首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Qinling Orogenic Belt (QOB) located between the North China Craton (NCC) and the Yangtze Craton (YZC) is composed of the North Qinling Belt (NQB), the South Qinling Belt (SQB) and the northern margin of the YZC. Detailed geological and geochronological investigations have revealed distinct Neoproterozoic blocks of various scales in the middle and western segments of the SQB, including the Madao block (MDB), Mihunzhen intrusion (MHI), Zhenggou block (ZGB), and Lengshuigou block (LSB) which constitute an east-west trending Neoproterozoic uplift zone of the basement continental blocks. These blocks are mainly composed of four lithological groups. Group #1 consists mainly of diorites in the LSB, the zircons from which yield a weighted mean 206Pb/ 238U age of ca. 941 Ma. Group #2 is chiefly composed of hornblende gabbros and diorites in the MHI and LSB, which were formed at ca. 885 Ma. Group #3 comprises massive diorites, quartz diorite, tonalites, granodiorites, and monzogranites in the MDB, MHI, ZGB and LSB, which were emplaced during ca. 785–740 Ma. Group #4 is composed of hornblende gabbros with an emplacement age of ca. 667 Ma in the ZGB.Detailed whole-rock geochemical and zircon Hf isotopic studies reveal the following: (1) The diorites of Group #1 were produced by partial melting of depleted mantle which was enriched by slab-derived melts, with the parental magmas contaminated by crustal materials. (2) The gabbros of Group #2 were derived from the partial melting of depleted mantle enriched by slab-derived melts and the diorites are the fractional crystallization products of the gabbroic magmas. (3) Group #3 which can be further sub-divided based on lithological assemblages and zircon Hf isotopic features into two subgroups, one representing massive diorites, quartz diorite, tonalites, granodiorites, and monzogranites (DTGMs) and the other composed of gneissic quartz diorites and granodiorites. Among these, the DTGMs were derived through magma mixing between melts derived from the depleted mantle wedge altered by slab-derived fluids and melts from juvenile sources, which subsequently underwent amphibole-dominated fractionation, whereas the gneissic granitoids formed through partial melting of thickened lower crust contaminated by depleted mantle melts. (4) The gabbros of Group #4 originated from a depleted lithospheric mantle that was enriched by slab-derived melts and fluids with contribution of asthenospheric mantle-derived materials. In conjunction with data from previous studies on the Neoproterozoic blocks in the SQB and basement blocks in the northern margin of the YZC, our new geological, geochronological and geochemical data suggest a large Neoproterozoic uplift zone in the SQB, which was destructed by Paleozoic to Mesozoic magmatism and deformation. The Neoproterozoic uplift zone of the SQB might have been separated from the northern margin of the YZC during the formation of the Mianlue Ocean, and might have evolved under an active continental margin setting and subsequent continental rift setting accompanied by significant crustal growth. The magmatism also resulted in the formation of important Neoproterozoic ore deposits and supplied the material sources for some of the major Mesozoic ore deposits.  相似文献   

2.
In this paper we present new zircon U–Pb ages, Hf isotope data, and whole-rock major and trace element data for Early Mesozoic intrusive rocks in the Erguna Massif of NE China, and we use these data to constrain the history of southward subduction of the Mongol–Okhotsk oceanic plate, and its influence on NE China as a whole. The zircon U–Pb dating indicates that Early Mesozoic magmatic activity in the Erguna Massif can be subdivided into four stages at ~ 246 Ma, ~ 225 Ma, ~ 205 Ma, and ~ 185 Ma. The ~ 246 Ma intrusive rocks comprise a suite of high-K calc-alkaline diorites, quartz diorites, granodiorites, monzogranites, and syenogranites, with I-type affinities. The ~ 225 Ma intrusive rocks consist of gabbro–diorites and granitoids, and they constitute a bimodal igneous association. The ~ 205 Ma intrusive rocks are dominated by calc-alkaline I-type granitoids that are accompanied by subordinate intermediate–mafic rocks. The ~ 185 Ma intrusive rocks are dominated by I-type granitoids, accompanied by minor amounts of A-types. These Early Mesozoic granitoids mainly originated by partial melting of a depleted and heterogeneous lower crust, whereas the coeval mafic rocks were probably derived from partial melting of a depleted mantle modified by subduction-related fluids. The rock associations and their geochemical features indicate that the ~ 246 Ma, ~ 205 Ma, and ~ 185 Ma intrusive rocks formed in an active continental margin setting related to the southward subduction of the Mongol–Okhotsk oceanic plate. The ~ 225 Ma bimodal igneous rock association formed within an extensional environment in a pause during the subduction process of the Mongol–Okhotsk oceanic plate. Every magmatic stage has its own corresponding set of porphyry deposits in the southeast of the Mongol–Okhotsk suture belt. Taking all this into account, we conclude the following: (1) during the Early Mesozoic, the Mongol–Okhotsk oceanic plate was subducted towards the south beneath the Erguna Massif, but with a pause in subduction at ~ 225 Ma; and (2) the southward subduction of the Mongol–Okhotsk oceanic plate not only caused the intense magmatic activity, but was also favorable to the formation of porphyry deposits.  相似文献   

