首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
This paper presents a fully coupled finite element formulation for partially saturated soil as a triphasic porous material, which has been developed for the simulation of shield tunnelling with heading face support using compressed air. While for many numerical simulations in geotechnics use of a two‐phase soil model is sufficient, the simulation of compressed air support demands the use of a three‐phase model with the consideration of air as a separate phase. A multiphase model for soft soils is developed, in which the individual constituents of the soil—the soil skeleton, the fluid and the gaseous phase—and their interactions are considered. The triphasic model is formulated within the framework of the theory of porous media, based upon balance equations and constitutive relations for the soil constituents and their mixture. An elasto‐plastic, cam–clay type model is extended to partially saturated soil conditions by incorporating capillary pressure according to the Barcelona basic model. The hydraulic properties of the soil are described via DARCY 's law and the soil–water characteristic curve after VAN GENUCHTEN . Water is modelled as an incompressible and air as a compressible phase. The model is validated by means of selected benchmark problems. The applicability of the model to geotechnical problems is demonstrated by results from the simulation of a compressed air intervention in shield tunnelling. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Soil–water interaction is a pivotal process in many underwater geohazards such as underwater landslides where soil sediments gradually evolve into turbidity currents after interactions with ambient water. Due to the large deformations, multiphase interactions and phase changes this involves, investigations from numerical modelling of the transition process have been limited so far. This study explores a simple numerical replication of such soil–water mixing with respect to changes in average strength using smoothed particle hydrodynamics (SPH). A uniform viscoplastic model is used for both the solid-like and fluid-like SPH particles. The proposed numerical solution scheme is verified by single-phase dam break tests and multiphase simple shear tests. SPH combinations of solid-like and fluid-like particles can replicate the clay–water mixture as long as the liquidity index of the solid-like particles is larger than unity. The proposed numerical scheme is shown to capture key features of an underwater landslide such as hydroplaning, water entrainment and wave generation and thus shows promise as a tool to simulate the whole process of subaquatic geohazards involving solid–fluid transition during mass transport.  相似文献   

3.
Soil freezing is often used to provide temporary support of soft soils in geotechnical interventions. During the freezing process, the strength properties of the soil–water–ice mixture change from the original properties of the water-saturated soil to the properties of fully frozen soils. In the paper, a multiscale homogenization model for the upscaling of the macroscopic strength of freezing soil based upon information on three individual material phases—the solid particle phase (S), the crystal ice phase (C) and the liquid water phase (L)—is proposed. The homogenization procedure for the partially frozen soil–water–ice composite is based upon an extension of the linear comparison composite (LCC) method for a two-phase matrix–inclusion composite, using a two-step homogenization procedure. In each step, the LCC methodology is implemented by estimating the strength criterion of a two-phase nonlinear matrix–inclusion composite in terms of an optimally chosen linear elastic comparison composite with a similar underlying microstructure. The solid particle phase (S) and the crystal ice phase (C) are assumed to be characterized by two different Drucker–Prager strength criteria, and the liquid water phase (L) is assumed to have zero strength capacity under drained conditions. For the validation of the proposed upscaling strategy, the predicted strength properties for fully and partially frozen fine sands are compared with experimental results, focussing on the investigation of the influence of the porosity and the degree of ice saturation on the predicted failure envelope.  相似文献   

4.
It has been reported that sand production, which is a simultaneous production of soil particles along with gas and water into a production well, forced to terminate the operation during the world's first offshore methane production test from hydrate-bearing sediments in the Eastern Nankai Tough. The sand production is induced by internal erosion, which is the detachment and migration of soil particles from soil skeleton due to seepage flow. The inflow of the eroded soil particles into the production well leads to damage of the production devices. In the present study, a numerical model to predict the chemo-thermo-mechanically coupled behavior including internal erosion during hydrate dissociation has been formulated based on the multiphase mixture theory. In the proposed model, the internal erosion is expressed as mass transition of soil particles from soil skeleton to the fluidized soil particles. Since the internal erosion is considered to depend on the soil particle size, mass of soil particles are divided into several groups that have different representative particle diameters, and the constitutive equations for the onset condition and the mass transition rate of the internal erosion are formulated for each group. Also, transportation of soil particles in the liquid phase is formulated for each particle size group in the proposed model. Finally, a simulation of the methane gas production from the hydrate-bearing sediment by depressurization method is presented, and the internal erosion and the dissociation behavior are discussed.  相似文献   

