首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 437 毫秒
1.
三种红层岩石常规三轴压缩下的强度与变形特性研究   总被引:7,自引:2,他引:5  
利用MTS815Teststar程控伺服岩石力学试验系统研究了川东地区一红层边坡中的砂岩、粉砂岩和泥岩围压为03MPa的应力-应变全过程曲线,建立了峰值强度、峰值强度前弹性模量以及峰值强度后的弹性模量和围压的关系。将低围压下红层的全应力-应变曲线概化成5个阶段,分别为压密段、弹性段、屈服段、应变软化段和塑性流动阶段。试验结果得出,红层弹性模量随围压的增加而提高且变化明显,砂岩和粉砂岩在此围压内为脆性破坏,泥岩为塑性破坏的规律。  相似文献   

2.
岩体经受自然冻融循环过程后,其物理力学性质的劣化是引起岩石工程灾害的主要原因。借助于MTS815液伺服岩石试验系统对经历不同冻融循环次数的粗砂岩进行三轴压缩试验,研究经历不同冻融循环次数后岩石在不同围压下的强度和变形特性,分析冻融循环次数和围压对岩石强度和变形的影响规律。研究结果表明,在冻融循环次数一定的条件下,随着围压的增加,岩石的三轴抗压强度、弹性模量和峰值轴向应变逐渐增加,表明粗砂岩的破坏逐渐由脆性破坏向塑形破坏变化;在围压相同的情况下,随着冻融循环次数的增加,岩石的三轴抗压强度、弹性模量逐渐减小,峰值应力对应的轴向应变逐渐增加;随着冻融循环次数的增加,粗砂岩的黏聚力均呈指数衰减形式降低,内摩擦角变化很小。   相似文献   

3.
石灰岩和砂岩高温力学特性的试验研究   总被引:3,自引:1,他引:2  
利用自行研制的岩石加温装置和RMT-150C岩石力学试验机, 对石灰岩和砂岩试样高温后的力学特性进行了试验研究。试验结果表明, 随着温度升高, 两种岩石纵波波速逐渐减小。单轴压缩过程中的全程应力应变曲线经历了压密、弹性、屈服、破坏4个阶段; 达到峰值应力后两种岩石均发生脆性破坏, 砂岩破坏时呈锥形炸裂, 而石灰岩则呈草捆状破坏。高温对两种岩石的强度都有一定的弱化作用, 其峰值应力都随温度升高而降低, 石灰岩700 ℃时强度降幅达84.59 %, 而砂岩强度仅比常温降低22 %左右。两种岩石的峰值应变都随温度升高逐渐增大, 但具体表现不尽相同, 石灰岩500 ℃时应变增加了30.57 %, 500 ℃之后峰值应变基本无变化, 甚至到700 ℃时还略有降低; 砂岩700 ℃时峰值应变增加了80.63 %, 其峰值应变的变化与其微观结构变化相关。随着温度升高, 两种岩石的弹性模量和变形模量均减小, 700 ℃时石灰岩弹性模量降幅为86.8 %, 砂岩弹性模量降幅为46.94 %; 700 ℃时石灰岩变形模量下降了83.9 %, 砂岩的变形模量下降了53.06 %。   相似文献   

4.
以金沙江寨子村昔格达组半成岩为研究对象,通过X射线衍射、电镜扫描,测定了矿物成分、天然与饱和状态矿物颗粒微观结构;通过三轴压缩试验,研究了昔格达组半成岩受水和围压影响的强度及变形变化规律,并探讨了微观机制;通过对昔格达组半成岩、土、软岩强度指标与含水率的关系进行统计,分析了昔格达组半成岩不同于土和软岩的强度特性,并给出了针对此类岩土体的工程分级建议。研究表明:(1)微观结构显示昔格达组半成岩有明显不同于土和岩石的弱胶结结构特征,在饱和后胶结结构易遭破坏;(2)昔格达组半成岩黏聚力、摩擦角均随含水率增加而减小,平均模量在高含水率下随围压增加而增大,围压一定时随含水率增加而减小;(3)昔格达组半成岩、土、软岩的黏聚力大小为软岩>昔格达组半成岩>土,黏聚力对含水率的敏感性为软岩>昔格达组半成岩>土,摩擦角对含水率的敏感性为土>昔格达组半成岩>软岩;(4)将Φ50 mm×100 mm标准试件的单轴抗压强度在0.2~3 MPa,黏聚力在30~200 kPa的岩土体归类为硬土?软岩,建议在工程实际应用中将其与岩石和土进行区分。  相似文献   