3.
Neoproterozoic magmatic rocks in the South Qinling Belt of China provide important clues for understanding the mechanism and timing of the amalgamation and breakup of the Rodinia supercontinent. Here we report new geochemical and high-precision LA-ICP-MS zircon U–Pb–Hf isotopic analyses on magmatic suites from the Liuba and Zhashui areas in the South Qinling Belt. Our data show that the crystallization ages of the granitic intrusions from Tiefodian and Tangjiagou in the Liuba area are 863 ± 22 Ma and 794 ± 11 Ma, respectively, whereas those of the dioritic and gabbroic intrusions at Chishuigou in the Zhashui area are 925 ± 28 Ma and 832.6 ± 4.0 Ma, respectively. The diorites at Chishuigou display arc-related geochemical affinity, characterized by strong depletion in Nb, Ta, P and Ti, and enrichment in large-ion lithophile elements (i.e., Rb, Ba, Th and U), indicating a subduction-related arc setting at ca. 925 Ma. The Tiefodian granitic rocks have high SiO2 (68.46–70.98 wt.%), Na2O (3.87–4.51 wt.%), and low K2O (1.34–2.61 wt.%) contents with TTG affinity. However, their Cr, and Ni contents and Cr/Ni, Nb/Ta ratios are similar to those of continental crust, and together with high negative εHf(t) values (− 4.87 to − 14.84), suggesting a continental margin arc at ca. 863 Ma. The gabbros at Chishuigou have high TiO2 content (2.74–3.14 wt.%), Zr/Y (3.93–4.24), Ta/Yb (0.19–0.25) ratios and low Zr/Nb ratios (11.37–13.17), similar to the features of within-plate basalts, indicating an intra-continental rift setting at ca. 833 Ma. The granitoids at Tangjiagou exhibit enrichment of LREE, K and Pb, and depletion of Nb, Ta, P and Ti, suggesting an extensional tectonic environment at ca. 794 Ma.The results indicate that Neoproterozoic magmatic rocks in the South Qinling Belt formed before ca. 833 Ma and might represent the amalgamation of the Rodinia supercontinent in an arc-related subduction environment, whereas the magmatic events with the peak ages at ~ 740 Ma during ca. 833–680 Ma represent the breakup of Rodinia. Integrating our new data with those from previous works, we propose a new tectonic model for the evolutionary history of the South Qinling Belt in the Neoproterozoic, including four key stages: 1) an ocean that separated the South Qinling Belt and the Yangtze Block in the Early Neoproterozoic (ca.1000–956 Ma); 2) bidirectional subduction of the oceanic lithosphere during ca. 956–870 Ma; 3) subduction and collision between the South Qinling Belt and the Yangtze Block during ca. 870–833 Ma, thus suggesting that the South Qinling Belt was as a part of the Yangtze Block from this period; and 4) intra-continental rifting during ca. 833–680 Ma, although the blocks were not entirely rifted apart.  相似文献   

4.
The Qinling Orogen is one of the main orogenic belts in Asia and is characterized by multi-stage orogenic processes and the development of voluminous magmatic intrusions. The results of zircon U–Pb dating indicate that granitoid magmatism in the Qinling Orogen mainly occurred in four distinct periods: the Neoproterozoic (979–711 Ma), Paleozoic (507–400 Ma), and Early (252–185 Ma) and Late (158–100 Ma) Mesozoic. The Neoproterozoic granitic magmatism in the Qinling Orogen is represented by strongly deformed S-type granites emplaced at 979–911 Ma, weakly deformed I-type granites at 894–815 Ma, and A-type granites at 759–711 Ma. They can be interpreted as the products of respectively syn-collisional, post-collisional and extensional setting, in response to the assembly and breakup of the Rodinia supercontinent. The Paleozoic magmatism can be temporally classified into three stages of 507–470 Ma, 460–422 Ma and ∼415–400 Ma. They were genetically related to the subduction of the Shangdan Ocean and subsequent collision of the southern North China Block and the South Qinling Belt. The 507–470 Ma magmatism is spatially and temporally related to ultrahigh-pressure metamorphism in the studied area. The 460–422 Ma magmatism with an extensive development in the North Qinling Belt is characterized by I-type granitoids and originated from the lower crust with the involvement of mantle-derived magma in a collisional setting. The magmatism with the formation age of ∼415–400 Ma only occurred in the middle part of the North Qinling Belt and is dominated by I-type granitoid intrusions, and probably formed in the late-stage of a collisional setting. Early Mesozoic magmatism in the study area occurred between 252 and 185 Ma, with the cluster in 225–200 Ma. It took place predominantly in the western part of the South Qinling Belt. The 250–240 Ma I-type granitoids are of small volume and show high Sr/Y ratios, and may have been formed in a continental arc setting related to subduction of the Mianlue Ocean between the South Qinling Belt and the South China Block. Voluminous late-stage (225–185 Ma) magmatism evolved from early I-type to later I-A-type granitoids associated with contemporaneous lamprophyres, representative of a transition from syn- to post-collisional setting in response to the collision between the North China and the South China blocks. Late Mesozoic (158–100 Ma) granitoids, located in the southern margin of the North China Block and the eastern part of the North Qinling Belt, are characterized by I-type, I- to A-type, and A-type granitoids that were emplaced in a post-orogenic or intraplate setting. The first three of the four periods of magmatism were associated with three important orogenic processes and the last one with intracontinental process. These suggest that the tectonic evolution of the Qinling Orogen is very complicated.  相似文献   

