首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have experimentally investigated melting phase relation of a nominally anhydrous, carbonated pelitic eclogite (HPLC1) at 2.5 and 3.0 GPa at 900–1,350°C in order to constrain the cycling of sedimentary carbon in subduction zones. The starting composition HPLC1 (with 5 wt% bulk CO2) is a model composition, on a water-free basis, and is aimed to represent a mixture of 10 wt% pelagic carbonate unit and 90 wt% hemipelagic mud unit that enter the Central American trench. Sub-solidus assemblage comprises clinopyroxene + garnet + K-feldspar + quartz/coesite + rutile + calcio-ankerite/ankeritess. Solidus temperature is at 900–950°C at 2.5 GPa and at 900–1,000°C at 3.0 GPa, and the near-solidus melt is K-rich granitic. Crystalline carbonates persist only 50–100°C above the solidus and at temperatures above carbonate breakdown, carbon exists in the form of dissolved CO2 in silica-rich melts and as a vapor phase. The rhyodacitic to dacitic partial melt evolves from a K-rich composition at near-solidus condition to K-poor, and Na- and Ca-rich composition with increasing temperature. The low breakdown temperatures of crystalline carbonate in our study compared to those of recent studies on carbonated basaltic eclogite and peridotite owes to Fe-enrichment of carbonates in pelitic lithologies. However, the conditions of carbonate release in our study still remain higher than the modern depth-temperature trajectories of slab-mantle interface at sub-arc depths, suggesting that the release of sedimentary carbonates is unlikely in modern subduction zones. One possible scenario of carbonate release in modern subduction zones is the detachment and advection of sedimentary piles to hotter mantle wedge and consequent dissolution of carbonate in rhyodacitic partial melt. In the Paleo-NeoProterozoic Earth, on the other hand, the hotter slab-surface temperatures at subduction zones likely caused efficient liberation of carbon from subducting sedimentary carbonates. Deeply subducted carbonated sediments, similar to HPLC1, upon encountering a hotter mantle geotherm in the oceanic province can release carbon-bearing melts with high K2O, K2O/TiO2, and high silica, and can contribute to EM2-type ocean island basalts. Generation of EM2-type mantle end-member may also occur through metasomatism of mantle wedge by carbonated metapelite plume-derived partial melts.  相似文献   

2.
To investigate eclogite melting under mantle conditions, wehave performed a series of piston-cylinder experiments usinga homogeneous synthetic starting material (GA2) that is representativeof altered mid-ocean ridge basalt. Experiments were conductedat pressures of 3·0, 4·0 and 5·0 GPa andover a temperature range of 1200–1600°C. The subsolidusmineralogy of GA2 consists of garnet and clinopyroxene withminor quartz–coesite, rutile and feldspar. Solidus temperaturesare located at 1230°C at 3·0 GPa and 1300°C at5·0 GPa, giving a steep solidus slope of 30–40°C/GPa.Melting intervals are in excess of 200°C and increase withpressure up to 5·0 GPa. At 3·0 GPa feldspar, rutileand quartz are residual phases up to 40°C above the solidus,whereas at higher pressures feldspar and rutile are rapidlymelted out above the solidus. Garnet and clinopyroxene are theonly residual phases once melt fractions exceed 20% and garnetis the sole liquidus phase over the investigated pressure range.With increasing melt fraction garnet and clinopyroxene becomeprogressively more Mg-rich, whereas coexisting melts vary fromK-rich dacites at low degrees of melting to basaltic andesitesat high melt fractions. Increasing pressure tends to increasethe jadeite and Ca-eskolaite components in clinopyroxene andenhance the modal proportion of garnet at low melt fractions,which effects a marked reduction in the Al2O3 and Na2O contentof the melt with pressure. In contrast, the TiO2 and K2O contentsof the low-degree melts increase with increasing pressure; thusNa2O and K2O behave in a contrasted manner as a function ofpressure. Altered oceanic basalt is an important component ofcrust returned to the mantle via plate subduction, so GA2 maybe representative of one of many different mafic lithologiespresent in the upper mantle. During upwelling of heterogeneousmantle domains, these mafic rock-types may undergo extensivemelting at great depths, because of their low solidus temperaturescompared with mantle peridotite. Melt batches may be highlyvariable in composition depending on the composition and degreeof melting of the source, the depth of melting, and the degreeof magma mixing. Some of the eclogite-derived melts may alsoreact with and refertilize surrounding peridotite, which itselfmay partially melt with further upwelling. Such complex magma-genesisconditions may partly explain the wide spectrum of primitivemagma compositions found within oceanic basalt suites. KEY WORDS: eclogite; experimental petrology; mafic magmatism; mantle melting; oceanic basalts  相似文献   

