首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
增强型地热系统:国际研究进展与我国研究现状   总被引:10,自引:0,他引:10  
干热岩地热能源已经受到全世界广泛关注。基于干热岩能源的巨大潜力和我国日益增长的能源需求,近年来,政府、大学、科研院所和企业在干热岩资源勘查、增强型地热(EGS)等方面做了许多科学研究与技术开发。为了促进我国干热岩资源的开发和增强型地热系统(EGS)示范场地的建设,本文收集和整理了国内外大量文献和相关资料,分析了目前国际典型EGS示范场地最新研究动态,总结了2013~2016年国际上开发最为活跃的EGS场地在开发过程中所取得的经验和教训。结合我国现有EGS场地的具体条件,详细阐述了我国干热岩远景区存在的问题,并对我国未来干热岩的开发和示范场地的建设提出建议。  相似文献   

2.
干热岩(HDR)是指不含或仅含少量流体,温度高于180 ℃,其热能在当前技术经济条件下可以利用的岩体。作为一种重要的非常规地热资源,干热岩的开发利用可以借鉴页岩油气的成功经验,采用相似的技术发展路径,找到“地热甜点”,开发出低成本且高效的钻完井技术,逐步形成和完善技术体系,建立与对象相适应的生产运行模式,以期实现对这种巨大资源的有效开发利用。增强型地热系统(EGS)被认为是干热岩资源开采的一种重要方式。EGS最初被称为工程型地热系统,后来才统称为增强型地热系统,是指通过实施特殊的工程工艺,改善地层储集性能或(和)向地层中注入流体,以实现对地热资源的有效开发。其基本方法原理为在干热岩体内钻两口或多口井,将低温流体通过注入井注入干热岩体的天然裂缝系统,或注入通过压裂技术在钻井之间建立的具有水力联系的人工裂缝中加热,通过吸收干热岩内所蕴含的热能,将流体温度提高到一定程度后从生产井采出至地表或近地表进行利用,形成人工热交换系统,用于发电或取暖等。采用EGS技术开发干热岩地热资源,选区选址恰当与否是能否取得成功的最关键环节之一。中深层地热资源可分为水热型和干热岩型两大类、五亚类。其中,干热岩根据其热储孔渗条件差异又可分为无水优储、无水差储和无水无储三亚类,适合作为EGS开发对象的干热岩资源为其中的无水优储和无水差储两种类型。五类地热资源规模呈金字塔形,开发技术难度逐渐增加。基于由热储埋深、热储温度、热储岩性、热储物性、盖层厚度、盖层断裂发育条件等组成的地质资源条件,由钻探成井技术、储层改造技术、管理运营技术组成的工程技术条件,以及由地热需求和资源经济性组成的经济市场条件三个因素,本文建立了三因素分析与多层次指标分解法相结合的干热岩EGS选区评价方法和关键指标,在国内干热岩资源条件较好的17个候选区中,优选出西藏羊八井高温地热区和渤海湾盆地济阳坳陷潜山分布带作为EGS试验有利区。  相似文献   

3.
增强型(或工程型)地热系统(简称EGS)是指从地下3~10km低渗透岩体中经济开采深层地热的人工热能系统,作为目前地热领域的重要发展方向,其研究受到发达国家的高度重视,但我国还基本处于空白。在EGS运行过程中,高温岩体及裂隙受到温度场(T)、渗流场(H)、应力场(M)、化学场(C)的耦合作用,其结果直接影响整个系统的设计和运行。本文根据对EGS最基本的物理—化学过程分析,讨论了任意两场之间的相互作用,指出了三场耦合应考虑的重点及四场耦合现阶段研究的不完善性,最后综述了目前国际上用于解决EGS多场耦合问题的模拟软件研究进展。  相似文献   

4.
干热岩是指地下高温但由于低孔隙度和渗透率而缺少流体的岩石(体),储存于干热岩中的热量需要通过人工压裂形成增强地热系统(EGS)才能得以开采,赋存于干热岩中在当前技术经济条件下可以开采的地热能被称为干热岩型地热资源,它是人类未来的重要替代新能源之一.干热岩的研究始于20世纪70年代,经过近50年的不断发展,干热岩在理论和实践两方面都有了长足发展,美国、日本、法国、德国、澳大利亚等发达国家相继投入巨资进行干热岩勘查、评价和开发实验,并且初步形成了商业开发的成功范例.实践表明,干热岩地热资源是深层地热能的一部分,往往与高温水热系统共热源且存在共生关系,但其地质条件复杂,开采难度较大,应倡导“深层地热能”和“广义EGS”概念,即按照EGS技术着眼深层水热型和干热岩型地热能整体开发.为了克服诱发地震等环境安全问题,干热岩压裂造储技术研发方向正在从“刚性造储”向“柔性造储”发展.近几年来,我国分别在青海、西藏、四川、福建、广东、湖南、黑龙江、海南等高热流区域进行了干热岩地质勘查,并在青海共和、山东利津、广东惠州、四川康定、冀东马头营和琼北等地相继开展了干热岩初步钻探,但仅在青海共和的干热岩勘探与开...  相似文献   