5.
《Gondwana Research》2013,24(4):1378-1401
The Qilian Orogen at the northern margin of the Tibetan Plateau is a type suture zone that recorded a complete history from continental breakup to ocean basin evolution, and to the ultimate continental collision in the time period from the Neoproterozoic to the Paleozoic. The Qilian Ocean, often interpreted as representing the “Proto-Tethyan Ocean”, may actually be an eastern branch of the worldwide “Iapetus Ocean” between the two continents of Baltica and Laurentia, opened at ≥ 710 Ma as a consequence of breakup of supercontinent Rodinia.Initiation of the subduction in the Qilian Ocean probably occurred at ~ 520 Ma with the development of an Andean-type active continental margin represented by infant arc magmatism of ~ 517–490 Ma. In the beginning of Ordovician (~ 490 Ma), part of the active margin was split from the continental Alashan block and the Andean-type active margin had thus evolved to western Pacific-type trench–arc–back-arc system represented by the MORB-like crust (i.e., SSZ-type ophiolite belt) formed in a back-arc basin setting in the time period of ~ 490–445 Ma. During this time, the subducting oceanic lithosphere underwent LT-HP metamorphism along a cold geotherm of ~ 6–7 °C/km.The Qilian Ocean was closed at the end of the Ordovician (~ 445 Ma). Continental blocks started to collide and the northern edge of the Qilian–Qaidam block was underthrust/dragged beneath the Alashan block by the downgoing oceanic lithosphere to depths of ~ 100–200 km at about 435–420 Ma. Intensive orogenic activities occurred in the late Silurian and early Devonian in response to the exhumation of the subducted crustal materials.Briefly, the Qilian Orogen is conceptually a type example of the workings of plate tectonics from continental breakup to the development and evolution of an ocean basin, to the initiation of oceanic subduction and formation of arc and back-arc system, and to the final continental collision/subduction and exhumation.  相似文献   

6.
The North Tianshan orogenic belt in Kyrgyzstan consists predominantly of Neoproterozoic to early Paleozoic assemblages and tectonically interlayered older Precambrian crystalline complexes and formed during early Paleozoic accretionary and collisional events. One of the oldest continental fragments of late Mesoproterozoic (Grenvillian) age occurs within the southern part of the Kyrgyz North Tianshan. Using SHRIMP zircon ages, we document two magmatic events at ~ 1.1 and ~ 1.3 Ga. The younger event is characterized by voluminous granitoid magmatism between 1150 and 1050 Ma and is associated with deformation and metamorphism. The older event is documented by ~ 1.3 Ga felsic volcanism of uncertain tectonic significance and may reflect a rifting episode. Geochemical signatures as well as Nd and Hf isotopes of the Mesoproterozoic granitoids indicate melting of still older continental crust with model ages of ca 1.2 to 2.4 Ga.The Mesoproterozoic assemblages are intruded by Paleozoic diorites and granitoids, and Nd and Hf isotopic systematics suggest that the diorites are derived from melts that are mixtures of the above Mesoproterozoic basement and mantle-derived material; their source is thus distinct from that of the Mesoproterozoic rocks. Emplacement of these plutons into the Precambrian rocks occurred between 461 and 441 Ma. This is much younger than previously assumed and indicates that small plutons and large batholiths in North Tianshan were emplaced virtually synchronously in the late Ordovician to early Silurian.The Mesoproterozoic rocks in the North Tianshan may be remnants of a once larger continental domain, whose fragments are preserved in adjacent blocks of the Central Asian Orogenic Belt. Comparison with broadly coeval terranes in the Kokchetav area of northern Kazakhstan, the Chinese Central Tianshan and the Tarim craton point to some similarities and suggests that these may represent fragments of a single Mesoproterozoic continent characterized by a major orogenic event at ~ 1.1 Ga, known as the Tarimian orogeny.  相似文献   

7.
The Qinling Orogen, central China, was constructed during the Mesozoic collision between the North China and Yangtze continental plates. The orogen includes four tectonic units, from north to south, the Huaxiong Block (reactivated southern margin of the North China Craton), North Qinling Accretion Belt, South Qinling Fold Belt (or block) and Songpan Fold Belt, evolved from the northernmost Paleo-Tethys Ocean separating the Gondwana and Laurentia supercontinents. Here we employ detrital zircons from the Early Cretaceous alluvial sediments within the Qinling Orogen to trace the tectonic evolution of the orogen. The U–Pb ages of the detrital zircon grains from the Early Cretaceous Donghe Group sediments in the South Qinling Fold Belt cluster around 2600–2300 Ma, 2050–1800 Ma, 1200–700 Ma, 650–400 Ma and 350–200 Ma, corresponding to the global Kenorland, Columbia, Rodinia, Gondwana and Pangaea supercontinent events, respectively. The distributions of ages and εHf(t) values of zircon grains show that the Donghe Group sediments have a complex source comprising components mainly recycled from the North Qinling Accretion Belt and the North China Craton, suggesting that the South Qinling Fold Belt was a part of the united Qinling–North China continental plate, rather than an isolated microcontinent, during the Devonian–Triassic. The youngest age peak of 350–200 Ma reflects the magmatic event related to subduction and termination of the Mian-Lue oceanic plate, followed by the collision between the Yangtze Craton and the united Qinling–North China continent that came into existence at the Triassic–Jurassic transition. The interval of 208–145 Ma between the sedimentation of the Early Cretaceous Donghe Group and the youngest age of detrital zircons was coeval with the post-subduction collision between the Yangtze and the North China continental plates in Jurassic.  相似文献   

