首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Southern Indian shield represents a mosaic comprised of several smaller structural domains separated by discrete shear zones. Here we present a horizontal Bouguer gravity gradient map of the Indian shield, south of 14 °N, to define a continental mosaic of gravity trends domains akin to structural domains. The gravity gradient image is based on 7862 newly collected observations merged with 6359 old gravity data. This combined dataset delineates structural boundaries of the five gravity domains related to the Eastern Dharwar Craton, the Eastern Ghats Mobile Belt, the extended Eastern Ghats Mobile Belt, the Southern Granulite Terrain, and the Western Dharwar Craton. Other belts of significant gravity gradients are found associated with the Eastern and the Western coasts. The loci of Closepet granite and Kolar schist belts do not manifest themselves as boundary zones between two distinct gravity domains of the Eastern Dharwar Craton. Lack of a gravity gradient across Karur–Oddanchatram–Kodaikanal and Karur–Kambam–Painavu–Trichur Shear Zones may be attributed to a lack of gravity measurements caused by difficulties in collecting data in topographically difficult terrain. The subdued gravity gradient across the Palghat–Cauvery Shear Zone and a weak gradient across the Achankovil Shear Zone indicates a lithological and/or morphological boundary rather than a terrane boundary. Alternatively, structural domains encompassing Palghat–Cauvery and Achankovil Shear Zones may have been in a neighbouring position during the Gondwana assembly, when Pan-African thermal perturbation reactivated the structures and reworked partly or totally obliterating earlier crustal fabric.  相似文献   

2.
Modelling of gravity and airborne magnetic data integrated with seismic studies suggest that the linear gravity and magnetic anomalies associated with Moyar Bhavani Shear Zone (MBSZ) and Palghat Cauvery Shear Zone (PCSZ) are caused by high density and high susceptibility rocks in upper crust which may represent mafic lower crustal rocks. This along with thick crust (44–45 km) under the Southern Granulite Terrain (SGT) indicates collision of Dharwar craton towards north and SGT towards south with N–S directed compression during 2.6–2.5 Ga. This collision may be related to contemporary collision northwards between Eastern Madagascar–Western Dharwar Craton (WDC) and Eastern Dharwar Craton (EDC). Arcuate shaped N and S-verging thrusts, MBSZ-Mettur Shear and PCSZ-Gangavalli Shear, respectively across Cauvery Shear zone system (CSZ) in SGT also suggest that the WDC, EDC and SGT might have collided almost simultaneously during 2.6–2.5 Ga due to NW–SE directed compressional forces with CSZ as central core complex in plate tectonics paradigm preserving rocks of oceanic affinity. Gravity anomalies of schist belts of WDC suggest marginal and intra arc basin setting.The gravity highs of EGFB along east coast of India and regional gravity low over East Antarctica are attributed to thrusted high-density lower crustal/upper mantle rocks at a depth of 5–6 km along W-verging thrust, which is supported by high seismic velocity and crustal thickening, respectively. It may represent a collision zone at about 1.0 Ga between India and East Antarctica. Paired gravity anomalies in the central part of Sri Lanka related to high density intrusives under western margin of Highland Complex and crustal thickening (40 km) along eastern margin of Highland Complex with several arc type magmatic rocks of about 1.0 Ga in Vijayan Complex towards the east may represent collision between them with W-verging thrust as in case of EGFB. The gravity high of Sri Lanka in the central part falls in line with that of EGFB, in case it is fitted in Gulf of Mannar and may represent the extension of this orogeny in Sri Lanka.  相似文献   