5.
增强型地热系统(EGS)是在干热岩技术基础上提出来的一个清洁能源概念,水力压裂建立人工热储是开采地下干热岩热能的有效方法之一。利用TOUGH2系列软件对增强型地热系统进行模拟,具体介绍了对水压致裂过程中裂隙网络模拟的处理方法。裂隙中的水流可以采用不同的概念模型,最为常见的模型包括双空隙率、双渗透率、多重相互作用连续统一体(MINC)以及有效连续统一体(ECM),这些模型明确了对离散的裂隙和基质的模拟方法。应根据基质的渗透性和裂隙的性质灵活地选择裂隙处理方法,也可将不同方法结合起来使用。提出了几种有效的混合模拟方案,对将来高温岩体地热开发具有重要意义。  相似文献   

6.
增强型地热系统(EGS)开发过程中,需要注入循环水体完成提热,但水体注入后与干热岩体反应会产生矿物溶解(或沉淀),破坏人工储层,影响地热能开发。本文以河北马头营区花岗岩型干热岩为研究对象,与该地区地下水、海水、纯水反应,并结合Phreeqc水文地球化学模拟,分析水岩相互作用后干热岩体的矿物变化与注入水体的化学成分变化规律。研究结果表明,不同注入水体与干热岩进行水岩作用,会产生不同类型的矿物溶解与沉淀,海水最终沉淀量较地下水低,主要原因是海水与干热岩体反应生成了具有吸附能力的沸石;适当减少海水中Cl-含量,将处理过的海水作为循环水体将具有强大的潜力和效益。  相似文献   

7.
美国能源部正在实施干热岩“地热能前沿瞭望台研究计划”(FORGE计划)。它是以经典干热岩定义的干热岩勘查开发为约束,通过增强型地热系统(EGS)示范工程建设实践,形成新一代EGS试验平台。美国本着“可复制的结果=巨大的潜力”的理念,实现干热岩勘查开发技术新突破,以满足美国1亿家庭绿色电力供应为实际应用目标。中美典型EGS场地勘查现状对比结果表明:犹他州米尔福德与青海省共和县恰卜恰两个典型EGS场地具可比性,大致处于“并跑”的水平;在天然裂隙系统、原位地应力场、压裂参数获取与压裂方案制定等方面,米尔福德EGS场地有所超前。据此建议有关部门加快青海省共和县恰卜恰EGS场地进入勘查开发阶段,以提高我国干热岩勘查开发技术水平,早日实现EGS工程化。  相似文献   

8.
增强型地热系统:潜力大、开发难   总被引:1,自引:0,他引:1  
文中讨论了为什么要开发干热岩地热资源?什么是干热岩系统和增强型地热系统?中国干热岩系统的潜力,如何发展中国的EGS以及我们可供考虑的建议。随着常规能源的不断消耗,可再生能源日益受到人类的青睐。在可再生能源中,地热能的容量最大,地热发电提供的是基本负荷,但是由于诸多因素,开发滞后。尤其是对潜力大、开发难的增强型地热系统,中国更是从研究到开发,都刚刚起步。如果地热发电的规模要超过风能及太阳能等其他新能源,不能仅靠水热型地热系统的开发利用,而必须重视和利用干热岩资源,大力研发增强型地热系统。中国干热岩系统的潜势如何呢?中国科学院地质地球物理研究所利用921个大地热流数据编制了《中国大陆地区新版热流图》以及3~10km深处不同深度温度分布图,计算了不同深度干热岩地热资源量,总数为2.09×107 EJ;其中主要分布在青藏高原,占全国总资源量的五分之一。作者们认为,干热岩资源的开发和增强型地热系统的建立是一个系统工程,地热资源的开发是一项风险投资,亚经济型的EGS风险更甚。国家必须统一安排和投资。工程项目必须学习国外的经验和吸取开发的教训。要选择关键地区进行试验和研究。作者们建议可考虑选择羊八井地热田的北部作为试验地区。  相似文献   

9.
谭现锋  王浩  康凤新 《探矿工程》2016,43(10):230-233
地壳中干热岩所蕴含的地热能量巨大,已成为世界各国新能源开发研究的一个重要方向。在干热岩热储层建造(EGS系统)与采热技术研究方面,主要有人工高压裂隙、天然裂隙及天然裂隙—断层3种模式。水力压裂是目前人工热储层建造普遍采用的一种方法,我国在这方面的研究还停留在实验室模拟的阶段。2014年在山东省利津县陈庄镇完成了1眼干热岩勘探孔施工(GRY1孔),并进行了2组水力压裂试验,取得了较好的效果。本文对该成果进行了简要分析,可为我国后续研究人工热储层建造技术提供一定的参考。  相似文献   