8.
To constrain the provenance of the Ordos Basin and the evolution history of the Qinling Orogen Belt from the Triassic to the Jurassic, 10 samples from the Dongsheng area and 28 samples from the Yan’an area were analyzed for U–Pb ages and Lu–Hf and Sm–Nd isotopic compositions. The results indicate that Middle Jurassic sediments in the Dongsheng area were derived from the Khondalite Belt, Langshan Mountain and the Yinshan Terrane. Mesozoic sediments in the Yan’an area consist of two parts. One part is derived from the North China Craton (NCC), which has U–Pb age groups of ∼1.8 Ga and ∼2.5 Ga, and Hf model ages of ∼2.8 Ga. The other part is derived from the Qilian–Qinling Orogenic Belt, which has U–Pb age groups of 600–1500 Ma and 100–500 Ma, and Nd and Hf isotopic model ages of less than 2.2 Ga. Combining the U–Pb ages with the Hf and Nd isotopic model ages, Mesozoic detrital zircons with U–Pb age groups of ∼1.8 Ga and ∼2.5 Ga in the Yan’an area are found to also be derived from the Khondalite Belt, Langshan Mountain and the Yinshan Terrane, not from the Trans-China Orogen Belt. From the late–Late Triassic sediments of the Yan’an area, the low average values of the Hf (2.03 Ga) and Nd (2.03 Ga) model ages and the characteristic age population of 600–1500 Ma reveal that the main collision or continental subduction between the NCC and the South China Craton (SCC) occurred in the late–Late Triassic. After the main collision or continental subduction, the proportion of sediments from the Qinling–Qilian Orogenic Belt began to decrease (recorded in the early Jurassic samples), which may be in response to the gradual slowing of the uplift speed of the Qinling Orogenic Belt. In the early-middle Jurassic, the sediments have a main U–Pb age population of 100–500 Ma, low detrital zircon Hf model ages (average value is 1.17 Ga) and low whole rock Nd model ages (average value is 1.13 Ga), which suggests that the Qilian–Qinling Orogenic Belt may have a fast uplift history in the early-middle Jurassic.  相似文献   

9.
High-precision 40Ar/39Ar dating of lamprophyre dike swarms in the Western Province of New Zealand reveals that these dikes were emplaced into continental crust prior to, during and after opening of the Tasman Sea between Australia and New Zealand. Dike ages form distinct clusters concentrated in different areas. The oldest magmatism, 102–100 Ma, is concentrated in the South Westland region that represents the furthest inboard portion of New Zealand in a Gondwana setting. A later pulse of magmatism from ~ 92 Ma to ~ 84 Ma, concentrated in North Westland, ended when the first oceanic crust formed at the inception of opening of the Tasman Sea. Magmatic quiescence followed until ~ 72–68 Ma, when another swarm of dikes was emplaced. The composition of the dikes reveals a dramatic change in primary melt sources while continental extension and lithospheric thinning were ongoing. The 102–100 Ma South Westland dikes represent the last mafic calc-alkaline magmatism associated with a long-lived history of the area as Gondwana's active margin. The 92–84 Ma North and 72–68 Ma Central Westland dike swarms on the other hand have strongly alkaline compositions interpreted as melts from an intraplate source. These dikes represent the oldest Western Province representatives of alkaline magmatism in the greater New Zealand region that peaked in activity during the Cenozoic and has remained active up to the present day. Cretaceous alkaline dikes were emplaced parallel to predicted normal faults associated with dextral shear along the Alpine Fault. Furthermore, they temporally correspond to polyphase Cretaceous metamorphism of the once distal Alpine Schist. Dike emplacement and distal metamorphism could have been linked by a precursor to the Alpine Fault. Dike emplacement in the Western Province coupled to metamorphism of the Alpine Schist at 72–68 Ma indicates a period of possible reactivation of this proto Alpine Fault before it served as a zone of weakness during the opening of the oceanic Emerald Basin (at ~ 45 Ma) and eventually the formation of the present-day plate boundary (~ 25 Ma–recent).  相似文献   

10.
《Gondwana Research》2014,25(3):1202-1215
The South China Block, consisting of the Yangtze and the Cathaysia blocks, is one of the largest Precambrian blocks in eastern Asia. However, the early history of the Cathaysia Block is poorly understood due largely to intensive and extensive reworking by Phanerozoic polyphase orogenesis and magmatism which strongly overprinted and obscured much of the Precambrian geological record. In this paper, we use the detrital zircon U–Pb age and Hf isotope datasets as an alternative approach to delineate the early history of the Cathaysia Block. Compilation of published 4041 Precambrian detrital zircon ages from a number of (meta)sedimentary samples and river sands exhibits a broad age spectrum, with three major peaks at ~ 2485 Ma, ~ 1853 Ma and ~ 970 Ma (counting for ~ 10%, ~ 16% and ~ 24% of all analyses, respectively), and four subordinate peaks at ~ 1426 Ma, ~ 1074 Ma, ~ 780 Ma and ~ 588 Ma. Five of seven detrital zircon age peaks are broadly coincident with the crystallisation ages of ~ 1.89–1.83 Ga, ~ 1.43 Ga, ~ 1.0–0.98 Ga and ~ 0.82–0.72 Ga for known igneous rocks exposed in Cathaysia, whereas, igneous rocks with ages of ~ 2.49 Ga and ~ 0.59 Ga have not yet been found. The Hf isotopic data from 1085 detrital zircons yield Hf model ages (TDMC) between ~ 4.19 Ga and ~ 0.81 Ga, and the calculated εHf(t) values between − 40.2 and 14.4. The Archean detrital zircons are exclusively oval in shape with complicated internal textures, indicating that they were sourced by long distance transportations and strong abrasion from an exotic Archean continent. In contrast, the majority of detrital zircons in age between ~ 1.9 and ~ 0.8 Ga are euhedral to subhedral crystals, indicative of local derivation by short distance transportations from their sources. The oldest crustal basement rocks in Cathaysia were most likely formed by generation of juvenile crust and reworking of recycled Archean components in Late Paleoproterozoic at ~ 1.9–1.8 Ga, rather than in the Archean as previously speculated. Reworking and recycling of the continental crust are likely the dominant processes for the crustal evolution of Cathaysia during the Mesoproterozoic to Neoproterozoic time, with an intervenient period of significant generation of juvenile crust at ~ 1.0 Ga.Precambrian crustal evolutions of the Cathaysia Block are genetically related to the supercontinent cycles. By comparing detrital zircon data from Cathaysia with those for other continents, and integrating multiple lines of geological evidence, we interpret the Cathaysia Block as an orogenic belt located between East Antarctica, Laurentia and Australia during the assembly of supercontinent Columbia/Nuna at ~ 1.9–1.8 Ga. The Cathaysia Block amalgamated with the Yangtze Block to form the united South China Block during the Sibao Orogeny at ~ 1.0–0.89 Ga. The Laurentia–Cathaysia–Yangtze–Australia–East Antarctica connection gives the best solution to the paleo-position of Cathaysia in supercontinent Rodinia. The significant amount of ~ 0.6–0.55 Ga detrital zircons in Cathaysia and West Yangtze have exclusively high crustal incubation time of > 300 Ma, indicating crystallisation from magmas generated dominantly by crustal reworking. This detrital zircon population compares well with the similar-aged zircon populations from a number of Gondwana-derived terranes including Tethyan Himalaya, High Himalaya, Qiangtang and Indochina. The united South China–Indochina continent was likely once an integral part of Gondwanaland, connected to northern India by a “Pan-African” collisional orogen.  相似文献   