5.
The effective stress concept for solid‐fluid 2‐phase media was revisited in this work. In particular, the effects of the compressibility of both the pore fluid and the soil particles were studied under 3 different conditions, i.e., undrained, drained, and unjacketed conditions based on a Biot‐type theory for 2‐phase porous media. It was confirmed that Terzaghi effective stress holds at the moment when soil grains are assumed to be incompressible and when the compressibility of the pore fluid is small enough compared to that of the soil skeleton. Then, isotropic compression tests for dry sand under undrained conditions were conducted within the triaxial apparatus in which the changes in the pore air pressure could be measured. The ratio of the increment in the cell pressure to the increment in the pore air pressure, m, corresponds to the inverse of the B value by Bishop and was obtained during the step loading of the cell pressure. In addition, the m values were evaluated by comparing them with theoretically obtained values based on the solid‐fluid 2‐phase mixture theory. The experimental m values were close to the theoretical values, as they were in the range of approximately 40 to 185, depending on the cell pressure. Finally, it was found that the soil material with a highly compressible pore fluid, such as air, must be analyzed with the multi‐phase porous mixture theory. However, Terzaghi effective stress is practically applicable when the compressibilities of both the soil particles and the pore fluid are small enough compared to that of the soil skeleton.  相似文献   

6.
The behaviour of quasi-saturated materials is important to consider when designing cuttings and embankments in which earthwork materials are compacted to the optimum proctor density. Under this condition, the in-pore gaseous phase takes the form of air pockets and bubbles embedded within the liquid phase, which significantly affects the overall behaviour of the soil. The assessment of highly saturated soils thus requires a precise understanding of hydro-chemo-mechanical couplings between the entrapped air, the in-pore liquid and the solid skeleton. This paper presents a fully coupled poromechanical model that separates the kinematics and the mechanical behaviours of the phases in their interactions with each other (e.g., liquid water, dissolved air, gaseous air and solid matrix). The assumptions about the entrapped air behaviour are defined from a bibliographic study, and linear elastic behaviour is used for both the liquid phase and the solid skeleton. The model is implemented in the FEM code COMSOL and is subsequently used to simulate oedometric tests under different loading paths: undrained compression or imposed liquid pressure variation at constant stress. The behaviour, which shows a continuous transition from unsaturated to saturated, is logical and consistent with available experimental data.  相似文献   