3.
The Tower Hill gold deposit is distinguished from most Archaean lode deposits of the Yilgarn Craton by virtue of its formation early in the regional deformation history and its consequent deformation. The deposit is located in ultramafic schist, adjacent to the contact with a small pluton of biotite monzogranite that intrudes pervasively foliated granodiorite, the dominant component of the Raeside Batholith. Gold, accompanied by local concentrations of bismuth minerals and molybdenite, occurs in a number of quartz vein ‘packages‘. Mineralised quartz veins at Tower Hill lie within an envelope of potassic alteration (talc‐biotite‐chlorite‐pyrite schist), up to several hundred metres wide. They are spatially and temporally associated with the biotite monzogranite and felsic porphyry intrusions, and their deformed equivalents. The deposit lies in a broad zone of ductile deformation (the Sons of Gwalia Shear Zone). Within the altered ultramafic schist, thin units of felsic schist, derived from biotite monzogranite and felsic porphyry, provided sites of contrasting competency that localised quartz vein formation. The mineralised quartz veins were subsequently deformed during alternating periods of shortening and extension, probably related to the syntectonic, solid‐state emplacement of the Raeside Batholith. These deformations pre‐dated strike‐slip movement on the Cemetery Fault, which truncates the ductile fabrics of the Sons of Gwalia Shear Zone, south of Tower Hill. In terms of the regional deformation history, gold mineralisation at Tower Hill formed during early D2 (regional upright folding); subsequent deformation of the orebody pre‐dated D3 (strike‐slip movement on the Cemetery Fault). The nearby Sons of Gwalia and Harbour Lights deposits also probably formed at an early stage, in contrast to most lode gold deposits in the Yilgarn Craton, which formed during or after D3.  相似文献   

4.
The late Archaean Shimoga schist belt in the Western Dharwar Craton, with its huge dimensions and varied lithological associations of different age groups, is an ideal terrane to study Archean crustal evolution. The rock types in this belt are divided into Bababudhan Group and Chitradurga Group. The Bababudhan Group is dominated by mafic volcanic rocks followed by shallow marine sedimentary rocks while the Chitradurga Group is dominated by greywackes, pillowed basalts, and deep marine sedimentary rocks with occasional felsic volcanics. The Nb/Th and Nb/La ratios of the studied metabasalts of the Bababudhan Group indicate crustal contamination. They were extruded onto the vast Peninsular Gneisses through the rifting of the basement gneiss. The Nb/Yb ratios of high-magnesium basalts and tholeiitic basalts of Chitradurga Group suggest the enrichment of their source magma. Based on the flat primitive mantle-normalized multi-element plot with negative Nb anomalies and Th/Ta-La/Yb ratios, the high-magnesium basalts and tholeiitic basalts are considered to have erupted in an oceanic plateau setting with minor crustal contamination. The high-magnesium basalts and tholeiitic basalts formed two different pulses of same magma type, in which the first pulse of magma gave rise to high-magnesium basalts which were derived from deep mantle sources and underwent minor crustal contamination en route to the surface, while the second pulse of magma gave rise to tholeiitic basalts formed at similar depths to that of high-magnesium basalts and escaped crustal contamination. The associated lithological units found with the studied metavolcanic rock types of Bababudan and Chitradurga Groups of Dharwar Supergroup of rocks in Shimoga schist belt of Western Dharwar Craton confirm the mixed-mode basin development with a transition from shallow marine to deep marine settings.  相似文献   

5.
Oldest rocks are sparsely distributed within the Dharwar Craton and little is known about their involvement in the sedimentary sequences which are present in the Archean greenstone successions and the Proterozoic Cuddapah basin.Stromatolitic carbonates are well preserved in the Neoarchean greenstone belts of Dharwar Craton and Cuddapah Basin of Peninsular India displaying varied morphological and geochemical characteristics.In this study,we report results from U-Pb geochronology and trace element composition of the detrital zircons from stromatolitic carbonates present within the Dharwar Craton and Cuddapah basin to understand the provenance and time of accretion and deposition.The UPb ages of the detrital zircons from the Bhimasamudra and Marikanve stromatolites of the Chitradurga greenstone belt of Dharwar Craton display ages of 3426±26 Ma to 2650±38 Ma whereas the Sandur stromatolites gave an age of 3508±29 Ma to 2926±36 Ma suggesting Paleo-to Neoarchean provenance.The U-Pb detrital zircons of the Tadpatri stromatolites gave an age of 2761±31 Ma to1672±38 Ma suggesting Neoarchean to Mesoproterozoic provenance.The Rare Earth Element(REE)patterns of the studied detrital zircons from Archean Dharwar Craton and Proterozoic Cuddapah basin display depletion in light rare earth elements(LREE)and enrichment in heavy rare earth elements(HREE)with pronounced positive Ce and negative Eu anomalies,typical of magmatic zircons.The trace element composition and their relationship collectively indicate a mixed granitoid and mafic source for both the Dharwar and Cuddapah stromatolites.The 3508±29 Ma age of the detrital zircons support the existence of 3.5 Ga crust in the Western Dharwar Craton.The overall detrital zircon ages(3.5-2.7 Ga)obtained from the stromatolitic carbonates of Archean greenstone belts and Proterozoic Cuddapah basin(2.7-1.6 Ga)collectively reflect on^800-900 Ma duration for the Precambrian stromatolite deposition in the Dharwar Craton.  相似文献   

