首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
张玉杰 《地质与勘探》2013,49(5):797-812
卡拉麦里韧-脆性剪切构造带形成于华力西中晚期,分属碰撞造山挤压和伸展造山走滑-伸展2个构造变形期,历经逆冲推覆、左行走滑、右行走滑和伸展4个主要演化阶段,金成矿空间上分布于碰撞期逆冲推覆型韧性剪切带中,成矿发生在转换造山及伸展造山时期,属C2-P(290~260Ma)走滑伸展阶段成矿事件。构造变形对金成矿的控制作用在空间上表现为深部构造层次韧性变形与其之上的中浅构造层次的韧脆性和脆性变形存在地质间断,金成矿与韧脆性、脆性变形同步且与韧性变形呈明显叠加复合关系,赋矿韧脆性和脆性构造统一于右行走滑剪切-伸展成矿体系中,具有不同的构造变形层次、变形特征和矿化特征。构造与金成矿空间叠加关系,有相应的两期成矿年龄响应和多阶段、多物质复合成矿的记录,代表一种时间有早晚、空间有重叠、物质来源多成因的叠加复合成矿关系。构造带韧-脆性变形转换与金成矿活动是区域构造背景发生明显转换过程中的多期变形和叠加成矿的形成机制,(成矿)动力学背景分别代表了碰撞造山期的逆冲推覆韧性变形、碰撞造山-伸展造山转变期的右行走滑韧脆性变形和金初始成矿、伸展造山期的脆性变形和金主成矿活动。与周围地质体的时间、物质关系探讨表明,金成矿受火山质围岩矿源层、构造生成演化及华力西晚期碱性花岗质岩浆侵位活动三大因素控制。  相似文献   

2.
东昆仑山南缘大型转换挤压构造带和斜向俯冲作用   总被引:28,自引:5,他引:23  
东昆仑地体和巴颜喀拉--松潘甘孜地体之间的会聚边界是一条位于东昆仑南缘的大型转换挤压构造带。研究表明该带的东段(阿尼玛卿段)和西段(东-西大滩段)构造特征不同,阿尼玛卿段的构造以印支期具往南西造山极性的逆冲叠覆岩片和新生代脆性左行走滑构造为特征,东-西大滩段是由220Ma形成的EW向韧性左行走滑剪切带及两则伴生的挤压褶皱断裂带组成,韧性变形持续至20Ma,之后表现为脆性左行走滑构造再活动。因此,东昆仑南缘大型会聚带是一条由东段的“收缩挤压”为主向西段的“转换挤压”逐渐过度的特殊复杂的构造带,它的形成与巴颜喀拉--松潘甘孜地体往NE方向斜向俯冲于东昆仑地体之下有关。  相似文献   

3.
详细的野外观察和显微构造研究表明,西昆仑南缘康西瓦韧性走滑剪切带主要由宽7km的孔兹岩质糜棱岩组成.具有早期自西向东的右行走滑剪切、后期自东向西的左行走滑剪切的剪切应变特征。韧性剪切带孔兹岩质糜棱岩中典型造岩矿物的晶格优选方位的电子背散射(EBSD)测量结果表明,钠长石具(010)[001]或(100)[001]滑移系,矽线石具{hk0}[001]滑移系,均反映了高温(〉650℃)和中-高温(650-550℃)的应变特征。差应力作用下的变质生长与剪切所致的刚性旋转进一步增加了矽线石的组构强度。然而。石英却具形成于中温→中低温→低温环境(〈550℃)的{10T0}〈a〉→{10il}〈a〉→{0001}〈a〉3组滑移系,均指示自东向西的左行剪切指向,EBSD组构的结果与野外剪切应变的判断一致。Ar/Ar同位素年代学及锆石SHRIMPU-Pb同位素定年结果表明,右行韧性走滑作用形成于加里东期(445~428Ma),继后的左行走滑作用主要经历了3次明显的构造热事件(250Ma、203Ma和101-125Ma)。在白垩纪时期。阿尔金左行走滑断裂和康西瓦左行走滑断裂连接成一条连续的巨型(长度2200km)走滑构造带.同时康西瓦走滑断裂和铁克里克逆冲断裂之间的挤压转换域的形成制约了青藏高原西北缘塔里木南部前陆盆地的发育。  相似文献   