3.
The melting behaviour of three carbonated pelites containing 0–1 wt% water was studied at 8 and 13 GPa, 900–1,850°C to define conditions of melting, melt compositions and melting reactions. At 8 GPa, the fluid-absent and dry carbonated pelite solidi locate at 950 and 1,075°C, respectively; >100°C lower than in carbonated basalts and 150–300°C lower than the mantle adiabat. From 8 to 13 GPa, the fluid-present and dry solidi temperatures then increase to 1,150 and 1,325°C for the 1.1 wt% H2O and the dry composition, respectively. The melting behaviour in the 1.1 wt% H2O composition changes from fluid-absent at 8 GPa to fluid-present at 13 GPa with the pressure breakdown of phengite and the absence of other hydrous minerals. Melting reactions are controlled by carbonates, and the potassium and hydrous phases present in the subsolidus. The first melts, which composition has been determined by reverse sandwich experiments, are potassium-rich Ca–Fe–Mg-carbonatites, with extreme K2O/Na2O wt ratios of up to 42 at 8 GPa. Na is compatible in clinopyroxene with D\textNa\textcpx/\textcarbonatite = 10-18 D_{\text{Na}}^{{{\text{cpx}}/{\text{carbonatite}}}} = 10{-}18 at the solidus at 8 GPa. The melt K2O/Na2O slightly decreases with increasing temperature and degree of melting but strongly decreases from 8 to 13 GPa when K-hollandite extends its stability field to 200°C above the solidus. The compositional array of the sediment-derived carbonatites is congruent with alkali- and CO2-rich melt or fluid inclusions found in diamonds. The fluid-absent melting of carbonated pelites at 8 GPa contrasts that at ≤5 GPa where silicate melts form at lower temperatures than carbonatites. Comparison of our melting temperatures with typical subduction and mantle geotherms shows that melting of carbonated pelites to 400-km depth is only feasible for extremely hot subduction. Nevertheless, melting may occur when subduction slows down or stops and thermal relaxation sets in. Our experiments show that CO2-metasomatism originating from subducted crust is intimately linked with K-metasomatism at depth of >200 km. As long as the mantle remains adiabatic, low-viscosity carbonatites will rise into the mantle and percolate upwards. In cold subcontinental lithospheric mantle keels, the potassic Ca–Fe–Mg-carbonatites may freeze when reacting with the surrounding mantle leading to potassium-, carbonate/diamond- and incompatible element enriched metasomatized zones, which are most likely at the origin of ultrapotassic magmas such as group II kimberlites.  相似文献   

4.
Jadeite‐bearing kyanite eclogite has been discovered in the Iratsu body of the Sanbagawa belt, SW Japan. The jadeite + kyanite assemblage is stable at higher pressure–temperature (PT) conditions or lower H2O activity [a(H2O)] than paragonite, although paragonite‐bearing eclogite is common in the Sanbagawa belt. The newly discovered eclogite is a massive metagabbro with the peak‐P assemblage garnet + omphacite + jadeite + kyanite + phengite + quartz + rutile. Impure jadeite is exclusively present as inclusions in garnet. The compositional gap between the coexisting omphacite (P2/n) and impure jadeite (C2/c) suggests relatively low metamorphic temperatures of 510–620 °C. Multi‐equilibrium thermobarometry for the assemblage garnet + omphacite + kyanite + phengite + quartz gives peak‐P conditions of ~2.5 GPa, 570 °C. Crystallization of jadeite in the metagabbro is attributed to Na‐ and Al‐rich effective bulk composition due to the persistence of relict Ca‐rich clinopyroxene at the peak‐P stage. By subtracting relict clinopyroxene from the whole‐rock composition, pseudosection modelling satisfactorily reproduces the observed jadeite‐bearing assemblage and mineral compositions at ~2.4–2.5 GPa, 570–610 °C and a(H2O) >0.6. The relatively high pressure conditions derived from the jadeite‐bearing kyanite eclogite are further supported by high residual pressures of quartz inclusions in garnet. The maximum depth of exhumation in the Sanbagawa belt (~80 km) suggests decoupling of the slab–mantle wedge interface at this depth.  相似文献   