6.
The Archaean Peninsular Gneiss of southern India is considered by a number of workers to be the basement upon which the Dharwar supracrustal rocks were deposited. However, the Peninsular Gneiss in its present state is a composite gneiss formed by synkinematic migmatization during successive episodes of folding (DhF1, DhF1a and DhF2) that affected the Dharwar supracrustal rocks. An even earlier phase of migmatization and deformation (DhF*) is evident from relict fabrics in small enclaves of gneissic tonalites and amphibolites within the Peninsular Gneiss. We consider these enclaves to represent the original basement for the Dharwar supracrustal rocks. Tonalitic pebbles in conglomerates of the Dharwar Supergroup confirm the inference that the supracrustal rocks were deposited on a gneissic basement. Whole rock Rb-Sr ages of gneisses showing only the DhF1 structures fall in the range of 3100–3200 Ma. Where the later deformation (DhF2) has been associated with considerable recrystallization, the Rb-Sr ages are between 2500 Ma and 2700 Ma. Significantly, a new Rb-Sr analysis of tonalitic gneiss pebbles in the Kaldurga conglomerate of the Dharwar sequence is consistent with an age of ~2500 Ma and not that of 3300 Ma reported earlier by Venkatasubramanian and Narayanaswamy (1974). Pb-Pb ages based on direct evaporation of detrital zircon grains from the metasedimentary rocks of the Dharwar sequence fall into two groups, 3300–3100 Ma, and 2800–3000 Ma. Stratigraphic, structural, textural and geochronologic data, therefore, indicate that the Peninsular Gneiss of the Dharwar craton evolved over a protracted period of time ranging from > 3300 Ma to 2500 Ma.  相似文献   

7.
In the north-western Gawler Craton of South Australia, the Karari Shear Zone defines a boundary between late-Archean to earliest Paleoproterozoic rocks, which have remained largely undisturbed since the earliest Paleoproterozoic, and younger Paleoproterozoic rocks that have been reworked through multiple late Paleoproterozoic and Mesoproterozoic metamorphic and deformation events. The history of movement across the Karari Shear Zone has been investigated via new U–Pb and 40Ar/39Ar geochronology, in combination with pre-existing geochronological and metamorphic constraints, as well as the structural geometry revealed by a recently acquired reflection seismic transect. The available data suggest a complex history of shear-zone movement in at least four stages, with contrasting sense of motion at different times. The first period of movement across the Karari Shear Zone is inferred to have been a period of extension at ca 1750–1720 Ma. This was likely closely followed by reactivation during the Kimban Orogeny between ca 1720 and 1680 Ma, although the sense of movement during this period is unclear. Further reactivation, in a thrust sense, occurred between ca 1580 and 1560 Ma, resulting in significant exhumation of marginal domains of the Gawler Craton to the north of the Karari Shear Zone. A final episode of largely strike-slip shear-zone movement occurred at ca 1450 Ma.  相似文献   

8.
The northern fold belt away from the Singhbhum Shear Zone displays a set of folds on bedding. The folds are sub-horizontal with E-W to ESE striking steep axial surfaces. In contrast, the folds in the Singhbhum Shear Zone developed on a mylonitic foliation and have a reclined geometry with northerly trending axes. There is a transitional zone between the two, where the bedding and the cleavage have become parallel by isoclinal folding and two sets of reclined folds have developed by deforming the bedding—parallel cleavage. Southward from the northern fold belt the intensity of deformation increases, the folds become tightened and overturned towards the south while the fold hinges are rotated from the sub-horizontal position to a down-dip attitude. Recognition of the transitional zone and the identification of the overlapping character of deformation in the shear zone and the northern belt enable the formulation of a bulk kinematic model for the area as a whole.  相似文献   