5.
《岩土力学》2017,(12):3395-3401
研究库水位反复升降对边坡稳定性的影响具有重要意义,结合水-岩相互作用课题,对不同干湿循环次数作用下的泥质砂岩进行单轴压缩试验和三轴压缩试验。试验结果表明:在干湿循环作用下,泥质砂岩的峰值强度的劣化程度黏聚力的劣化程度内摩擦角的劣化程度,随着干湿循环次数增加其力学参数劣化程度加剧,结合岩土塑性力学中广泛应用的Drucker-Prager准则(简称D-P准则),提出了考虑干湿循环作用的不同围压下泥质砂岩的D-P屈服准则,通过修正的D-P屈服函数计算的泥质砂岩不同围压下的理论峰值与试验值的对比,得到两者误差控制在10%以内,考虑干湿循环作用的泥质砂岩的D-P屈服准则在实际应用中是可行的,为工程中获得任意围压下岩石的破坏强度提供了理论依据。  相似文献   

6.
不同温度条件下饱水风化花岗岩强度及变形特性分析   总被引:3,自引:3,他引:0  
为研究温度和围压对风化花岗岩抗压强度、 剪切强度参数及变形特性的影响规律, 以新疆天山某一矿区的风化花岗岩为研究对象, 对不同温度(15、 -5、 -15 ℃)、 不同围压(0、 4、 7、 10 MPa)条件下的饱水风化花岗岩进行单轴和三轴压缩试验。结果表明: 相同温度条件下, 围压在0 ~ 10 MPa变化时, 风化花岗岩三轴抗压强度随围压线性增大。在相同围压下, 抗压强度随温度的降低而明显提高, 风化花岗岩的黏聚力c随温度降低而增大, 内摩擦角φ随温度的降低呈增长趋势。弹性模量随围压的增大不断提高, 但随着温度的降低, 增长幅度逐渐减小。泊松比也随温度降低和围压的增加呈增大趋势。温度和围压对风化花岗岩试样的破坏形态影响机制不同。温度降低使矿物颗粒及内部的微裂纹和间隙收缩, 进而胶结强度增大; 荷载和围压的增大会使岩石内部形成微裂隙并逐渐贯通, 同时孔隙冰破碎裂隙充分接触, 进一步增加摩擦力提高岩石强度。  相似文献   

7.
胡凯  赖远明 《冰川冻土》2014,36(5):1199-1204
对含盐冻结粉质砂土进行温度-2 ℃、-4 ℃、-6 ℃和围压0.3~16 MPa的三轴强度试验. 结果表明: 含盐冻结粉质砂土应力-应变曲线在低围压和高围压表现为应变软化特征, 中围压为理想塑性变形特性; 随着围压的增大, 强度先增加后减小. 在围压小范围内得到广义黏聚力和广义内摩擦角, 并得到广义黏聚力和广义内摩擦角随围压和温度的变化规律; 同时, 针对强度随围压的变化, 提出非线性强度准则.  相似文献   

8.
魏尧  杨更社  申艳军  明锋  梁博 《岩土力学》2020,41(8):2636-2646
冻结法作为穿越富水软岩地层的重要施工方法,冻结壁的长期稳定性对于工程安全有着至关重要的作用。蠕变破坏是诱发冻结壁变形的显著特点之一,对研究冻结岩石蠕变的特性有重要的理论和工程意义。以白垩系饱和冻结砂岩为研究对象,开展–10 ℃低温冻结条件下,不同围压(0、2、4、6 MPa)的三轴蠕变力学试验。分析了饱和冻结砂岩蠕变变形,根据现有黏弹塑性模型开展了参数辨识并探究蠕变参数的变化规律,基于此提出考虑温度及损伤效应的蠕变本构模型。研究结果表明:低温冻结削弱蠕变过程中颗粒间的相互胶结力,使其蠕变特征明显;而围压却在一定程度上抑制饱和冻结砂岩内部损伤的发展,导致稳态蠕变速率随围压的升高出现明显的下降趋势。随围压的增加饱和冻结砂岩的蠕变破坏形态呈现出从剪切破坏到张拉破坏再到局部塑形硬化破坏的变化过程。在黏弹塑性模型的基础上,总结蠕变参数 、 和 随荷载的增加呈现先增后减的趋势,拐点为屈服应力;而参数 在大于屈服应力后出现并呈现先增后减的趋势。结合冻结岩石蠕变数据对定义的应力-低温耦合蠕变本构模型进行了参数辨识,并将该模型的计算结果与蠕变试验数据对比,验证所建立非线性模型的正确性与合理性。  相似文献   