10.
毛翔  国殿斌  罗璐  王婷灏 《地质论评》2019,65(6):1462-1472
干热岩资源指内部不存在或仅存在少量流体,温度高于180℃的异常高温岩体,是一种极具潜力的地热资源类型。自20世纪70年代美国Fenton Hill项目实施以来,已在全球14个国家实施了41个干热岩开发项目,以干热岩储层建造和连通的目标地层周围或上部是否存在水热型储层为标准,25个属于传统意义的干热岩开发项目,16个属于增强型地热系统(Enhanced Geothermal System或Engineered Geothermal System,缩写为EGS)。从板块构造角度分析,这些干热岩开发项目主要分布在欧亚板块板内地热域、印澳板块板内地热域、东太平洋离散—汇聚板缘型地热域、西太平洋汇聚板缘型地热域和加勒比海火山活动岛弧区。按照盆地类型划分,全球干热岩开发项目所处的大地构造背景包括克拉通盆地、前陆盆地、裂谷盆地、弧前盆地、弧后盆地、近现代火山(火山带)和褶皱带地区,其中以欧洲阿尔卑斯褶皱带磨拉石盆地为代表的前陆盆地,和以欧洲阿尔卑斯褶皱带上莱茵地堑、北美新生代科迪勒拉造山带内华达盆地为代表的裂谷盆地是全球干热岩开发项目最为集中的两种盆地类型。考虑我国干热岩资源分布情况,上莱茵地堑、内华达盆地的干热岩开发历程对我国干热岩资源的勘探和开发具有一定的借鉴作用。  相似文献   

11.
亢方超  唐春安 《地学前缘》2020,27(1):185-193
地热能赋存于地球内部岩土体、流体和岩浆体中,是一种永久的、可再生的、储量丰富的清洁能源。地热能的开发,尤其是干热岩的开发利用,有可能成为解决人类未来能源危机的重要途径。目前采用的干热岩开采方法被称为增强型地热系统(EGS)。热储地质环境的复杂性和水力化措施对天然裂隙的依赖性,造成多数的EGS项目存在热储体积和换热面积不足、工质流量小、终端温度低,以及诱发地震风险等局限性,致使干热岩开发始终未能大规模商业化。基于开挖的增强型地热系统(EGS-E)的提出为突破传统EGS的技术弊端和规模局限提供了新思路。文章在其概念模型的基础上,从系统原理、工程构想、技术优势等方面对EGS-E进行了更详尽的阐述。EGS-E采用开挖、爆破、崩落等采矿技术,形成了独特的热储致裂系统和热能交换系统,能够大幅度降低地质环境对热储质量的限制,具备构建定制的热储空间、形成充足的换热面积,维持稳定的工质流量与温度及减少诱发地震风险等优势,为干热岩开发的商业化提供了新的解决方案。  相似文献   

12.
《China Geology》2022,5(3):372-382
Hot dry rock (HDR) is a kind of clean energy with significant potential. Since the 1970s, the United States, Japan, France, Australia, and other countries have attempted to conduct several HDR development research projects to extract thermal energy by breaking through key technologies. However, up to now, the development of HDR is still in the research, development, and demonstration stage. An HDR exploration borehole (with 236 °C at a depth of 3705 m) was drilled into Triassic granite in the Gonghe Basin in northwest China in 2017. Subsequently, China Geological Survey (CGS) launched the HDR resources exploration and production demonstration project in 2019. After three years of efforts, a sequence of significant technological breakthroughs have been made, including the genetic model of deep heat sources, directional drilling and well completion in high-temperature hard rock, large-scale reservoir stimulation, reservoir characterization, and productivity evaluation, reservoir connectivity and flow circulation, efficient thermoelectric conversion, monitoring, and geological risk assessment, etc. Then the whole-process technological system for HDR exploration and production has been preliminarily established accordingly. The first power generation test was completed in November 2021. The results of this project will provide scientific support for HDR development and utilization in the future.©2022 China Geology Editorial Office.  相似文献   

13.
《China Geology》2018,1(2):273-285
Geothermal energy is a precious resource, which is widely distributed, varied, and abundant. China has entered a period of rapid development of geothermal energy since 2010. As shallow geothermal energy promoting, the depth of hydrothermal geothermal exploration is increasing. The quality of Hot Dry Rock (HDR) and related exploratory technologies are better developed and utilized. On the basis of geothermal development, this paper reviews the geothermal progress during the “12th Five-Year Plan”, and summarizes the achievements of hydrothermal geothermal and hot dry rocks from geothermal survey and evaluation aspects. Finally, the authors predict the development trend of the future geothermal research to benefit geothermal and hot dry rock research.  相似文献   

