ppm) are recognized particularly in the chlorite‐sericite transitional zone between the potassic and sericitic zones. Two modes of occurrence of molybdenite are observed in the Escondida deposit: aggregates with Cu‐Fe‐sulfide minerals in fine veinlets (sulfide‐veinlet type), and monomineralic microveinlets associated with NE‐trending faults. The former and the latter yielded ages of 36.1 ± 0.2 Ma and 35.2 ± 0.2 Ma, respectively. Re‐Os dating of Escondida Norte molybdenites also show two distinct episodes, at 37.7 ± 0.3 Ma and a younger episode at 36.6 ± 0.2 Ma. These data indicate that the Escondida Norte is older than the main Escondida deposit. The Re‐Os age data combined with those of the porphyry emplacement suggest that the molybdenite mineralization in the Escondida district occurred as several short episodic pulses during the late‐magmatic to hydrothermal transition, and that the Cu‐Mo deposits were formed in a variable overall period spanning 1 to 5 m.y.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号