5.
In the North‐East Greenland Caledonides, P–T conditions and textures are consistent with partial melting of ultrahigh‐pressure (UHP) eclogite during exhumation. The eclogite contains a peak assemblage of garnet, omphacite, kyanite, coesite, rutile, and clinozoisite; in addition, phengite is inferred to have been present at peak conditions. An isochemical phase equilibrium diagram, along with garnet isopleths, constrains peak P–T conditions to be subsolidus at 3.4 GPa and 940°C. Zr‐in‐rutile thermometry on inclusions in garnet yields values of ~820°C at 3.4 GPa. In the eclogite, plagioclase may exhibit cuspate textures against surrounding omphacite and has low dihedral angles in plagioclase–clinopyroxene–garnet aggregates, features that are consistent with former melt–solid–solid boundaries and crystallized melt pockets. Graphic intergrowths of plagioclase and amphibole are present in the matrix. Small euhedral neoblasts of garnet against plagioclase are interpreted as formed from a peritectic reaction during partial melting. Polymineralic inclusions of albite+K‐feldspar and clinopyroxene+quartz±kyanite±plagioclase in large anhedral garnet display plagioclase cusps pointing into the host, which are interpreted as crystallized melt pockets. These textures, along with the mineral composition, suggest partial melting of the eclogite by reactions involving phengite and, to a large extent, an epidote‐group mineral. Calculated and experimentally determined phase relations from the literature reveal that partial melting occurred on the exhumation path, at pressures below the coesite to quartz transition. A calculated P–T phase diagram for a former melt‐bearing domain shows that the formation of the peritectic garnet rim occurred at 1.4 GPa and 900°C, with an assemblage of clinopyroxene, amphibole, and plagioclase equilibrated at 1.3 GPa and 720°C. Isochemical phase equilibrium modelling of a symplectite of clinopyroxene, plagioclase, and amphibole after omphacite, combined with the mineral composition, yields a P–T range at 1.0–1. 6 GPa, 680–1,000°C. The assemblage of amphibole and plagioclase is estimated to reach equilibrium at 717–732°C, calculated by amphibole–plagioclase thermometry for the former melt‐bearing domain and symplectite respectively. The results of this study demonstrate that partial melt formed in the UHP eclogite through breakdown of an epidote‐group mineral with minor involvement of phengite during exhumation from peak pressure; melt was subsequently crystallized on the cooling path.  相似文献   

6.
Melt inclusions in kimberlitic and metamorphic diamonds worldwide range in composition from potassic aluminosilicate to alkali-rich carbonatitic and their low-temperature derivative, a saline high-density fluid (HDF). The discovery of CO2 inclusions in diamonds containing eclogitic minerals are also essential. These melts and HDFs may be responsible for diamond formation and metasomatic alteration of mantle rocks since the late Archean to Phanerozoic. Although a genetic link between these melts and fluids was suggested, their origin is still highly uncertain. Here we present experimental results on melting phase relations in a carbonated pelite at 6 GPa and 900–1500 °C. We found that just below solidus K2O enters potassium feldspar or K2TiSi3O9 wadeite coexisting with clinopyroxene, garnet, kyanite, coesite, and dolomite. The potassium phases react with dolomite to produce garnet, kyanite, coesite, and potassic dolomitic melt, 40(K0.90Na0.10)2CO3·60Ca0.55Mg0.24Fe0.21CO3 + 1.9 mol% SiO2 + 0.7 mol% TiO2 + 1.4 mol% Al2O3 at the solidus established near 1000 °C. Molecular CO2 liberates at 1100 °C. Potassic aluminosilicate melt appears in addition to carbonatite melt at 1200 °C. This melt contains (mol/wt%): SiO2 = 57.0/52.4, TiO2 = 1.8/2.3, Al2O3 = 8.5/13.0, FeO = 1.4/1.6, MgO = 1.9/1.2, CaO = 3.8/3.2, Na2O = 3.2/3.0, K2O = 10.5/15.2, CO2 = 12.0/8.0, while carbonatite melt can be approximated as 24(K0.81Na0.19)2CO3·76Ca0.59Mg0.21Fe0.20CO3 + 3.0 mol% SiO2 + 1.6 mol% TiO2 + 1.4 mol% Al2O3. Both melts remain stable to at least 1500 °C coexisting with CO2 fluid and residual eclogite assemblage consisting of K-rich omphacite (0.4–1.5 wt% K2O), almandine-pyrope-grossular garnet, kyanite, and coesite. The obtained immiscible alkali‑carbonatitic and potassic aluminosilicate melts resemble compositions of melt inclusions in diamonds worldwide. Thus, these melts entrapped by diamonds could be derived by partial melting of the carbonated material of the continental crust subducted down to 180–200 km depths. Given the high solubility of chlorides and water in both carbonate and aluminosilicate melts inferred in previous experiments, the saline end-member, brine, could evolve from potassic carbonatitic and/or silicic melts by fractionation of Ca-Mg carbonates/eclogitic minerals and accumulation of alkalis, chlorine and water in the residual low-temperature supercritical fluid. Direct extraction from the hydrated marine sediments under conditions of cold subduction would be another possibility for the brine formation.  相似文献   