7.
The purpose of this paper is to examine the importance of different possible simplifying approximations when performing numerical simulations of fluid‐filled porous media subjected to dynamic loading. In particular, the relative importance of the various acceleration terms for both the solid and the fluid, especially the convective contribution, is assessed. The porous medium is modelled as a binary mixture of a solid phase, in the sense of a porous skeleton, and a fluid phase that represents both liquid and air in the pores. The solid particles are assumed to be intrinsically incompressible, whereas the fluid is assigned a finite intrinsic compressibility. Finite element (FE) simulations are carried out while assuming material properties and loading conditions representative for a road structure. The results show that, for the range of the material data used in the simulations, omitting the relative acceleration gives differences in the solution of the seepage velocity field, whereas omitting only the convective term does not lead to significant differences. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
Although numerous numerical models have been proposed for simulating the coupled hydromechanical behaviors in unsaturated soils, few studies satisfactorily reproduced the soil–water–air three‐phase coupling processes. Particularly, the impacts of deformation dependence of water retention curve, bonding stress, and gas flow on the coupled processes were less examined within a coupled soil–water–air model. Based on our newly developed constitutive models (Hu et al., 2013, 2014, 2015) in which the soil–water–air couplings have been appropriately captured, this study develops a computer code named F2Mus3D to investigate the coupled processes with a focus on the above impacts. In the numerical implementation, the generalized‐α time integration scheme was adopted to solve the equations, and a return‐mapping implicit stress integration scheme was used to update the state variables. The numerical model was verified by two well‐designed laboratory tests and was applied for modeling the coupled elastoplastic deformation and two‐phase fluid flow processes in a homogenous soil slope induced by rainfall infiltration. The simulation results demonstrated that the numerical model well reproduces the initiation of a sheared zone at the toe of the slope and its propagation toward the crest as the rain infiltration proceeds, which manifests a typical mechanism for rainfall‐induced shallow landslides. The simulated plastic strain and deformation would be remarkably underestimated when the bonding stress and/or the deformation‐dependent nature of hydraulic properties are ignored in the coupled model. But on the contrary, the negligence of gas flow in the slope soil results in an overestimation of the rainfall‐induced deformation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents a three‐dimensional elastoplastic constitutive model for predicting the hydraulic and mechanical behaviour of unsaturated soils. It is based on experimental results obtained from a series of controlled‐suction triaxial tests on unsaturated compacted clay with different initial densities. Hydraulic hysteresis in the water‐retention behaviour is modelled as an elastoplastic process, with the elastic part modelled by a series of scanning curves and the elastoplastic part modelled by the main drying and wetting curves. The effect of void ratio on the water‐retention behaviour is studied using data obtained from controlled‐suction wetting–drying cyclic tests on unsaturated compacted clay with different initial densities. The effect of the degree of saturation on the stress–strain‐strength behaviour and the effect of void ratio on the water‐retention behaviour are considered in the model, as is the effect of suction on the hydraulic and mechanical behaviour. The initial density dependency of the compacted soil behaviour is modelled by experimental relationships between the initial density and the corresponding yield stress and, thereby, between the initial density and the normal compression line. The model is generalized to three‐dimensional stress states by assuming that the shapes of the failure and yield surfaces in the deviatoric stress plane are given by the Matsuoka–Nakai criterion. Model predictions of the stress–strain and water‐retention behaviour are compared with those obtained from triaxial tests with different initial densities under isotropic compression, triaxial compression and triaxial extension, with or without variation in suction. The comparisons indicate that the model accurately predicts the hydraulic and mechanical behaviour of unsaturated compacted soils with different initial densities using the same material constant. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents a two‐dimensional coupled bonded particle and lattice Boltzmann method (BPLBM) developed to simulate the fluid–solid interactions in geomechanics. In this new technique, the bonded particle model is employed to describe the inter‐particle movement and forces, and the bond between a pair of contacting particles is assumed to be broken when the tensile force or tangential force reaches a certain critical value. As a result the fracture process can be delineated based on the present model for the solid phase comprising particles, such as rocks and cohesive soils. In the meantime, the fluid phase is modelled by using the LBM, and the immersed moving boundary scheme is utilized to characterize the fluid–solid interactions. Based on the novel technique case studies have been conducted, which show that the coupled BPLBM enjoys substantially improved accuracy and enlarged range of applicability in characterizing the mechanics responses of the fluid–solid systems. Indeed such a new technique is promising for a wide range of application in soil erosion in Geotechnical Engineering, sand production phenomenon in Petroleum Engineering, fracture flow in Mining Engineering and fracture process in a variety of engineering disciplines. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
In the past decades, flow‐like catastrophic landslides caused many victims and important economic damage around the world. It is therefore important to predict their path, velocity and depth in order to provide adequate mitigation and protection measures. This paper presents a model that incorporates coupling between pore pressures and the solid skeleton inside the avalanching mass. A depth‐integrated, coupled, mathematical model is derived from the velocity–pressure version of the Biot–Zienkiewicz model, which is used in soil dynamics. The equations are complemented with simple rheological equations describing soil behaviour and are discretized using the SPH method. The accuracy of the model is assessed using a series of benchmarks, and then it is applied to back‐analyse the propagation stage of some catastrophic flow‐like slope movements for which field data are available. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
This paper proposes a hydro-geomechanical finite element model to reproduce the kinematic behaviour of large slow landslides. The interaction between solid skeleton and pore fluids is modelled with a time dependent up w formulation and a groundwater model that takes into account recorded daily rainfall intensity. A viscoplastic constitutive model based on Perzyna’s theory is applied to reproduce soil viscous behaviour and the delayed creep deformation. The proposed model is applied to Portalet landslide (Central Spanish Pyrenees). This is an active paleo-landslide that has been reactivated by the construction of a parking area at the toe of the slope. The stability analysis reveals that, after the constructive solutions were undertaken, the slope is in a limit equilibrium situation. Nevertheless, time-dependent analysis reproduces the nearly constant strain rate (secondary creep) and the acceleration/deceleration of the moving mass due to hydrological changes. Overall, the model reproduces a 2-m displacement in the past 8  years that coincides with in situ monitoring data. The proposed model is useful for short- and mid-term predictions of secondary creep. However, long-time predictions remain uncertain, stability depends strongly on the position of the water table depth and new failures during tertiary creep due to soil temporal microstructural degradation are difficult to calibrate.  相似文献   