9.
Nepheline syenite plutons emplaced within the Terrane Boundary Shear Zone of the Eastern Ghats Mobile Belt west of Khariar in northwestern Orissa are marked by a well-developed magmatic fabric including magmatic foliation, mineral lineations, folds and S-C fabrics. The minerals in the plutons, namely microcline, orthoclase, albite, nepheline, hornblende, biotite and aegirine show, by and large, well-developed crystal faces and lack undulose extinction and dynamic recrystallization, suggesting a magmatic origin. The magmatic fabric of the plutons is concordant with a solid-state strain fabric of the surrounding mylonites that developed due to noncoaxial strain along the Terrane Boundary Shear Zone during thrusting of the Eastern Ghats Mobile Belt over the Bastar Craton. However, a small fraction of the minerals, more commonly from the periphery of the plutons, is overprinted by a solid state strain fabric similar to that of the host rock. This fabric is manifested by discrete shear fractures, along which the feldspars are deformed into ribbons, have undergone dynamic recrystallization and show undulose extinction and myrmekitic growth. The shear fractures and the magmatic foliations are mutually parallel to the C-fabric of the host mylonites. Coexistence of concordant solid state strain fabric and magmatic fabric has been interpreted as a transitional feature from magmatic state to subsolidus deformation of the plutons, while the nepheline syenite magma was solidifying from a crystal-melt mush state under a noncoaxial strain. This suggests the emplacement of the plutons synkinematic to thrusting along the Terrane Boundary Shear Zone. The isotopic data by earlier workers suggest emplacement of nepheline syenite at 1500 +3/−4Ma, lending support for thrusting of the mobile belt over the craton around that time.  相似文献   

10.
Deformational, metamorphic, monazite age and fabric data from Rengali Province, eastern India converge towards a multi-scale transpressional deformational episode at ca. 498–521 Ma which is linked with the latest phase of tectonic processes operative at proto-India-Antarctica join. Detailed sector wise study on mutual overprinting relationships of macro-to microstructural elements suggest that deformation was regionally partitioned into fold-thrust dominated shortening zones alternating with zones of dominant transcurrent deformation bounded between the thrust sense Barkot Shear Zone in the north and the dextral Kerajang Fault Zone in the south. The strain partitioned zones are further restricted between two regional transverse shear zones, the sinistral Riamol Shear Zone in the west and the dextral Akul Fault Zone in the east which are interpreted as synthetic R and antithetic R' Riedel shear plane, respectively. The overall structural disposition has been interpreted as a positive flower structure bounded between the longitudinal and transverse faults with vertical extrusion and symmetric juxtaposition of mid-crustal amphibolite grade basement gneisses over low-grade upper crustal rocks emanating from the central axis of the transpressional belt.  相似文献   

11.
The northern part of the Nellore–Khammam schist belt and the Karimnagar granulite belt, which are juxtaposed at high angle to each other have unique U–Pb zircon age records suggesting distinctive tectonothermal histories. Plate accretion and rifting in the eastern part of the Dharwar craton and between the Dharwar and Bastar craton indicate multiple and complex events from 2600 to 500 Ma. The Khammam schist belt, the Dharwar and the Bastar craton were joined together by the end of the Archaean. The Khammam schist belt had experienced additional tectonic events at \(\sim \)1900 and \(\sim \)1600 Ma. The Dharwar and Bastar cratons separated during development of the Pranhita–Godavari (P–G) valley basin at \(\sim \)1600 Ma, potentially linked to the breakup of the Columbia supercontinent and were reassembled during the Mesoproterozoic at about 1000 Ma. This amalgamation process in southern India could be associated with the formation of the Rodinia supercontinent. The Khammam schist belt and the Eastern Ghats mobile belt also show evidence for accretionary processes at around 500 Ma, which is interpreted as a record of Pan-African collisions during the Gondwana assembly. From then on, southern India, as is known today, formed an integral part of the Indian continent.  相似文献   

12.
镁铁岩脉侵位机制及伴随变形   总被引:1,自引:0,他引:1  
南澳的EYRE半岛位于GAWLER克拉通南部,包含了GAWLER克拉通太古界至中元古界结晶基底的主要部分,全区于1423Ma克拉通化,此后除了局部的,较小的地壳运动外,一直是稳定的克拉通地块,研究区JUSSIEU半岛为FYRE半岛南部的次级半岛,镁铁岩脉群以及韧性剪切糜棱岩带主要沿海岩分布,区内出露岩石变形复杂,脉岩强烈的布丁化并重结晶,围岩中的转换拉伸构造及转换挤压构造可追踪识别,基性岩浆的侵位是转换拉伸力和岩浆压力联合作用的结果,脉岩群的传播侵位(PROPAGATION)与转换拉伸作用(TRANSTENSION)密切相关。多次的转换拉伸与挤压作用,还导致镁铁岩脉边缘成为高应变带,并形成复杂的变形图案 此外,围岩中伴随的变形以次剪切带(SUBSHEAR ZONE)最为显著,是作动力学分析最好的匹配构造。  相似文献   