7.
Composite granite–quartz veins occur in retrogressed ultrahigh pressure (UHP) eclogite enclosed in gneiss at General's Hill in the central Sulu belt, eastern China. The granite in the veins has a high‐pressure (HP) mineral assemblage of dominantly quartz+phengite+allanite/epidote+garnet that yields pressures of 2.5–2.1 GPa (Si‐in‐phengite barometry) and temperatures of 850–780°C (Ti‐in‐zircon thermometry) at 2.5 GPa (~20°C lower at 2.1 GPa). Zircon overgrowths on inherited cores and new grains of zircon from both components of the composite veins crystallized at c. 221 Ma. This age overlaps the timing of HP retrograde recrystallization dated at 225–215 Ma from multiple localities in the Sulu belt, consistent with the HP conditions retrieved from the granite. The εHf(t) values of new zircon from both components of the composite veins and the Sr–Nd isotope compositions of the granite consistently lie between values for gneiss and eclogite, whereas δ18O values of new zircon are similar in the veins and the crustal rocks. These data are consistent with zircon growth from a blended fluid generated internally within the gneiss and the eclogite, without any ingress of fluid from an external source. However, at the peak metamorphic pressure, which could have reached 7 GPa, the rocks were likely fluid absent. During initial exhumation under UHP conditions, exsolution of H2O from nominally anhydrous minerals generated a grain boundary supercritical fluid in both gneiss and eclogite. As exhumation progressed, the volume of fluid increased allowing it to migrate by diffusing porous flow from grain boundaries into channels and drain from the dominant gneiss through the subordinate eclogite. This produced a blended fluid intermediate in its isotope composition between the two end‐members, as recorded by the composite veins. During exhumation from UHP (coesite) eclogite to HP (quartz) eclogite facies conditions, the supercritical fluid evolved by dissolution of the silicate mineral matrix, becoming increasingly solute‐rich, more ‘granitic’ and more viscous until it became trapped. As crystallization began by diffusive loss of H2O to the host eclogite concomitant with ongoing exhumation of the crust, the trapped supercritical fluid intersected the solvus for the granite–H2O system, allowing phase separation and formation of the composite granite–quartz veins. Subsequently, during the transition from HP eclogite to amphibolite facies conditions, minor phengite breakdown melting is recorded in both the granite and the gneiss by K‐feldspar+plagioclase+biotite aggregates located around phengite and by K‐feldspar veinlets along grain boundaries. Phase equilibria modelling of the granite indicates that this late‐stage melting records P–T conditions towards the end of the exhumation, with the subsolidus assemblage yielding 0.7–1.1 GPa at <670°C. Thus, the composite granite–quartz veins represent a rare example of a natural system recording how the fluid phase evolved during exhumation of continental crust. The successive availability of different fluid phases attending retrograde metamorphism from UHP eclogite to amphibolite facies conditions will affect the transport of trace elements through the continental crust and the role of these fluids as metasomatic agents interacting with the mantle wedge in the subduction channel.  相似文献   

8.
Pressure–temperature conditions of tourmaline breakdown in a metapelite were determined by high-pressure experiments at 700–900°C and 4–6 GPa. These experiments produced an eclogite–facies assemblage of garnet, clinopyroxene, phengite, coesite, kyanite and rare rutile. The modal proportions of tourmaline clearly decreased between 4.5 and 5 GPa at 700°C, between 4 and 4.5 GPa at 800°C, and between 800 and 850°C at 4 GPa, with tourmaline that survived the higher temperature conditions appearing corroded and thus metastable. Decreases in the modal abundance of tourmaline are accompanied by decreasing modal abundance of coesite, and increasing that of clinopyroxene, garnet and kyanite; the boron content of phengite increases significantly. These changes suggest that, with increasing pressure and temperature, tourmaline reacts with coesite to produce clinopyroxene, garnet, kyanite, and boron-bearing phengite and fluid. Our results suggest that: (1) tourmaline breakdown occurs at lower pressures and temperatures in SiO2-saturated systems than in SiO2-undersaturated systems. (2) In even cold subduction zones, subducting sediments should release boron-rich fluids by tourmaline breakdown before reaching depths of 150 km, and (3) even after tourmaline breakdown, a significant amount of boron partitioned into phengite could be stored in deeply subducted sediments.  相似文献   

9.
We determined the melting phase relations, melt compositions, and melting reactions of carbonated peridotite on two carbonate-bearing peridotite compositions (ACP: alkali-rich peridotite + 5.0 wt % CO2 and PERC: fertile peridotite + 2.5 wt % CO2) at 10–20 GPa and 1,500–2,100 °C and constrain isopleths of the CO2 contents in the silicate melts in the deep mantle. At 10–20 GPa, near-solidus (ACP: 1,400–1,630 °C) carbonatitic melts with < 10 wt % SiO2 and > 40 wt % CO2 gradually change to carbonated silicate melts with > 25 wt % SiO2 and < 25 wt % CO2 between 1,480 and 1,670 °C in the presence of residual majorite garnet, olivine/wadsleyite, and clinoenstatite/clinopyroxene. With increasing degrees of melting, the melt composition changes to an alkali- and CO2-rich silicate melt (Mg# = 83.7–91.6; ~ 26–36 wt % MgO; ~ 24–43 wt % SiO2; ~ 4–13 wt % CaO; ~ 0.6–3.1 wt % Na2O; and ~ 0.5–3.2 wt % K2O; ~ 6.4–38.4 wt % CO2). The temperature of the first appearance of CO2-rich silicate melt at 10–20 GPa is ~ 440–470 °C lower than the solidus of volatile-free peridotite. Garnet + wadsleyite + clinoenstatite + carbonatitic melt controls initial carbonated silicate melting at a pressure < 15 GPa, whereas garnet + wadsleyite/ringwoodite + carbonatitic melt dominates at pressure > 15 GPa. Similar to hydrous peridotite, majorite garnet is a liquidus phase in carbonated peridotites (ACP and PERC) at 10–20 GPa. The liquidus is likely to be at ~ 2,050 °C or higher at pressures of the present study, which gives a melting interval of more than 670 °C in carbonated peridotite systems. Alkali-rich carbonated silicate melts may thus be produced through partial melting of carbonated peridotite to 20 GPa at near mantle adiabat or even at plume temperature. These alkali- and CO2-rich silicate melts can percolate upward and may react with volatile-rich materials accumulate at the top of transition zone near 410-km depth. If these refertilized domains migrate upward and convect out of the zone of metal saturation, CO2 and H2O flux melting can take place and kimberlite parental magmas can be generated. These mechanisms might be important for mantle dynamics and are potentially effective metasomatic processes in the deep mantle.  相似文献   