4.
东昆仑左行走滑韧性剪切带形成时代的锆石U-Pb年龄证据   总被引:2,自引:0,他引:2  
巴颜咯拉—松潘甘孜地体与东昆仑南地体晚三叠纪斜向碰撞形成大规模的东昆仑左行走滑韧性剪切带,新生代时期韧性剪切转为脆性左旋走滑并构成青藏高原向东逃逸的北部边界。为了确定早期韧性剪切变形时代,对剪切带上2个同构造花岗斑岩脉进行了激光探针(LA-MC-ICP MS)测年研究,获得了196.4±2.3 Ma和195.1±1.6 Ma的锆石206Pb/238U加权平均年龄,表明东昆仑左行走滑韧性剪切带形成于燕山早期。  相似文献   

5.
陈承声  李玮  王云鹏  罗铮娴  黄钢 《地质通报》2019,38(6):993-1005
南秦岭宁陕断裂镇安段北缘的龙脖子剪切带记录了宁陕断裂带左行走滑韧性剪切变形过程。带内3类石英脉体和方解石脉体的ESR年龄分别为125.6~88.7Ma、56.7~32.9Ma和19.8~14.6Ma。其中第一类产出于构造片理和A型褶皱核部的石英脉体,代表左行走滑韧性剪切变形结束、脆性构造活跃的时代。研究表明,宁陕左行走滑剪切带在晚三叠世早期开始活动,且可能持续到早—中侏罗世。第一类脉体年龄的确定表明,宁陕断裂带左行走滑韧性剪切变形最晚可持续到早白垩世;晚白垩世—始新世,宁陕断裂带以伸展-走滑脆性或韧-脆性剪切变形为主。因此,早白垩世是宁陕断裂带韧性剪切变形向脆性剪切变形转换的关键时期。宁陕断裂带经历了晚三叠世—中侏罗世晚期快速冷却阶段、晚侏罗世—白垩纪缓慢冷却阶段和古近纪以来快速冷却阶段。宁陕断裂带在缓慢冷却晚期(早白垩世)实现韧性剪切变形向脆性剪切变形转换说明,早白垩世也是秦岭造山带陆内变形机制转变的关键时期。  相似文献   

6.
西秦岭勉略带陆内构造变形研究   总被引:12,自引:3,他引:9  
陈虹  胡健民  武国利  高卫 《岩石学报》2010,26(4):1277-1288
秦岭造山带勉略缝合带是古特提斯洋盆向北俯冲形成的华北与华南最后拼接带。这个主缝合带俯冲-碰撞过程中以由北向南的一系列韧性逆冲推覆构造为特征,形成由前泥盆系、泥盆-石炭系和蛇绿混杂岩等不同构造岩片叠置的复杂构造带,碰撞时代从245Ma一直延续到230Ma左右。最近,作者对勉略缝合带内发育的韧性和脆性左行走滑剪切变形进行了研究,结果表明这些顺造山带的左行韧性走滑剪切变形带的变形时代为223±2Ma,与碰撞后花岗岩所确定的碰撞后构造环境的起始时间(225Ma)一致,显示这些韧性走滑剪切变形带是勉略带陆内变形初期变形产物。亦即华北、扬子大陆碰撞之后很快就转入陆内变形阶段,并且是以顺造山带的侧向走滑位移为主要变形方式。勉略带内顺造山带的脆性左行走滑断层的发育,表明这种顺造山带的侧向位移过程从深部到地壳浅层是一致的。因此,大陆碰撞在直接碰撞之后很快转变为顺造山带的侧向走滑位移为主的陆内变形,这种位移可能表现为两个大陆碰撞后的相对走滑,或是碰撞带中强烈变形部分顺造山带的侧向挤出,从而消减了正向碰撞所造成的地壳缩短和增厚。  相似文献   

7.
作为武当山大型推覆体内部紫金断片构造边界的紫金韧性剪切带具有复合质,曾先后经历了自北而南的韧性推覆一北东向脆,韧性左行走一北东向韧,脆性右行走滑-脆性张破裂及平移。韧性剪切带的演化与武当山推覆构造的递进变形密切相关。  相似文献   