11.
The Palaeozoic to Mesozoic igneous and metamorphic basement rocks exposed in the Mérida Andes of Venezuela and the Santander Massif of Colombia are generally considered to define allochthonous terranes that accreted to the margin of Gondwana during the Ordovician and the Carboniferous. However, terrane sutures have not been identified and there are no published isotopic data that support the existence of separate crustal domains. A general paucity of geochronological data led to published tectonic reconstructions for the evolution of the northwestern corner of Gondwana that do not account for the magmatic and metamorphic histories of the basement rocks of the Mérida Andes and the Santander Massif. We present new zircon U–Pb (ICP-MS) data from 52 igneous and metamorphic rocks, which we combine with whole rock geochemical and Pb isotopic data to constrain the tectonic history of the Precambrian to Mesozoic basement of the Mérida Andes and the Santander Massif. These data show that the basement rocks of these massifs are autochthonous to Gondwana and share a similar tectono-magmatic history with the Gondwanan margin of Peru, Chile and Argentina, which evolved during the subduction of oceanic lithosphere of the Iapetus Ocean. The oldest Palaeozoic arc magmatism is recorded at ~ 500 Ma, and was followed shortly by Barrovian metamorphism. Peak metamorphic conditions at upper amphibolite facies are recorded by anatexis at ~ 477 Ma and the intrusion of synkinematic granitoids until ~ 472 Ma. Subsequent retrogression resulted from localised back-arc or intra-arc extension at ~ 453 Ma, when volcanic tuffs and interfingered sedimentary rocks were deposited over the amphibolite facies basement. Continental arc magmatism dwindled after ~ 430 Ma and terminated at ~ 415 Ma, coevally with most of the western margin of Gondwana. After Pangaea amalgamation in the Late Carboniferous to Early Permian, a magmatic arc developed on its western margin at ~ 294 Ma as a result of subduction of oceanic crust of the palaeo-Pacific ocean. Intermittent arc magmatism recorded between ~ 294 and ~ 225 Ma was followed by the onset of the Andean subduction cycle at ~ 213 Ma, in an extensional regime. Extension was accompanied by slab roll-back which led to the migration of the arc axis into the Central Cordillera of Colombia in the Early Jurassic.  相似文献   

12.
Paleomagnetism has played an important role in quantifying the Mesozoic evolution of “Proto-Tibet”. In this paper, we present new paleomagnetic data from five Middle-Upper Jurassic sedimentary sequences (Quemo Co, Buqu, Xiali, Suowa and Xueshan Fms.) of the eastern North Qiangtang Terrane (QT) at Yanshiping (33.6°N, 92.1°E). The new paleomagnetic results form a large dataset (99 sites, 1702 samples) and reveal a paleopole at 79.1°N/306.9°E (dp = 3.9°, dm = 6.3°) for the Quemo Co Fm., at 68.9°N/313.8°E (dp = 2.1°, dm = 3.7°) for the Buqu Fm., at 66.1°N/332.1°E (dp = 2.7°, dm = 4.6°) for the Xiali Fm., at 72.4°N/318.6°E (dp = 3.9°, dm = 6.7°) for the Suowa Fm., and at 76.9°N/301.1°E (dp = 7.9°, dm = 13.2°) for the Xueshan Fm. These results indicate clockwise (CW) rotations of ~ 19.8 ± 9.4° between ~ 171.2 and 161.7 Ma and counterclockwise (CCW) rotations of ~ 15.4 ± 13.4° between ~ 161.7 and < 157.2 Ma for Yanshiping. We attribute the change in rotation sense at approximately ~ 161.7 Ma to the initial collision of the Lhasa and Qiangtang terranes. Using this and other paleomagnetic data from the Lhasa, Qiangtang and Tarim terranes, as well as other geological evidence (e.g., tectonism-related sedimentary sequences, volcanism, and HP metamorphism), we propose a new conceptual evolution model for the Mesozoic QT and Tethyan Oceans. The Longmo Co-Shuanghu oceanic slab was subducted before 248 Ma, followed by continental collision of the North-South Qiangtang subterranes between ~ 245 and 237 Ma. The Qiangtang Terrane experienced post-collisional exhumation between ~ 237 and 230 Ma during subduction of the Jinsha oceanic slab. The collision of the Qiangtang and Songpan-Ganzi terranes occurred between ~ 230 and 225 Ma. The QT experienced post-collisional relaxation from ~ 225 to ~ 200 Ma, followed by subsidence and extension-related exhumation between ~ 200 and 162 Ma in association with subduction of the Bangong-Nujiang oceanic slab. Finally, these events were followed by the scissor-like diachronous collisions of the Lhasa and Qiangtang terranes between ~ 162 Ma and the mid-Cretaceous.  相似文献   