9.
张晋勋  杨昊  单仁亮  隋顺猛  薛东朝 《岩土力学》2018,39(11):3993-4000
为研究北京富水砂卵石地层冻结后的强度特性,以北京某地铁暗挖车站砂卵石为研究对象,进行不同温度(?5、?10、?15、?20℃),不同围压(0.0、0.3、0.8、1.3、2.0、3.0、4.0、8.0 MPa)条件下三轴压缩试验。试验结果表明:冻结砂卵石的应力-应变曲线以应变软化形态为主,高负温、高围压条件下,呈现理想塑性破坏形态;砂卵石强度、黏聚力和摩擦角均随温度降低而增大,其中强度呈指数分布,黏聚力和摩擦角呈线性分布;强度和弹性模量随围压增加而增大,但增大趋势逐渐减小,低围压压缩区强度满足线性Morh-Coulomb(简称M-C)准则;冻结砂卵石的破坏形态以破裂面始/终于试样侧面的剪切破坏为代表,张拉型破坏受冰影响显著,仅存在于低围压条件下,高围压、高负温时易出现体胀型破坏。  相似文献   

10.
通过室内试验,对合肥地区某膨胀性泥岩重塑样在不同初始状态及不同压力下吸水膨胀后的强度变化规律进行研究。研究表明:该膨胀性泥岩重塑样的黏聚力随含水率的增加先增大后减小,含水率约18%时黏聚力出现峰值;膨胀性泥岩重塑样吸水饱和后的黏聚力和内摩擦角随浸水时上覆压力的增加而增加,二者近似成幂函数关系变化。  相似文献   

11.
新庄煤矿立井采用冻结法施工技术,在井筒开挖的过程中,由于侧向卸荷作用导致围岩产生卸荷变形。从新庄煤矿立井现场采集白垩系中粒砂岩,对加工后的岩样进行饱水处理,然后利用GCTS电液伺服控制高低温高压岩石三轴测试系统进行冻结(-10 ℃)条件下的恒轴压、卸围压三轴试验,模拟在井筒开挖过程中围岩的应力变化路径,探索冻结砂岩的变形特性。研究表明:侧向卸荷条件下冻结砂岩表现出弹-脆性特征,轴向表现为压缩变形,径向表现为膨胀变形,径向变形量约为轴向变形量的2倍;当卸荷速率一定时,岩样的卸荷变形随初始围压的增大而增大,尤其是径向变形最为显著,这可能与卸荷回弹变形及岩样内部聚集的能量大小有关;围压卸荷到同一应力水平时,高卸荷速率下岩样的卸荷变形量较小,而变形速率较大;卸荷作用导致岩样变形模量减小,横向应变与纵向应变之比增大,卸荷速率越小,初始围压越大,应变之比变化越大。  相似文献   

12.
金爱兵  王树亮  魏余栋  孙浩  韦立昌 《岩土力学》2020,41(11):3531-3539
岩石工程可能会经受高温环境。岩石高温后冷却方式的不同往往会导致岩石物理力学性质产生重大变化,这对岩石工程的稳定性、渗透性等都会产生重要影响。采用核磁共振(MRI)、电镜扫描(SEM)和单轴压缩试验对100、300、500、600、800 ℃ 5种不同温度砂岩经两种不同冷却方式(自然冷却和水中冷却)后的孔隙率、孔径分布、峰值强度、峰值应变、应力-应变关系以及微观结构变化等进行研究。试验结果表明:自然冷却时,高温砂岩强度并非随温度升高而持续降低,而水冷却会导致砂岩强度持续降低,且降低幅度远超自然冷却;500 ℃可以看作不同冷却方式对砂岩孔隙率影响的临界值,超过500 ℃,水冷却方式会导致孔隙率急剧增长,大孔径(Ф 10 μm)孔隙所占比例也高于自然冷却,因此,高温砂岩工程采用水冷却方式(如隧道着火后用水灭火)要充分考虑由此可能带来渗透危害;SEM测试表明,当温度 500 ℃时,水冷却对裂纹的增宽和扩展产生促进作用;当温度达到800 ℃时,水冷却砂岩孔洞变大,裂隙更加发育,并贯通连成网络,这会导致透水性大幅提高,同时,这也是该温度水冷却导致强度急剧降低的原因之一。  相似文献   