10.
We present melt and mineral compositions from nominally anhydrouspartial melting experiments at 2–3 GPa on a quartz eclogitecomposition (G2) similar to average oceanic crust. Near-soliduspartial melts at 3 GPa, determined with melt traps of vitreouscarbon spheres, have 55–57 wt % SiO2, rather less silicathan the dacitic compositions that are generally assumed fornear-solidus eclogite partial melts. At 2 GPa, equivalent near-soliduspartial melts are less silicic (  相似文献   

11.
The beginnings of hydrous mantle wedge melting   总被引:5,自引:3,他引:2  
This study presents new phase equilibrium data on primitive mantle peridotite (0.33 wt% Na2O, 0.03 wt% K2O) in the presence of excess H2O (14.5 wt% H2O) from 740 to 1,200°C at 3.2–6 GPa. Based on textural and chemical evidence, we find that the H2O-saturated peridotite solidus remains isothermal between 800 and 820°C at 3–6 GPa. We identify both quenched solute from the H2O-rich fluid phase and quenched silicate melt in supersolidus experiments. Chlorite is stable on and above the H2O-saturated solidus from 2 to 3.6 GPa, and chlorite peridotite melting experiments (containing ~6 wt% chlorite) show that melting occurs at the chlorite-out boundary over this pressure range, which is within 20°C of the H2O-saturated melting curve. Chlorite can therefore provide sufficient H2O upon breakdown to trigger dehydration melting in the mantle wedge or perpetuate ongoing H2O-saturated melting. Constraints from recent geodynamic models of hot subduction zones like Cascadia suggest that significantly more H2O is fluxed from the subducting slab near 100 km depth than can be bound in a layer of chloritized peridotite ~ 1 km thick at the base of the mantle wedge. Therefore, the dehydration of serpentinized mantle in the subducted lithosphere supplies free H2O to trigger melting at the H2O-saturated solidus in the lowermost mantle wedge. Alternatively, in cool subduction zones like the Northern Marianas, a layer of chloritized peridotite up to 1.5 km thick could contain all the H2O fluxed from the slab every million years near 100 km depth, which suggests that the dominant form of melting below arcs in cool subduction zones is chlorite dehydration melting. Slab PT paths from recent geodynamic models also allow for melts of subducted sediment, oceanic crust, and/or sediment diapirs to interact with hydrous mantle melts within the mantle wedge at intermediate to hot subduction zones.  相似文献   

12.
The prograde metamorphic history of the Sulu ultrahigh‐pressure metamorphic terrane has been revealed using Raman‐based barometry of the SiO2 phases and other mineral inclusions in garnet porphyroblasts of a coesite eclogite from Yangzhuang, Junan region, eastern China. Garnet porphyroblasts have inner and outer segments with the boundary being marked by discontinuous changes in the grossular content. In the inner segment, the SiO2 phase inclusions are α‐quartz with no coesite or relict features such as radial cracks. The residual pressures retained by the quartz inclusions systematically increase from the crystal centre to the margin of the inner segment. The metamorphic conditions estimated by calculation from the residual pressure and conventional thermodynamic calculation range from 500 to 630 °C and 1.3 to 2.3 GPa for the stage of the inner segment. Coesite and its pseudomorph occur as inclusions in the outer segment of the garnet and matrix omphacite. This occurrence of coesite is consistent with the pressure and temperature conditions of 660–725 °C and 3.1 GPa estimated by conventional geothermobarometry. Our results suggest that the quartz inclusions in the inner segment were trapped by garnet under α‐quartz‐stable conditions and survived phase transition to coesite at the peak metamorphic stage. The SiO2 phases and other inclusions in the garnet have retained evidence of the pre‐eclogite prograde stage even during exhumation stage. The combined Raman spectroscopic and petrological approaches used here offers a powerful means for obtaining more robust constraints prograde stages involving garnet growth where different SiO2 phases are present as inclusions.  相似文献   