13.
The newly-discovered Shiyaogou molybdenum deposit is located in the eastern Qinling metallogenic belt in central China. The deposit contains at least 152,000 t of Mo metal and bears typical porphyry-type features in terms of its concentric alteration zonation, quartz vein-hosted Mo mineralization, veining sequence and the spatial association with concealed granite porphyries. Re–Os isotope analyses of molybdenite from the deposit yield an ore-forming age of 132.3 ± 2.8 Ma. LA-ICP-MS U–Pb zircon dating of ore-related porphyries yields crystallization ages from 135 Ma to 132 Ma, indicating a temporal link between granitic magmatism and Mo mineralization. A population of captured magmatic zircons indicates another pulse of magmatism at ~ 143 Ma. A barren granite intrusion near the deposit gives a zircon U–Pb age of 148.1 ± 1.1 Ma. These magmatic activities were concurrent with the emplacement of the nearby Heyu granitic batholith, a largely ore-barren intrusive complex formed from ~ 148 Ma to ~ 127 Ma. Zircon Ce4 +/Ce3 + ratios of ore-related porphyries are obviously higher than those of contemporaneous barren granitoids, implying an affinity between Mo mineralization and highly oxidized magmas. Moreover, zircons from these granitoids overall have decreasing Ce4 +/Ce3 + ratios from 148 Ma to 132 Ma, reflecting decreasing oxygen fugacities during magma evolution. Available geological, radiometric and stable isotopic evidence suggests that the decrease of magma oxygen fugacity was probably associated with an increase of mantle contribution to granitic magmatism and metallogenesis, which probably gave rise to successive mineralization of Mo and Au in the eastern Qinling. The intense magmatic–metallogenic events in the eastern Qinling during Late Jurassic to Early Cretaceous times are interpreted as a response to the large-scale lithosphere thinning and subsequent asthenosphere upwelling beneath the eastern part of the North China Craton.  相似文献   

14.
A new paleomagnetic study on well-dated (~ 155 Ma) volcanic rocks of the Tiaojishan Formation (Fm) in the northern margin of the North China Block (NCB) has been carried out. A total of 194 samples were collected from 26 sites in the Yanshan Belt areas of Luanping, Beipiao, and Shouwangfen. All samples were subjected to stepwise thermal demagnetization. After removal of a recent geomagnetic field viscous component, a stable high temperature component (HTC) was isolated. The inclinations of our new data are significantly steeper than those previously published from the Tiaojishan Fm in the Chengde area (Pei et al., 2011, Tectonophysics, 510, 370–380). Our analyses demonstrate that the paleomagnetic directions obtained from each sampled area were strongly biased by paleosecular variation (PSV), but the PSV can be averaged out by combining all the virtual geomagnetic poles (VGPs) from the Tiaojishan Fm in the region. The mean pole at 69.6°N/203.0°E (A95 = 5.6°) passes a reversal test and regional tilting test at 95% confidence and is thus considered as a primary paleomagnetic record. This newly determined pole of the Tiaojishan Fm is consistent with available Late Jurassic poles from red-beds in the southern part of the NCB, but they are incompatible with coeval poles of Siberia and the reference pole of Eurasia, indicating that convergence between Siberia and the NCB had not yet ended by ~ 155 Ma. Our calculation shows a ~ 1600-km latitudinal plate movement and crustal shortening between the Siberia and NCB after ~ 155 Ma. In addition, no significant vertical axis rotation was found either between our sampled areas or between the Yanshan Belt and the major part of the NCB after ~ 155 Ma.  相似文献   

15.
This paper reports new whole-rock geochemical, Sr–Nd–Pb isotopic, and zircon U–Pb and Hf isotopic data for Early Cretaceous intrusive rocks in the Sanmenxia–Houma area of central China, and uses these data to constrain the petrogenesis of low-Mg adakitic rocks (LMAR) and the spatial extent of the influence of the deeply subducted Yangtze slab during the Triassic evolution of this region. New zircon laser-ablation inductivity coupled plasma mass spectrometry (LA-ICP-MS) U–Pb data indicate that the early- and late-stage southern Quli, Qiligou, and Gaomiao porphyritic quartz diorites, the Canfang granodiorite, and the northern Wangmao porphyritic quartz monzodiorite were emplaced during the Early Cretaceous (~ 130 Ma) and the late Early Cretaceous (~ 116 Ma). These rocks are characterized by high Na2O/K2O, Sr/Y, and (La/Yb)n ratios as well as high Sr concentrations, low Mg# [molar 100 × Mg/(Mg + Fe2 +tot)] values, and low heavy rare earth element and Y concentrations, all of which indicate an LMAR affinity. The samples have relatively high initial 87Sr/86Sr ratios (0.7054–0.7095), and low εNd(t) (− 11.90 to − 22.20) and εHf(t) (− 16.7 to − 32.7) values, indicative of a lower continental crust origin. The presence of Neoproterozoic (754–542 Ma) and inherited Late Triassic (220 Ma) metamorphic zircons within the late Early Cretaceous LMAR and the relatively high 206Pb/204Pb ratios of these rocks suggest that they formed from primary magmas derived from partial melting of Yangtze Craton (YC) basement material that had undergone ultrahigh-pressure metamorphism. In contrast, the presence of Paleoproterozoic and Archean inherited zircons within early Early Cretaceous LMAR in this area and the relatively low 206Pb/204Pb ratios of these rocks are indicative of derivation from primary magmas generated by partial melting of the thickened lower continental crust of the North China Craton (NCC). These rocks may have formed in an extensional environment associated with the upwelling of asthenospheric mantle material. The presence of YC basement material within the NCC in the Sanmenxia–Houma area suggests that the deeply subducted Yangtze slab influenced an area of ~ 100 km in lateral extent within the southern margin of the central NCC during the Triassic.  相似文献   