8.
东昆仑造山带东段哈图沟–清水泉–沟里韧性剪切带记录了多个旋回的造山作用,本文通过对韧性剪切带中石英c轴组构和显微构造特征测试分析,探讨东昆仑造山带东段陆块间俯冲拼合及地壳伸展减薄的形成机制。结果显示,韧性剪切带变形温度介于380~650℃之间,形成环境为中–高绿片岩相到低角闪岩相,剪切带内差异应力值介于173~509 MPa之间,应变速率介于6.93×10–14~1.43×10–8 s–1之间,主体为10–11~10–10 s–1,显示韧性剪切带变形是快速俯冲作用下的产物,越靠近东昆仑造山带东段东昆中断裂带其变形温度、差异应力值及相应的应变速率值越大,表明东昆仑造山带东段韧性剪切变形中心为东昆中断裂带。利用不同方法所计算出的韧性剪切带运动学涡度值,显示韧性剪切带早期瞬时运动学涡度(0.56~1)对应于东昆仑造山带东段东昆南与东昆仑造山带东段东昆北陆块间俯冲的初始阶段,中后期运动学涡度(0.25~0.91)应当对应于东昆南与东昆北陆块间的俯冲碰撞阶段,最晚期的C′瞬时运动学涡度(0.19~0.51)则对应于后造山的伸展阶段。通过石英c轴组构结合其宏微观构造特征,认为东昆中构造带至少经历了3个期次的构造运动,分别为加里东晚期的逆冲兼左行走滑剪切作用、晚海西–印支期的逆冲兼右行走滑剪切作用和燕山早期及之后的脆韧性–脆性的左行走滑剪切作用。  相似文献   

9.
龙门-锦屏山的东缘发育一系列逆冲断裂和飞来峰构造,逆冲作用使山体向东叠置在四川盆地之上。新的野外调查、显微构造分析和糜棱岩石英组构的EBSD测量表明,在龙门-锦屏山的前震旦纪变质杂岩体西缘(即青藏高原东缘)发育一条近NS向的大型韧性拆离断裂,被20Ma以来形成的NW—SE向鲜水河韧性走滑剪切带[1]左行错位80km。青藏高原东缘韧性拆离断裂中黑云母40Ar-39Ar测年获得112~120Ma的年龄,表明龙门-锦屏山的崛起可能与白垩纪开始的垂向挤出机制密切关联。结合四川前陆盆地的沉积及演化特征,认为晚三叠世时期羌塘/东昆仑/扬子陆块的碰撞形成松潘-甘孜造山带,晚三叠世—侏罗纪在其东南缘形成四川前陆盆地沉积;早白垩世龙门-锦屏山开始抬升,晚白垩世快速崛起,在四川前陆盆地沉积之上叠置白垩纪—第四纪再生前陆盆地的沉积。龙门-锦屏山的崛起与白垩纪以来扬子板块岩石圈对于松潘-甘孜地体的陆内俯冲作用有关,使位于中下地壳的变质基底岩石在挤出机制下隆起。  相似文献   

10.
用物理模拟实验研究走滑断裂和拉分盆地   总被引:6,自引:1,他引:5  
本文按照下地壳和岩石圈地慢塑性流动控制上地壳构造变形的思想,采用脆延性双层模型,在考虑模型相似性的条件下,通过延性层流动驱动脆性层进行走滑断裂和拉分盆地模拟实验。实验结果表明,在左行走滑阶段发育两条“S”型左行右阶断裂带;在右行走滑改造阶段,早期左行右阶断裂带被改造为“Z”型右行右阶断裂带。走滑断裂发育过程中共有三种类型的拉张伸展:(1)“S”型破裂逐渐伸展,形成多个菱形盆地;(2)几个相邻的斜列“S”型断裂在剪切作用下端部被错断连通,形成“地堑-地垒”构造;(3)在右行走滑阶段,沿右行右阶断裂拉张形成拉分盆地。先存的上隆拱张断裂限制了走滑断裂的位置和方向。脆性层强度对走滑断裂的形成和发展具有约束作用,脆性层结构对脆延性的层间捅合作用和走滑断裂特征具有显著影响。  相似文献   

11.
西秦岭北缘构造带不仅发育一系列继承性多期活动或新生的近东西向断层,而且新生代地层中还发育与近东西向断层走向不一致且具有独特构造特征的北西向左旋走滑断层。这种北西向左旋走滑断层带不发育断层角砾岩、磨砾岩、碎粉岩、断层泥、摩擦镜面、擦痕线理、断层阶步等脆性断层中常见的构造现象,仅表现为地层旋转和剪切拉断形成的一定宽度的透镜化带,两条断层之间地层产状发生旋转形成了约1 km 宽,平面上类似膝折构造几何形态地层扭折带。该北西向断层横切了渐新统—中新统地层,并被上新统砾岩覆盖和第四纪以来的近东西向左旋走滑断层斜切,指示了其形成于渐新世—中新世沉积地层形成之后,上新世砾岩沉积之前,即上新世早期。北西向断层带不发育脆性断层典型构造现象和断层左旋走滑作用在渐新统—中新统沉积地层中形成了类似膝折构造几何形态地层扭折带,说明其变形具有韧脆性过渡和缓慢剪切变形的特征,是西秦岭北缘一种新的断层类型。其形成机制为基底或中下地壳中大型左旋走滑韧性或韧脆性剪切带向上扩展延伸到上部沉积盖层中之结果,也就是说,新生代沉积盖层中这种北西向断层和地层扭折带是下部韧性剪切带的左旋走滑剪切在盖层中被动构造响应。这种基底或中下地壳北西向左旋韧性剪切带可能指示了上新世初期西秦岭北缘构造带深部韧性地壳物质向南东流变蠕动的构造标志,代表深部地壳缩短增厚向地壳韧性物质侧向扩展流动的转换过程。这种特殊的断层类型对理解青藏高原东北缘新生代构造变形体制转换和地壳隆升具有重要的科学意义。  相似文献   