13.
The conditions under which rear-arc magmas are generated were estimated using primary basalts from the Sannome-gata volcano, located in the rear of the NE Japan arc. Scoriae from the volcano occur with abundant crustal and mantle xenoliths, suggesting that the magma ascended rapidly from the upper mantle. The scoriae show significant variations in their whole-rock compositions (7.9–11.1 wt% MgO). High-MgO scoriae (MgO > ~9.5 wt%) have mostly homogeneous 87Sr/86Sr ratios (0.70318–0.70320), whereas low-MgO scoriae (MgO < ~9 wt%) have higher 87Sr/86Sr ratios (>0.70327); ratios tend to increase with decreasing MgO content. The high-MgO scoriae are aphyric, containing ~5 vol% olivine microphenocrysts with Mg# [100 × Mg/(Mg + Fe2+)] of up to 90. In contrast, the low-MgO scoriae have crustal xenocrysts of plagioclase, alkali feldspar, and quartz, and the mineralogic modes correlate negatively with whole-rock MgO content. On the basis of these observations, it is inferred that the high-MgO scoriae represent primary or near-primary melts, while the low-MgO scoriae underwent considerable interaction with the crust. Using thermodynamic analysis of the observed petrological features of the high-MgO scoriae, the eruption temperature of the magmas was constrained to 1,160–1,220 °C. Given that the source mantle was depleted MORB-source mantle, the primary magma was plausibly generated by ~7 % melting of a garnet-bearing spinel peridotite; taking this into consideration, and considering the constraints of multi-component thermodynamics, we estimated that the primary Sannome-gata magma was generated in the source mantle with 0.5–0.6 wt% H2O at 1,220–1,230 °C and at ~1.8 GPa, and that the H2O content of the primary magma was 6–7 wt%. The rear-arc Sannome-gata magma was generated by a lower degree of melting of the mantle at greater depths and lower temperatures than the frontal-arc magma from the Iwate volcano, which was also estimated to be generated by ~15 % melting of the source mantle with 0.6–0.7 wt% H2O at ~1,250 °C and at ~1.3 GPa.  相似文献   

14.
We performed partial melting experiments at 1 and 1.5 GPa, and 1180–1400 °C, to investigate the melting under mantle conditions of an olivine-websterite (GV10), which represents a natural proxy of secondary (or stage 2) pyroxenite. Its subsolidus mineralogy consists of clinopyroxene, orthopyroxene, olivine and spinel (+garnet at 1.5 GPa). Solidus temperature is located between 1180 and 1200 °C at 1 GPa, and between 1230 and 1250 °C at 1.5 GPa. Orthopyroxene (±garnet), spinel and clinopyroxene are progressively consumed by melting reactions to produce olivine and melt. High coefficient of orthopyroxene in the melting reaction results in relatively high SiO2 content of low melt fractions. After orthopyroxene exhaustion, melt composition is controlled by the composition of coexisting clinopyroxene. At increasing melt fraction, CaO content of melt increases, whereas Na2O, Al2O3 and TiO2 behave as incompatible elements. Low Na2O contents reflect high partition coefficient of Na between clinopyroxene and melt (\(D_{{{\text{Na}}_{ 2} {\text{O}}}}^{{{\text{cpx}}/{\text{liquid}}}}\)). Melting of GV10 produces Quartz- to Hyperstene-normative basaltic melts that differ from peridotitic melts only in terms of lower Na2O and higher CaO contents. We model the partial melting of mantle sources made of different mixing of secondary pyroxenite and fertile lherzolite in the context of adiabatic oceanic mantle upwelling. At low potential temperatures (T P < 1310 °C), low-degree melt fractions from secondary pyroxenite react with surrounding peridotite producing orthopyroxene-rich reaction zones (or refertilized peridotite) and refractory clinopyroxene-rich residues. At higher T P (1310–1430 °C), simultaneous melting of pyroxenite and peridotite produces mixed melts with major element compositions matching those of primitive MORBs. This reinforces the notion that secondary pyroxenite may be potential hidden components in MORB mantle source.  相似文献   

15.
Lawsonite eclogites are crucial to decipher material recycling along a cold geotherm into the deep Earth and orogenic geodynamics at convergent margins. However, their tectono‐metamorphic role and record especially at ultrahigh‐pressure (UHP) conditions are poorly known due to rare exposure in orogenic belts. In a ~4 km long cross‐section in Muzhaerte, China, at the western termination of the HP‐UHP metamorphic belt of western Tianshan, metabasite blocks contain omphacite and lawsonite inclusions in porphyroblastic garnet, although matrix assemblages have been significantly affected by overprinting at shallower structural levels. Two types of lawsonite eclogites occur in different parts of the section and are distinguished based on inclusion assemblages in garnet: Type 1 (UHP) with the peak equilibrium assemblage garnet+omphacite±jadeite+lawsonite+rutile+coesite±chlorite±glaucophane and Type 2 (HP) with the assemblage garnet+omphacite±diopside+lawsonite+titanite+quartz±actinolite±chlorite+glaucophane. Pristine coesite and lawsonite and their pseudomorphs in Type 1 are present in the mantle domains of zoned garnet, indicative of a coesite‐lawsonite eclogite facies. Regardless of grain size and zoning profiles, garnet with Type 1 inclusions systematically shows higher Mg and lower Ca contents than Type 2 (prp4–25grs13–24 and prp1–8grs20–45 respectively). Phase equilibria modelling indicates that the low‐Ca garnet core and mantle of Type 1 formed at UHP conditions and that there was a major difference in peak pressures (i.e., maximum return depth) between the two types (2.8–3.2 GPa at 480–590°C and 1.3–1.85 GPa at 390–500°C respectively). Scattered exposures of Type 1 lawsonite eclogite is scatteredly exposed in the north of the Muzhaerte section with a structural thickness of ~1 km, whereas Type 2 occurs throughout the rest of the section. We conclude from this regular distribution that they were derived from two contrasting units that formed along two different geothermal systems (150–200°C/GPa for the northern UHP unit and 200–300°C/GPa for the southern HP unit), with subsequent stacking of UHP and HP slices at a kilometre scale.  相似文献   