13.
《Gondwana Research》2003,6(3):501-511
Gravity modeling of an E-W profile across Dharwar Craton, India and Madagascar, integrated with the results of Deep Seismic Sounding (DSS) across the Dharwar Craton suggest a thick crust of 40-42 km under the eastern part of Eastern Dharwar Craton (EDC), the Western Dharwar Craton (WDC) and the central part of the Madagascar. Towards east of these blocks, the crustal thickness is reduced to 36-38 km along the Eastern Ghat Fold Belt (EGFB), shear zone between the EDC and the WDC and the east coast of Madagascar, respectively. These zones of thin crust are also characterized by high density lower crustal rocks associated with thrusts. The seismic section across Dharwar Craton shows domal- shaped reflectors in the lower crust and upper mantle under the WDC which may be related to asthenopheric upwelling during an extension phase. The occurrences of large schist belts with volcano-sedimentary sequences of marine origin of late Archean period (3.0-2.7 Ga) as rift basins in the WDC and Madagascar also suggest an extensional phase in this region during that period. It is followed by a convergence between the WDC and the EDC giving rise to collision-related shear and thrust zones between the WDC and the EDC associated with high density lower crustal rocks. The seismic section shows upwarped reflectors in the upper crust which may be related to this convergence. Eastward dipping reflectors under WDC and EDC and west verging thrusts suggest convergence from the west to the east which resulted in easterly subduction giving rise to subduction-related K-granite plutons of the EDC of 2.6-2.5 Ga. In this regard, the Closepet granite in the EDC which extends almost parallel to the shear zone between the WDC and EDC and shows an I-type calk-alkaline composition may represent relict of an island arc and the linear schist belts with bimodal volcanics of the EDC east of it might have developed as back arc rift basins. Subsequent collision between India and Antarctica along the EGFB during Middle Proterozoic, indicated by eastward dipping reflectors in the crust and the upper mantle and west verging thrust gave rise to contemporary high-grade rocks of the EGFB (1.6-1.0 Ga) and associated mafic and felsic intrusives of this belt. The part of adjoining Cuddapah basin contemporary to the EGFB towards the west consisting of marine shelf type of sediments which are highly disturbed and thickest at its contact with the EGFB may represent a peripheral foreland basin. Gravity modeling provides thickest crust of 42 km in the southern part of the WDC and does not support sharp increase in crustal thickness of 50-60 km with high velocity upper mantle as suggested from receiver function analysis. It may represent some foreign material of high density trapped in this section such as part of oceanic crust during convergence and subduction that is referred to above. It is supported from eastward dipping reflectors in lower crust and upper mantle in adjoining region.  相似文献   

14.
Takashi Sawaguchi   《Tectonophysics》2004,379(1-4):109-126
The Horoman Peridotite Complex is an Alpine-type orogenic peridotite massif in the Hidaka metamorphic belt, Hokkaido, Northern Japan. Because of wide exposure and extremely limited serpentinization, the complex provides important information on uplift and emplacement processes of an Alpine-type peridotite massif into the crust. Based on microstructures, the massif can be divided into five structural units parallel to the lithological layering as follows; (1) Equigranular Zone, (2) Internal Shear Zone (ISZ), (3) Transition Zone, (4) Porphyroclastic Zone and (5) Basal Shear Zone (BSZ). A top-to-the-north sense of shear deformation in the Porphyroclastic Zone and the Basal Shear Zone implies that the Horoman Peridotite Complex had uplifted from the upper mantle to the lower crust along a northward dipping extensional shear-zone systems. After incorporation of the mantle peridotite with lower crustal rocks, the upper part of the massif (i.e. the Equigranular Zone and the Internal Shear Zone) was overprinted by a top-to-the-south sense of shear deformation that was comparable with the sub-horizontal displacement of the crustal granulite sequences in the Hidaka metamorphic belt under transpressive tectonic environment.  相似文献   