13.
高温作用后花岗岩三轴压缩试验研究   总被引:2,自引:0,他引:2  
徐小丽  高峰  张志镇 《岩土力学》2014,35(11):3177-3183
为综合考察温度、围压对花岗岩力学性质及破坏方式的影响,在高温(25℃~1 000 ℃)作用后,利用MTS815.02电液伺服材料试验系统对花岗岩岩样进行不同围压作用下的三轴压缩试验。研究结果表明,(1)围压一定时,经历不同高温作用后花岗岩三轴压缩全应力-应变曲线经历了压密、弹性、屈服、破坏、塑性流动5个阶段;(2)经历不同高温作用后岩样三轴抗压强度与围压呈非线性二次多项式增长关系,围压为40 MPa时的抗压强度比单轴抗压强度提高了382.30%;常规三轴压缩条件下,400 ℃是花岗岩力学参数的阀值温度;(3)经历高温作用后,岩样弹性模量随围压升高呈增大趋势,围压为40 MPa时的弹性模量比单轴时提高了90.26%;随温度升高呈二次非线性减小,1 000 ℃时的弹性模量比25℃时降低了57.16%;(4)花岗岩的失稳型式同时取决于围压和温度。单轴压缩状态下,随着温度的升高,岩样变形破坏型式由脆性破裂向塑性变形过渡,失稳型式在低温时为突发失稳、中高温为准突发失稳,温度高于800 ℃为渐进破坏;三轴压缩状态下,随着围压的增大,岩样破裂型式由脆性张拉破裂逐渐向剪切破裂过渡,岩样的失稳型式以突发失稳为主。在试验温压范围内,影响花岗岩力学性质的首要因素是温度,其次是围压。  相似文献   

14.
查文华  宋新龙  武腾飞 《岩土力学》2014,35(5):1334-1339
利用RMT-150B岩石力学试验系统和GD-65/150高低温环境箱,对经历不同温度后煤系泥岩的力学特性进行试验研究,分析不同温度下煤系泥岩的应力-应变全过程曲线、峰值应力、峰值应变、弹性模量、变形模量以及泊松比受温度的影响。研究结果表明,不同温度下泥岩的力学特性有差异。随温度的升高,其峰值应力、峰值应变有不同程度的降低,其峰值应力从25℃时的9.153 MPa下降到55℃时的8.271 MPa,降幅为9.6%;峰值应变从25℃时的11.002×10-3下降到55℃时的8.249×10-3,降幅达25.0%。弹性模量随温度的升高逐渐减小,变形模量随温度的升高而增大,泊松比随温度的升高逐渐减小,由此得到各参数变量随温度的变化关系。研究成果可为深井高温软岩巷道的围岩控制提供理论基础。  相似文献   

15.
岩土类材料的强度强烈依赖于含水率和温度条件.以兰州兰山砂岩为研究对象,分别进行了不同温度(+20℃、-5℃、-10℃)和不同含水率(干燥、天然含水率和饱和状态)条件下岩石的巴西圆盘劈裂试验.试验结果表明,常温下,岩石抗拉强度随含水率增加而急剧减小,试样饱和时软化、崩解,丧失承载能力;在不同负温条件下,天然含水状态的试样抗拉强度最大,干燥状态下最小;在-10~+20℃范围内,干燥岩石强度随温度升高,抗拉强度增大,含水岩石均是随温度升高,抗拉强度减小,但饱和岩石在-5℃时抗拉强度最大.含水率和温度对岩样强度的影响存在临界值,超过临界值,岩样强度随上述因素反向变化.试验结论为岩土类材料劈裂强度的标准化测试及其工程应用提供了重要的基础数据参考.  相似文献   

16.
现有标准规定砂泥岩互层岩体的抗剪强度参数,当层厚在5 m以下时按泥岩取值,对不同工程场景、不同的层厚比例关系未做进一步区分。引入泥岩层厚与砂岩层厚之比,即层厚比,利用FLAC3D建立不同层厚比的水平砂泥岩互层岩体三轴数值试验模型,探索了层厚比对水平砂泥岩互层岩体的抗剪强度参数和变形特征的影响规律。结果表明:当岩层总厚度不变,层厚比以0.75为界,当层厚比小于0.75时,层厚比越小岩体黏聚力越大,反应砂岩对岩体黏聚力有增大效应,在此区间内水平砂泥岩互层岩体黏聚力可按1~4倍的泥岩黏聚力取值;同样,岩体内摩擦角仅按泥岩取值也不客观,但其随层厚比的变化规律不明显。当层厚比大于0.75时,水平砂泥岩互层岩体抗剪强度参数按泥岩取值是可行的。当层厚比不变,层厚对水平砂泥岩互层岩体的抗剪强度参数有明显影响,层厚比小于0.2时,互层岩体的黏聚力随层厚变化较大;层厚比大于0.2时,互层岩体的黏聚力随层厚的变化较小,可按泥岩取值。层厚比小于0.75时,互层岩体的内摩擦角随层厚变化较大;层厚比大于0.75时,岩体内摩擦角随层厚的变化较小,可按泥岩取值。水平砂泥岩互层岩体的变形特征也同岩体层厚比和层厚有关。层厚比较小时,岩体变形发生在砂岩层,破坏范围较大;随着层厚比的增大,其变形破坏发生在软岩部分,硬岩部分基本不出现变形或出现少量变形;若岩体层厚比不变,层厚减小,岩体的变形范围变大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号