16.
Phase relations of phlogopite with magnesite from 4 to 8 GPa   总被引:2,自引:2,他引:0  
To evaluate the stability of phlogopite in the presence of carbonate in the Earth’s mantle, we conducted a series of experiments in the KMAS–H2O–CO2 system. A mixture consisting of synthetic phlogopite (phl) and natural magnesite (mag) was prepared (phl90-mag10; wt%) and run at pressures from 4 to 8 GPa at temperatures ranging from 1,150 to 1,550°C. We bracketed the solidus between 1,200 and 1,250°C at pressures of 4, 5 and 6 GPa and between 1,150 and 1,200°C at a pressure of 7 GPa. Below the solidus, phlogopite coexists with magnesite, pyrope and a fluid. At the solidus, magnesite is the first phase to react out, and enstatite and olivine appear. Phlogopite melts over a temperature range of ~150°C. The amount of garnet increases above solidus from ~10 to ~30 modal% to higher pressures and temperatures. A dramatic change in the composition of quench phlogopite is observed with increasing pressure from similar to primary phlogopite at 4 GPa to hypersilicic at pressures ≥5 GPa. Relative to CO2-free systems, the solidus is lowered such, that, if carbonation reactions and phlogopite metasomatism take place above a subducting slab in a very hot (Cascadia-type) subduction environment, phlogopite will melt at a pressure of ~7.5 GPa. In a cold (40 mWm−2) subcontinental lithospheric mantle, phlogopite is stable to a depth of 200 km in the presence of carbonate and can coexist with a fluid that becomes Si-rich with increasing pressure. Ascending kimberlitic melts that are produced at greater depths could react with peridotite at the base of the subcontinental lithospheric mantle, crystallizing phlogopite and carbonate at a depth of 180–200 km.  相似文献   

17.
The Mollendo–Camana Block (MCB) is a 50 × 150 km Precambrian inlier of the Andean belt that outcrops along the Pacific coast of southern Peru. It consists of stromatic migmatites of Paleoproterozoic heritage intensely metamorphosed during the Grenville event (c. 1 Ga; U‐Pb and U‐Th‐Pb ages on zircon and monazite). In the migmatites, aluminous mesosomes (FMAS) and quartzofeldspathic leucosomes (KFMASH), contain various amounts of K‐feldspar (Kfs), orthopyroxene (XMg Opx = 0.86), plagioclase (Pl), sillimanite (Sil; exceptionally kyanite, Ky) ilmenite (Ilm), magnetite (Mag), quartz (Qtz), and minor amounts of garnet (XMg Grt = 0.60), sapphirine (XMg Spr = 0.87), cordierite (XMg Crd = 0.92) and biotite (XMg Bt = 0.83). The ubiquitous peak mineral assemblage is Opx‐Sil‐Kfs‐Qtz‐(± Grt) in most of the MCB, which, together with the high Al content of orthopyroxene (10% Al2O3) and the local coexistence of sapphirine‐quartz, attest to regional UHT metamorphism (> 900 °C) at pressures in excess of 1.0 GPa. Fluid‐absent melting of biotite is responsible for the massive production of orthopyroxene that proceeded until exhaustion of biotite (and most of the garnet) in the southern part of the MCB (Mollendo‐Cocachacra areas). In this area, a first stage of decompression from 1.1–1.2 to 0.8–0.9 GPa at temperatures in excess of 950 °C, is marked by the breakdown of Sil‐Opx to Spr‐Opx‐Crd assemblages according to several bivariant FMAS reactions. High‐T decompression is also shown by Mg‐rich garnet being replaced by Crd‐Spr‐ and Crd‐Opx‐bearing symplectites, and reacting with quartz to produce low‐Al‐Opx‐Sil symplectites in quartz‐rich migmatites. Neither osumilite nor spinel‐quartz assemblages being formed, isobaric cooling at about 0.9 GPa probably followed the initial decompression and proceeded with massive precipitation of melts towards the (Os) invariant point, as demonstrated by Bt‐Qtz‐(± pl) symplectites in quartz‐rich migmatites (melt + Opx + Sil = Bt + Grt + Kfs + Qtz). Finally, Opx rims around secondary biotite attest to late fluid‐absent melting, compatible with a second stage of decompression below 900 °C. The two stages of decompression are interpreted as due to rapid tectonic denudation whereas the regional extent of UHT metamorphism in the area, probably results from large‐scale penetration of hot asthenospheric mantle at the base of an over‐thickened crust.  相似文献   