15.
http://www.sciencedirect.com/science/article/pii/S1674987112001478   总被引:1,自引:0,他引:1  
REE composition of the carbonates of the auriferous quartz carbonate veins (QCVs) of the Neoarchean Ajjanahalli gold deposit, Chitradurga schist belt, Dharwar Craton, is characterized by U-shaped chondrite normalized REE patterns with both LREE and HREE enrichment and a distinct positive Eu anomaly. As positive Eu anomaly is associated with low oxygen fugacity, we propose that the auriferous fluids responsible for gold mineralization at Ajjanahalli could be from an oxygen depleted fluid. The observed positive Eu anomaly is interpreted to suggest the derivation of the auriferous fluids from a mantle reservoir. The location of Ajjanahalli gold deposit in a crustal scale shear zone is consistent with this interpretation.  相似文献   

16.
The Mangalur greenstone belt of Dharwar Craton, South India, is an Archaean schist belt dominated by metavolcanic rocks. The gold mineralization occurs within the metavolcanics and the fabric, mineralogy and geochemistry of these host rocks indicate that they were tholeiitic basalts regionally metamorphosed under medium to low-grade greenschist facies. The basic metavolcanic rocks occur as tholeiitic metabasalts and amphibolites. The rocks have undergone some fractionation and appear to be derived from melts generated by 10 to 25% melting of the mantle at depths 30 to 35 km around temperature 1200°C and pressure 12 kb. The source of gold is mainly in the basalts and not in the surrounding granites.  相似文献   

17.
Accretionary orogens are hallmarks of subduction tectonics along convergent plate margins. Here we report a sequence of low-grade metasediments carrying exhumed blocks of ultramafic, mafic and felsic rocks from Sargur in the Western Dharwar Craton in India. These rocks occur along the southern domain of the Chitradurga Suture Zone, which marks the boundary between the Western and Central Dharwar Cratons and thus provide a window to explore Archean convergent margin processes. We present zircon U-Pb and Lu-Hf data from Sargur metasediments including quartz mica schist, fine-grained quartzite, and pelitic schist, as well as from blocks/layers of trondhjemite, garnet amphibolite, and chromite-bearing serpentinite occurring within the metasedimentary accretionary belt. The detrital zircon grains from the metasediments show multiple age groups, with the oldest age as 3482 Ma and an age peak at 2862 Ma. Magmatic zircons in trondhjemite show 207Pb/206Pb weighted mean age of ca. 2972 Ma, whereas those in the chromite-bearing serpentinite display multiple age populations of ca. 2896, 2750, 2648, 2566 and 2463 Ma, tracing zircon crystallization in an evolving mantle wedge adjacent to a subducting oceanic plate. Metamorphism is dated as ca. 2444 Ma from zircon grains in the garnet amphibolite. Zircon εHf(t) in the mafic-ultramafic rocks and trondhjemite are mostly positive, suggesting a juvenile (depleted mantle) source. The detrital zircon Lu-Hf data suggest that the sediment source involved Paleoarchean juvenile and reworked components. Based on our findings, we propose that the Sargur sequence represents an accretionary mélange which forms part of a major Mesoarchean accretionary orogen that witnessed multiple stages of tectonic erosion at least during three periods at ca. 3200–3000 Ma, 3000–2800 Ma and 2800–2500 Ma removing a large part of the accretionary prism along the convergent margin. We correlate the processes with prolonged subduction-accretion cycle culminating in the final collision between the Western and Central Dharwar cratonic blocks.  相似文献   