14.
It is common sense that a deeper well implies higher temperature in the exploration of deep geothermal resources, especially with hot dry rock (HDR) geothermal resources, which are generally exploited in terms of enhanced geothermal systems (EGS). However, temperature is always different even at the same depth in the upper crust due to different heat sources. This paper summarizes the heat sources and classifies them into two types and five sub-types: crust-origin (partial melting, non-magma-generated tectonic events and radiogenic heat production), and mantle-origin (magma and heat conducted from the mantle). A review of global EGS sites is presented related to the five sub-types of heat sources. According to our new catalog, 71% of EGS sites host mantle-origin heat sources. The temperature logging curves indicate that EGS sites which host mantle-origin magma heat sources have the highest temperature. Therefore, high heat flow (>100 mW/m2) regions with mantle-origin magma heat sources should be highlighted for the future exploration of EGS. The principle to identify the heat source is elucidated by applying geophysical and geochemical methods including noble gas isotope geochemistry and lithospheric thermal structure analysis. This analytical work will be helpful for the future exploration and assessment of HDR geothermal resources.  相似文献   

15.
干热岩作为重要资源的组成部分,以其清洁、稳定、可再生的资源优势及巨大的高温发电潜力,越来越受到关注。我国干热岩研究尚处于起步阶段。在分析研究国内外干热岩开发利用工程的基础上,初步建立了干热岩区块评价指标,分析了马头营区干热岩开发潜力。以马头营凸起区干热岩科学钻探为例,从热、储、盖等方面分析了区内干热岩钻探选址的原则,建立了孔位地区干热岩系统概念模型。  相似文献   

16.
我国东南沿海干热岩赋存前景及与靶区选址研究   总被引:5,自引:0,他引:5  
蔺文静  甘浩男  王贵玲  马峰 《地质学报》2016,90(8):2043-2058
干热岩资源是未来重要的清洁型能源,干热岩资源靶区选址是进行干热岩资源开发利用最基础的工作。本文在综合国内外相关干热岩开发项目的基础上,系统总结了干热岩选址的地热地质学指标,并对我国东南沿海地区的干热岩赋存背景进行论述,选取了广东阳江新州、广东惠州黄沙洞、雷琼断陷盆地、海南陵水等几个地区作为我国东南沿海干热岩开发的重点潜力靶区,在综合分析各靶区深部地热地质背景、深部热异常的基础上,建立了研究区深部温度场模型,进行了干热岩资源靶区选址对比研究,对下一步优先勘查靶区及勘查方案提出了建议。  相似文献   

17.
Hot dry rock (HDR) is an important geothermal resource and clean energy source that may play an increasingly important role in future energy management. High-temperature HDR resources were recently detected in deep regions of the Gonghe Basin on the northeastern edge of the Tibetan Plateau, which led to a significant breakthrough in HDR resource exploration in China. This research analyzes the deep temperature distribution, radiogenic heat production, heat flow, and crustal thermal structure in the Qiaboqia Valley, Guide Plain, and Zhacanggou area of the Gonghe Basin based on geothermal exploration borehole logging data, rock thermophysical properties, and regional geophysical exploration data. The results are applied to discuss the heat accumulation mechanism of the HDR resources in the Gonghe Basin. The findings suggest that a low-velocity layer in the thickened crust of the Tibetan Plateau provides the most important source of constant intracrustal heat for the formation of HDR resources in the Gonghe Basin, whereas crustal thickening redistributes the concentrated layer of radioactive elements, which compensates for the relatively low heat production of the basal granite and serves as an important supplement to the heat of the HDR resources. The negative effect is that the downward curvature of the lithospheric upper mantle caused by crustal thickening leads to a small mantle heat flow component. As a result, the heat flows in the Qiaboqia Valley and Guide Plain of the Gonghe Basin are 106.2 and 77.6 mW/m2, respectively, in which the crust-mantle heat flow ratio of the former is 3.12:1, indicating a notably anomalous intracrustal thermal structure. In contrast, the crust-mantle heat flow ratio in the Guide Plain is 1.84:1, which reflects a typical hot crust-cold mantle thermal structure. The Guide Plain and Zhacanggou area show the same increasing temperature trend with depth, which reflects that their geothermal backgrounds and deep high-temperature environments are similar. These results provide important insight on the heat source mechanism of HDR resource formation in the Tibetan Plateau and useful guidance for future HDR resource exploration projects and target sites selection in similar areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号