12.
郯庐断裂带北段构造特征及构造演化序列   总被引:10,自引:3,他引:7  
根据大量野外地质调查和盆地地震资料分析,认为郯庐断裂北段在中-新生代发生多期不同性质的活动,形成各具特色的构造变形现象。密山县知一镇敦密断裂韧性剪切带具有左旋走滑特征,其中黑云母~(40)Ar/~(36)Ar-~(39)Ar/~(36)Ar等时线年龄为161±3Ma,是郯庐断裂带被利用发生第二期左旋走滑运动并向北扩展到中国东北-俄罗斯远东地区的产物。四平市叶赫乡佳伊断裂带中负花状断裂形成于早白垩世早中期,是郯庐断裂北段在早白垩世遭受左旋走滑-拉张作用的典型代表。四平市石岭镇佳伊断裂大型走滑-逆冲断褶带、桦甸县敦密断裂"逆地堑"、沈阳-哈尔滨逆冲断裂形成于晚白垩世嫩江运动-晚白垩世末期,这一时期脆性右旋走滑-逆冲事件规模大,影响范围广,导致整个郯庐断裂北段遭受到强烈改造。佳伊断裂带和敦密断裂带中古近纪盆地在横剖面上呈不对称地堑,并且不对称地堑沿断裂带走向发生断、超方向左右变位,是郯庐断裂带北段在古近纪时受右旋走滑、伸展双重机制控制的产物。根据郯庐断裂带北段中-新生代不同地质时期变形特征,建立了郯庐断裂北段构造演化序列。即郯庐断裂北段构造演化分为左旋韧性剪切(J_2末期)、左旋张扭(K_1早中期)、右旋压扭(K_2晚期-末期)、右旋走滑断陷(E)和构造反转(E_3末期)五个阶段。其演化历史主要受控于环太平洋构造域的构造作用。  相似文献   

13.
湖南锡田锡钨多金属矿床成矿构造特征及其找矿意义   总被引:4,自引:0,他引:4  
锡田矿床内发育近SN向花岗岩穹窿伸展构造、NE向复式褶皱和NE或NEE向走滑伸展构造系统。穹窿构造主要由印支期和燕山期侵入的花岗岩和古生代地层及不连续的环形滑脱断层组成,控制燕山期花岗岩与围岩接触带矽卡岩型矿体的分布;复式褶皱为古生代地层组成的NE向复式向斜,在矿区中部被锡田复式花岗岩体切割。严塘复式向斜与小田复式向斜中的背斜核部,尤其断层叠加的部位常控制一些构造破碎带型钨锡富矿体的分布。NE向或NEE向走滑伸展构造系统包括NE向右行(伸展)走滑断层、NE向或近EW向右行次级的走滑伸展断层、近SN向左行走滑断层和NW向伸展断层,控制了锡田矿区内的不同方向构造蚀变岩型、石英脉型和云英岩脉型锡钨多金属矿床的分布。花岗岩锆石U-Pb、白云母40Ar-39Ar和辉钼矿Re-Os同位素测年表明锡田地区燕山期构造活动、岩浆作用与成矿响应时间非常接近,介于150~160Ma。岩体与地层(灰岩)接触带、岩体中的NEE向断裂带以及被NE向断裂叠加的背斜轴部是重要的成矿区域,可作为下一步矿产勘查工作重要靶区。  相似文献   

14.
赵国春  刘刚 《现代地质》1995,9(2):226-233
内蒙古苏尼特左旗地区发育一条北东向的较大型强变形带,经历了自海西晚期至燕山早期的3个韧性变形序列,其中,印支晚期为主变形期,发育强烈的韧性剪切带,呈现强应变带与弱应变域交织的格局,有先左行后右行的韧性压剪变形特点。该剪切带形成于温度约220℃、围压约270MPa,距地面约11km的地壳深部。燕山晚期本区以脆性构造为主,断裂构造发育。海西和印支构造奠定了本区的主要构造格局。  相似文献   