13.
A hierarchical mathematical model for analyses of coupled chemo‐thermo‐hygro‐mechanical behaviour in concretes at high temperature is presented. The concretes are modelled as unsaturated deforming reactive porous media filled with two immiscible pore fluids, i.e. the gas mixture and the liquid mixture, in immiscible–miscible levels. The thermo‐induced desalination process is particularly integrated into the model. The chemical effects of both the desalination and the dehydration processes on the material damage and the degradation of the material strength are taken into account. The mathematical model consists of a set of coupled, partial differential equations governing the mass balance of the dry air, the mass balance of the water species, the mass balance of the matrix components dissolved in the liquid phases, the enthalpy (energy) balance and momentum balance of the whole medium mixture. The governing equations, the state equations for the model and the constitutive laws used in the model are given. A mixed weak form for the finite element solution procedure is formulated for the numerical simulation of chemo‐thermo‐hygro‐mechanical behaviours. Special considerations are given to spatial discretization of hyperbolic equation with non‐self‐adjoint operator nature. Numerical results demonstrate the performance and the effectiveness of the proposed model and its numerical procedure in reproducing coupled chemo‐thermo‐hygro‐mechanical behaviour in concretes subjected to fire and thermal radiation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
Micromechanical aspects of the shear strength of wet granular soils   总被引:1,自引:0,他引:1  
This paper presents a micromechanical model for the analysis of wet granular soils at low saturation (below 30%). The discrete element method is employed to model the solid particles. The capillary water is assumed to be in a pendular state and thus exists in the form of liquid bridges at the particle‐to‐particle contacts. The resulting inter‐particle adhesion is accounted for using the toroidal approximation of the bridge. Hydraulic hysteresis is accounted for based on the possible mechanism of the formation and breakage of the liquid bridges during wetting and drying phases. Shear test computational simulations were conducted at different water contents under relatively low net normal stresses. The results of these simulations suggest that capillary‐induced attractive forces and hydraulic hysteresis play an important role in affecting the shear strength of the soil. These attractive forces produce a tensile stress that contributes to the apparent cohesion of the soil and increases its stiffness. During a drying phase, capillary‐induced tensile stresses, and hence shear strength, tend to be larger than those during a wetting phase. The proposed model appears to capture the macroscopic response of wet granular materials and revealed a number of salient micromechanical mechanisms and response patterns consistent with theoretical considerations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
16.
基于细观分析的黏土本构模型   总被引:1,自引:0,他引:1  
徐辉  王靖涛  张光永  钱勤 《岩土力学》2007,28(11):2297-2302
根据黏性土在固结排水条件下的加、卸载变形特征,分析了孔隙水,固体骨架在不同变形阶段的力学响应行为,按照细观力学分析中的自洽方法,建立了在固结排水条件下的黏土损伤本构模型。模型中考虑了孔隙水和固体骨架在加、卸载阶段的不同特性,认为在损伤阶段整体剪切模量的降低是由固体骨架颗粒接触面滑移而引起,与骨架中滑动相的体积百分比和滑动相的剪切模量有关,并给出了求解整体变形模量的解析方法,最后将模型预测与不同初始固结压力,不同应力路径的排水试验结果作了比较,证明该模型是合理的。  相似文献   

17.