18.
Archean greenstone belts and Proterozoic granulite mobile belts are products of fundamentally different tectonic processes that culminated in different levels of crustal incision.The present study focuses on graphite-bearing fluid inclusions from two such terrains in India,the Angul domain of Eastern Ghats Mobile Belt and Hutti-Maski schist belt of the eastern Dharwar greenstone-granite belt.In beth cases,a high population of such inclusions within the fluid inclusion assemblage rules out the possibility of graphite being a captive phase,and instead confirms that it was deposited by the fluid within the inclusion cavity.Graphite is usually observed to be occurring with either pure water or a pure carbonic( CO_2 only)liquid,or with a CH_4 dominated carbonic liquid without vapor at room temperature.Graphite precipitation in inclusions is brought about by reaction of the CO2 and CH4 trapped as a homogeneous fluid to give rise to H_2O and C(graphite).Molar volume calculations for the CO_2-CH_4 mixture assuming an appropriate PVTX relationship indicates that there is a substantial increase in volume with decreasing pressure at a given temperature.The reaction producing graphite and H_2O from CH_4 and CO_2 involves substantial volume reduction,and hence would be favored when the rock undergoes rapid exhumation.Graphite-beating inclusions in quartz in a late-stage leucosome from migmatites in the Angul domain of the EGMB are accompanied by other fluid inclusion evidence for isothermal decompression.In the Hutti-Maski schist belt of the eastern Dharwar Craton,graphite-bearing inclusions occur in structurally controlled quartz veins(often auriferous)within metamorphosed mafic volcanics(schists and amphibolites).The Raman spectra indicate that graphites in fluid inclusions from the Hutti-Maski schist belt have both ordered(O)and the disordered(D)peaks,whereas those from the Angul area of EGMB lack the disordered(D)peaks, with both having perfectly symmetrical‘S’peak.This implies that in both belts,exhumation from the burial depth maxima was a rapid process.However,the Hutti-Maski schist belt experienced a lower amount of uplift than the Angul domain,where the driving mechanism led to a deeper level of incision.This difference in the extent and rate of exhumation is speculated to be related to a fundamental difference in the nature of tectonism.A more detailed comparative study of the fluid inclusion characteristics would possibly throw more light on the changing tectonic style from the Archean to the Proterozoic,a topic that is extensively debated.  相似文献   

19.
The eastern Dharwar Craton of southern India includes at least three ∼ 2700Ma supracrustal belts (schist belts) which have mesothermal, quartz-carbonate vein gold mineralization emplaced within the sheared metabasalts. In the Hutti and the Kolar schist belts, the host rocks are amphibolites and the ore veins have been flanked by only a thin zone of biotitic alteration; in the Ramagiri belt, however, the host rocks to the veins have been affected by more extensive but lower temperature alteration by fluids. The rare earth element (REE) geochemistry of the host metabasalts, alteration zones, ore veins and the bulk sulfides separated from the ore veins and the alteration zones suggest that
–  •the REE chemistry of the immediate host rocks has been modified by fluids which added LREE,
–  •the REE abundance of the ore veins vary with the amount of host rock fragments included in the veins,
–  •the sulfides formed during mineralization have significant REE concentration with patterns nearly identical to the ore veins and alteration zones and
–  •therefore the ore fluids involved in gold mineralization here could be LREE enriched.
Because alteration and mineralization involved addition of REE, more LREE compared to HREE, the fluids could be of higher temperature origin. The initial Nd isotope ratios in the host rocks (εNd calculated at 2700 Ma) showed a large variation (+8 to -4) and a deep crustal source for the fluid REE seems likely. A crustal source for Pb and Os in the ore samples of Kolar belt has previously been suggested (Krogstadet al 1995; Walkeret al 1989). Such a source for ore fluids is consistent with a late Archean (2500Ma) accretionary origin for the terrains of the eastern Dharwar Craton.  相似文献   

20.
以商麻断裂为界,大别造山带分为东段和西段,西大别造山带是连接桐柏造山带和大别造山带的纽带。通过对几何学和运动学以及变质环境的研究表明:西大别造山带的形态为一个枢纽向西倾伏的巨型背形构造,且有圈层结构,层间存在滑脱面。西大别地区至少存在着3 期构造变形,第一期是南北边界剪切带的形成,第二期是层间滑脱面和榴辉岩透镜体的形成,第三期是晚期的岩体侵入。应力场的统计结果可知,西大别造山带主要受到近南北方向的挤压,统计结果真实地记录了西大别造山带形成时的古应力状态,对应着3 期变形的第一期。有限应变测量结果显示,从北向南岩石的变形强度存在着:强变形带→弱变形带→强变形带→弱变形带→强变形带这种强弱变形带交替出现的规律。通过白云母Ti温度计以及多硅白云母压力计结果显示西大别造山带中新县-红安地区岩石的变质条件为T = 450 ℃~620 ℃,P = 1.0~1.6 GPa,属于高压蓝片岩相到榴辉岩相。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号