15.
Role of strike-slip faults in the Betic-Rifian orogeny   总被引:1,自引:0,他引:1  
A new model for the Betic-Rifian orogeny of the Western Mediterranean (Spain and North Africa) is proposed in which four strike-slip faults play an important role; the faults are not of the same age. Two faults, the left-lateral Jebha fault to the south (in Morocco and principally in the Mediterranean Sea) and the right-lateral North Betic fault (southern Spain) to the north, define the boundaries of the Alboran block (Betic and Rifian internal zones). Final movement along these faults was during the Burdigalian time. Two other faults, the left-lateral Nekor fault (North Africa) to the south of the Jebha fault and the right-lateral Crevillente fault, somewhat to the north of the North Betic fault, define a larger Alboran block (including part of the Betic and Rifian external zones) that was present during the Tortonian.The following sequence of events is proposed:
1. (a) During the Eocene and Oligocene, the African and European plates converged in a N-S sense causing the breakup and overthrusting of the Betic, Rifian and Kabyle internal zones and then the movement towards the WSW of the Alboran block by slip along the Jebha and North Betic faults.
2. (b) By the end of Burdigalian time, movement along the Jebha and North Betic faults ceased.
3. (c) With continued N-S convergence, the Nekor and Crevillente faults, which bound a larger Alboran block, were formed during the mid- and late Miocene. The Arc of Gibraltar (the zone lying between the four major faults) seems to be a result of WSW motion of a crustal block being thrust over external zones.
The model proposed adds to the earlier idea that tectogenesis proceeds from the interior to the exterior of an erogenic belt. In the Betic-Rifian orogeny major strike-slip fracture zones shifted to the exterior of the orogenic belt as the orogeny progressed in order to relieve the stress caused by locking of the more internal faults.  相似文献   

16.
华熊地块马超营断裂走滑特征及演化   总被引:11,自引:0,他引:11  
对华熊地块南部的马超营断裂带的几何样式、组成特征及其变形特点等研究结果表明,马超营断裂带经历了韧性变形和脆性变形期。韧性变形分布于该断裂带的南侧,并发生了绿片岩相的动力变质作用,其中的S-C组构特征所指示的运动方向在其南北两侧,分别为向南和向北逆冲,呈现正花状特点,反映了该断裂带具有走滑逆冲性质的断裂。韧性变形主要发生于前印支期。燕山期,全面陆-陆碰撞期间其主要表现为脆性变形特征。脆性变形主要发育于其北侧,北东向的康山七里坪断裂、红庄陶村断裂是其次一级的派生断裂。通过对北东向断裂运动方向和前人的成果分析,以及这些构造的平面分布样式对比认为该断裂为一条左行走滑特征的断裂带。在此基础上,结合区域动力学背景,进而讨论了它的演化特征。  相似文献   

17.
The seismotectonic deformations related to the Chuya earthquake September 27, 2003 in the Gorny Altai (Ms = 7.5) are studied in detail. These deformations developed as advanced systems of R-and R’-shears, gash fractures, and compression structural features in loose sediments. In bedrocks, the older shear zones were reactivated, the previously existing fractures were renewed and propagated further, and new faults and crush zones were formed. The system of seismic dislocations is a fault zone no less than 4 km wide that extends in the northwestern direction. As follows from the structural elements that reveal a systematic mutual orientation, the internal structure of this zone is typical of a right-lateral strike-slip fault. The initial stress field that led to the development of the entire assemblage of seismotectonic deformations related to the Chuya earthquake corresponds to the strike-slip type with the NNW, almost meridional direction of compression axis (σ1) and the ENE, almost latitudinal direction of the tension axis (σ3). The local variations of the stress state were expressed in an insignificant shift of σ1 to the northwest or northeast, in the short-term change of relative stress values with retention of their spatial orientation, and in the increasing inclination of σ1 in front of the previously existing fault. The comparison of the internal structure of the seismotectonic fault zone with a tectonophysical model of faulting in large continental systems with a right-lateral offset indicates that the distribution of the advanced faults corresponds to the late stage of faulting, when the main fault is still not formed completely, but its particular segments are already developed distinctly. It is shown that at high rates of displacement the structural features in markedly different rocks develop according to the general laws of solids’ deformation even near the day surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号