Prediction of unsaturated soil behavior during earthquake loading has received increasing attention in geotechnical engineering research and practice in recent years. Development of a fully coupled analysis procedure incorporating a coupled hydromechanical elastoplastic constitutive model for dynamic analysis of unsaturated soils has, however, been limited. This paper presents the implementation of a coupled hydromechanical elastoplastic constitutive model into a fully coupled dynamic analysis procedure and its validation using a centrifuge test. First, the fully coupled finite element equations governing the dynamic behavior of unsaturated soils with the solid skeleton displacement, pore water pressure, and pore air pressure as nodal unknowns are briefly presented. The closest point projection method is then utilized to implement the coupled hydromechanical elastoplastic constitutive model into the finite element equations. The constitutive model includes hysteresis in soil–water characteristic curves, cyclic elastoplasticity of the solid skeleton, and the coupling mechanisms between the SWCCs and the solid skeleton. Finally, the analysis procedure is validated using the results from a dynamic centrifuge test on an embankment constructed of compacted unsaturated silt subjected to base shaking. Reasonable comparisons between the predicted and measured accelerations, settlements, and deformed shapes are obtained.

  相似文献   

18.
Fully coupled, porous solid–fluid formulation, implementation and related modeling and simulation issues are presented in this work. To this end, coupled dynamic field equations with u?p?U formulation are used to simulate pore fluid and soil skeleton (elastic–plastic porous solid) responses. Present formulation allows, among other features, for water accelerations to be taken into account. This proves to be useful in modeling dynamic interaction of media of different stiffnesses (as in soil–foundation–structure interaction). Fluid compressibility is also explicitly taken into account, thus allowing excursions into modeling of limited cases of non‐saturated porous media. In addition to these features, present formulation and implementation models in a realistic way the physical damping, which dissipates energy. In particular, the velocity proportional damping is appropriately modeled and simulated by taking into account the interaction of pore fluid and solid skeleton. Similarly, the displacement proportional damping is physically modeled through elastic–plastic processes in soil skeleton. An advanced material model for sand is used in present work and is discussed at some length. Also explored in this paper are the verification and validation issues related to fully coupled modeling and simulations of porous media. Illustrative examples describing the dynamical behavior of porous media (saturated soils) are presented. The verified and validated methods and material models are used to predict the behavior of level and sloping grounds subjected to seismic shaking. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
考虑气相影响的降雨入渗过程分析研究   总被引:4,自引:1,他引:3  
降雨入渗过程是水在下渗的过程中驱替空气的水-气二相流过程,对这一过程的精确模拟一直是渗流计算的难点,目前的处理方法通常是忽略孔隙气压力变化的影响。根据多相流理论,结合质量守恒定律和达西定律,建立了水-气二相流模型,模型的求解采用积分有限差分法和Newton-Raphson迭代方法,通过变换主要变量来表达相态的变化,实现了水相、气相边界条件及降雨入渗边界的精确模拟。利用上述模型对一土柱试验进行模拟,从而验证了模型的正确性,研究了一均质土层的降雨入渗过程,得到了孔隙水压力、孔隙气压力和毛细压力及含水率的变化过程。根据入渗率与地表孔隙气压力的变化关系,验证了孔隙气压力的增大对入渗水流产生阻滞作用。在求解非稳定渗流问题中,考虑空气压力变化的影响是值得研究的。  相似文献   

20.
A general thermo-hydro-mechanical framework for the modelling of internal erosion is proposed based on the theory of mixtures applied to two-phase porous media. The erodible soil is partitioned in two phases: one solid phase and one fluid phase. The solid phase is composed of nonerodible grains and erodible particles. The fluid phase is composed of water and fluidized particles. Within the fluid phase, species diffuse. Across phases, species transfer. The modelling of internal erosion is contributed directly by mass transfer from the solid phase towards the fluid phase. The constitutive relations governing the thermomechanical behaviour, generalised diffusion, and transfer are structured by the dissipation inequality. The particular case of soil suffusion is investigated with a focus on constitutive laws. A new constitutive law for suffusion is constructed based on thermodynamic conditions and experimental investigations. This erosion law is linearly related to the power of seepage flow and to the erosion resistance index. Owing to its simplicity, this law tackles the overall trend of the suffusion process and permits the formulation of an analytical solution. This new model is then applied to simulate laboratory experiments, by both analytical and numerical methods. The comparison shows that the newly developed model, which is theoretically consistent, can reproduce correctly the overall trend of the cumulated eroded mass when the permeability evolution is small. In addition, the results are provided for four different materials, two different specimen sizes, and various hydraulic loading paths to demonstrate the applicability of the new proposed law.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号