16.
《Gondwana Research》2014,25(2):797-819
A suite of Paleozoic granitoids in Central Tianshan was studied for both geochemistry and geochronology in an effort to constrain their origin and tectonic setting. We combined LA-ICP-MS dating of zircon, standard geochemical analyses and Hf-isotopic studies of zircon to develop our tectonic model. Based on our analysis, the granitoids formed in three distinctive stages: ~ 450–400 Ma, ~ 370–350 Ma and ca. 340 Ma. The first stage (450–400 Ma) granitoids exhibit metaluminous, magnesian, high-K to shoshonitic characteristics of I-type granitoids (arc-setting), that are enriched in LREE relative to HREE with high (La/Yb)CN values, show negative Eu anomaly and are depleted in Nb, Ta and Ti. This phase of granitoid emplacement was most likely related to the southward subduction of the Paleo-Tianshan Ocean beneath the Tarim block and the subsequent Central Tianshan arc. In contrast, the second stage granitoids (370–350 Ma) are distinctly different and are classified as calc-alkaline or shoshonitic plutons with a weak positive Eu anomaly. Within the second stage granitoids, it appears that the earlier (~ 365 Ma) granitoids fit within the A-type field whereas the younger (~ 352 Ma) granitoids plot within the post-collisional potassic field. These granitoids formed during collisions between Central Tianshan and the Tuha terrane that occurred along the northern margin of Central Tianshan. Lastly, the ca. 340 Ma granitoids are typical of volcanic arc granitoids again that probably formed during the northward subduction of the South Tianshan Ocean beneath the Central Tianshan landmass or the subsequent southward subduction of the residual Paleo-Tianshan Ocean.The Hf isotopic data of zircons from all the studied granitoids were pooled and yielded three prominent Hf TDMC model age populations: ca. 2400 Ma, ca. 1400 Ma and ca. 1100 Ma. The Hf-data shows a significant input of juvenile crust in addition to crustal recycling. We interpret these three phases of juvenile crustal addition to phases of global growth of continental crust (~ 2400 Ma), the addition of juvenile crust during the breakup of the Columbia supercontinent (~ 1400 Ma) and the assembly of Rodinia (~ 1100 Ma).  相似文献   

17.
We present new U–Pb isotopic age data for detrital zircons from 16 deformed sandstones of the Ross Supergroup in north Victoria Land, Antarctica. Zircon U/Th ratios primarily point to dominantly igneous parent rocks with subordinate contributions from metamorphic sources. Comparative analysis of detrital zircon age populations indicates that inboard stratigraphic successions (Wilson Terrane) and those located outboard of the East Antarctic craton (the Bowers and Robertson Bay terranes) have similar ~ 1200–950 Ma (Mesoproterozoic–Neoproterozoic) and ~ 700–490 Ma (late Neoproterozoic–Cambrian, Furongian) age populations. The affinity of the age populations of the sandstones to each other, as well as Gondwana sources and Pacific-Gondwana marginal stratigraphic belts, challenges the notion that the outboard successions form exotic terranes that docked with Gondwana during the Ross orogeny and instead places the terranes in proximity to each other and within the peri-Gondwana realm during the late Neoproterozoic to Cambrian. The cumulative zircon age suite from north Victoria Land yields a polymodal age spectra with a younger, primary 700–480 Ma age population that peaks at ~ 580 Ma. Cumulative analysis of zircons with elevated U/Th ratios (> 20) indicating metamorphic heritage yield ~ 657–532 Ma age probability peaks, which overlap with the younger dominantly igneous zircon population. The data are interpreted to give important new evidence that is consistent with ongoing convergent arc magmatism by ~ 626 Ma, which provided the dominant zircon-rich igneous rocks and subordinate metamorphic rocks. Maximum depositional ages as young as ~ 493–481 Ma yielded by deformed sequences in the outboard Bowers and Robertson Bay terrane samples provide new support for late Cambrian to Ordovician deformation in outboard sectors of the orogen, consistent with tectonic models that call for cyclic phases of contraction along the north Victoria Land sector of the Ross–Delamerian orogen.  相似文献   