18.
The Cambro‐Ordovician rhyodacitic to dacitic volcanics from the Central Iberian basement, currently known as Ollo de Sapo (toads eye), have been reported as a specific group of felsic porphyritic rocks with blue quartz and large phenocrysts of K‐feldspar, in a partly vitreous or fine‐grained matrix. Interpreted to form Cambro‐Ordovician volcanic domes, they are accompanied by tuffs, ignimbrites and products of reworking in a near‐surface environment. The coarse‐ to fine‐grained rocks exhibit rather large K‐feldspar phenocrysts, plagioclase and rounded blue quartz, representing former corroded phenocrysts. Their colouration indicates unmixing of TiO2 at around 900°C during cooling from relatively high crystallisation temperatures, indicating their origin at hot lower crustal conditions. We propose at least a two‐step evolution (1) starting around 495 Ma in the lower crust of a collapsing cordillera, generating a phenocryst‐rich mush and adiabatic melting of the lower crustal protolith to produce the spectacular Ollo de Sapo porphyrites, before (2) magma ascent and crustal extension leading to a different thermal regime around 483 Ma.  相似文献   

19.
Eclogite, orthogneiss and, by association, metapelite from an island at 78°N in North‐East Greenland experienced ultrahigh‐pressure (UHP) metamorphism at approximately 970 °C and 3.6 GPa, at the end of the Caledonian collision, 360–350 Ma. Hydrous metapelites contain abundant leucocratic layers and lenses composed of medium‐grained, anhedral, equigranular quartz, antiperthitic plagioclase and K‐feldspar with minor small garnet and kyanite crystals. Leucosomes are generally parallel to the matrix foliation, are interlayered with residual quartz bands, anastomose around residual garnet and commonly cross‐cut micaceous segregations. Textures suggest that the leucosomes crystallized from a syntectonic melt, but crystallized at the end of local high‐grade deformation. The metapelite outcrop is < 1.5 km from kyanite eclogites with confirmed coesite, but the metapelites lack coesite and palisade textures diagnostic of coesite pseudomorphs. They do contain highly fractured garnet megacrysts with polycrystalline quartz inclusions (some surrounded by radial fractures) and Ti‐rich phengite inclusions that suggest the former presence of coesite. Polyphase inclusions in garnet contain reactants and products of the inferred dehydration melting reaction: Phe + Qtz = Ky + Kfs + Rt + melt. The reactants are thought to have been early inclusions of hydrous phases within garnet that melted and then crystallized new phases. Garnet surrounding these inclusions has patchy zoning with elevated Ca, consistent with experiments that produced similar patchy microstructures in garnet around inclusions with an unequivocal melt origin. The peak UHP metamorphic assemblage in these rocks is inferred to have been phengite, coesite, garnet, kyanite, rutile, fluid ± omphacite ± epidote. Phase diagrams indicate that dehydration melting of phengite in this assemblage would have occurred after decompression from peak pressure, but still above the coesite to quartz transition. Unusual crown‐ and moat‐like textures in garnet around some polycrystalline quartz inclusions are also consistent with the inference that melting took place at UHP conditions.  相似文献   

20.
This study presents the results of dehydration melting experiments on a basaltic composition amphibolite under conditions appropriate to a hot slab geotherm (1.5 and 2.0 GPa and temperatures of 850 to 1150° C). Dehydration melting produces an omphacitic augite and garnet bearing residue coexisting with rhyolitic to andesitic composition melts. At 1.5 GPa, the amphibolite melts in two stages between 800 and 1025° C. The 2.0 GPa data also define two melting stages. At 2.0 GPa, the first stage involves nearly modal melting of the original amphibolite minerals (qtz, pl, amp) to produce melt + cpx + grt. During the second stage, the eclogite restite melts non-modally (0.86 cpx + 0.14 grt = 1 melt). The experimental results were combined with data from the literature to generate a composite P-T phase diagram for basaltic composition amphibolites over the 800 to 1100° C temperature range for pressures up to 2.0 GPa. Comparison of the major element compositions of the experimentally produced melts with compositions of presumed slab melts (adakites) shows that partial melting of amphibolite at conditions appropriate to a hot-slab geotherm produces melts similar to andesitic and dacitic adakites except for significant MgO and CaO depletions. Trace element modelling of amphibolite dehydration melting using the 2.0 GPa melting reactions produces REE abundances similar to those of adakites at 10–15 wt% batch melting, but the models do not reproduce the high Sr/Y ratios characteristic of adakites. Taken together, the major and trace element results are not consistent with the derivation of adakites by dehydration melting of the subducted slab with little or no interaction with the mantle wedge or crust. If adakites are partial melts of the subducted slab, they must undergo significant interaction with the mantle and/or crust, during which they acquire a number of their distinctive characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号