18.
The Central Asian Orogenic Belt (CAOB), as one of the largest accretionary orogens in the world, was built up through protracted accretion and collision of a variety of terranes due to the subduction and closure of the Paleo-Asian Ocean in the Neoproterozoic to Early Mesozoic. Located in the Uliastai continental margin of the southeastern CAOB, the Chagan Obo Temple area is essential for understanding the tectonic evolution of the southeastern part of the CAOB and its relation with the “Hegenshan Ocean”. In this study, detrital zircon U-Pb geochronology coupled with Hf isotopic analysis was performed on Paleozoic sedimentary strata in this area. Most detrital zircons from the studied samples possess oscillatory zoning and have Th/U ratios of 0.4-1.73, indicative of an igneous origin. Detrital zircons from the Ordovician to Devonian sedimentary strata yield a predominant age group at 511-490 Ma and subordinate age groups at 982-891 Ma, 834-790 Ma and ~ 574 Ma, and have a large spread of εHf(t) values (-20.77 to + 16.94). Carboniferous and Early Permian samples yield zircon U-Pb ages peaking at ~ 410 Ma and ~ 336 Ma, and have dominantly positive εHf(t) values (+ 1.30 to + 14.86). Such age populations and Hf isotopic signatures match those of magmatic rocks in the Northern Accretionary Orogen and the Mongolian arcs. A marked shift of provenance terranes from multiple sources to a single source and Hf isotope compositions from mixed to positive values occurred at some time in the Carboniferous. Such a shift implies that the Northern Accretionary Orogen was no longer a contributor of detritus in the Carboniferous to Early Permian, due to the opening of the “Hegenshan Ocean” possibly induced by the slab rollback of the subducting Paleo-Asian Ocean.  相似文献   

19.
The Qinling Orogenic Belt, linking the Kunlun and Qilian Mountains to the west and continuing farther east to the Dabie Mountain, was assembled by the convergence and collision between the Greater South China and the North China blocks. The precise timing of the subduction and collision processes between these continental blocks and tectonic regime switchover is very equivocal. Zircon in-situ LA-ICP-MS U–Pb dating in this contribution indicates that the biotite monzogranite and monzogranite phases of the Dangchuan complex were crystallized at ca. 239.8 ± 2.3 Ma and 227.8 ± 1.2 Ma, respectively. The ca. 240 Ma biotite monzogranite displays εHf(t) values ranging from −2.4 to +2.9, and corresponding TDM2 of 1.72–1.94 Ga and TDM1 of 0.77–0.88 Ga. The ca. 228 Ma monzogranite exhibits εHf(t) values ranging from −4.3 to +1.9, and corresponding TDM2 of 1.73–2.08 Ga and TDM1 of 0.81–0.88 Ga. Lutetium–Hf isotopic composition indicates that the biotite monzogranite and monzogranite probably have the same parental magmas which were originated from hybrid sources of both reworking of Paleoproterozoic ancient crust and partial melting of the Neoproterozoic juvenile crust. The more negative εHf(t) values of the monzogranite suggest more contribution of the ancient crust during the source contamination, or more possible crustal assimilation during their crystallization at ca. 228 Ma than precursor biotite monzogranite. Integrated with previous research and our detailed petrography, we propose that the Dangchuan complex underwent an episodic growth documenting the tectonic regime switchover from early Paleozoic to Triassic. The ca. 439 Ma inherited zircon recorded the persistent subduction of the oceanic crust, the ca. 240 Ma biotite monzogranite emplaced during the northward subduction of the Mianlue oceanic crust beneath the South Qinling block, and the ca. 228 Ma monzogranite emplaced during the syn-collisional process in a compressional setting.  相似文献   

20.
《Gondwana Research》2013,23(3-4):828-842
Whether any Grenvillian magmatic records are preserved in the North China Craton (NCC) is a key issue to understand the Proterozoic tectonic evolution of the NCC and its correlation to the supercontinent Rodinia. Meso- to Neo-proterozoic sedimentary series is well exposed in the NCC, but magmatic events in this period, especially of 1.3–1.0 Ga, have seldom been reported. New U–Pb isotopic dating and Hf isotopic composition analyses have been carried out in this study using SIMS and LA–ICP-MS methods on detrital zircons from sandstones of the Tumen Group in the Shandong Peninsula and quartz sandstones of the Sangwon System in the Phyongnam Basin, North Korea. The age populations of the detrital zircons of the Tumen Group are at ~ 2.5 Ga, ~ 1.85 Ga, ~ 1.7 Ga, ~ 1.58 Ga, ~ 1.5 Ga, ~ 1.36 Ga and ~ 1.2 Ga and those of the Sangwon System are at 1.88–1.86 Ga, ~ 1.78 Ga, 1.62–1.58 Ga, 1.46–1.41 Ga, ~ 1.32 Ga, ~ 1.17 Ga and ~ 980 Ma. Most of the age peaks of Neoarchean and Proterozoic correspond to the significant tectonic-magmatic-thermal events previously recognized in the NCC, revealing that the main provenances of the Tumen Group and the Sangwon System are Early Precambrian basement and Late Paleo- to Meso-proterozoic magmatic rocks of the NCC. Furthermore, the youngest detrital zircon ages of ~ 1.1 Ga from the Tumen Group and 984 Ma from the Sangwon System, as well as 910 Ma Rb–Sr whole rock isochron age of a limestone from the Tumen Group and 899 Ma mafic sills intruding the Sangwon System suggest that both groups were deposited in the Neoproterozoic, coevally with the Qingbaikou System in the Yanliao Aulacogen. The common zircon ages of 1.3–1.0 Ga from the Tumen Group and the Sangwon System, as well as the contemporaneous Penglai and Yushulazi Group in the eastern margin of the NCC, indicate that during the deposition of these sediments there have been significant contributions from Grenvillian magmatic rocks in the eastern NCC. This may provide clues to understand the possible relationship of the NCC and the supercontinent Rodinia. Moreover, the positive εHf (t) and ~ 2.8 Ga crust model ages of detrital magmatic zircons of 2.8–2.4 Ga suggest that there have been significant crustal growth at ~ 2.8 Ga in the eastern margin of the NCC, same as in other areas of the NCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号