首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
长白山地区近期地质构造、岩浆活动强烈,地壳不断上升,是我国地质灾害频繁发生的地区之一.通过对长白山北坡登山长廊上方边坡危岩体的分析,考虑崩塌形成的影响因素、崩塌类型,总结出崩塌变形破坏机理及流沙坡形成机理;根据地形、地貌以及岩体工程地质特征,对危险区进行分区评价,为治理提供科学依据.  相似文献   

2.
张丽  李广杰 《世界地质》2005,24(4):378-381
长白山天池地区崩塌灾害频频发生。为分析长白山天池地区斜坡稳定性,选取龙门峰作为典型斜坡,采用有限元法对其进行应力、位移模拟分析,绘制最大、最小主应力等值线图。分析结果表明,长白山天池地区高陡斜坡整体稳定性较好,不会发生大规模崩塌。斜坡上缘表层岩体的稳定性较差,极易导致小型崩塌和危石坠落发生。并确定龙门峰两侧南北向陡崖、瀑布附近东西向陡崖及黑风口以南南北向陡崖分布区为崩塌灾害严重区。  相似文献   

3.
关岭县北部岗乌永窝大寨6.28特大滑坡碎屑流灾害,造成99人死亡及失踪。通过调查类似地质条件下该地区地质灾害隐患分布情况。以该地区大田小学崩塌为代表分析该类型危岩带形成的原因及形成机理,分析了危岩体稳定性及发展趋势,并运用rockfail软件对滚石运动路径、影响范围、弹跳高度、运动能量做了分析。结合该地区自然条件,提出了相应的防治建议。对该地区类似崩塌(危岩)的防治,有一定的借鉴作用。  相似文献   

4.
映秀至汶川公路距“5.12”汶川地震震中最近,地震崩塌灾害最重.经过震后三年的详查,借助航片、3D激光扫描及岩体结构精细描述,对公路沿线典型地震崩塌的斜坡破坏部位、微地貌特征、坡度、坡体结构、岩体结构和地层岩性进行研究,运用DDA对八度区典型斜坡体发生崩塌的破坏机理进行模拟研究.结果表明.崩塌部位受控于岩体结构和基岩强风化层,同时,微地貌与发震断裂的位置关系造成的斜坡放大与地震背坡效应对崩塌影响明显.地震崩塌有拉裂-滑移、震动-溃散、震动-抛射三类破坏模式.  相似文献   

5.
我国鄂西地区山多且陡、岩溶发育、雨量充沛,强降雨作用下崩塌地质灾害频发,研究该区域岩质边坡崩塌倾倒破坏机理对该区域的灾害防治具有重要意义。以该区具有典型代表意义的赵家岩崩塌为研究对象,通过实地勘测,工程地质分析,ABAQUS数值模拟分析等手段,对其变形破坏机理进行研究,结果表明:三面临空近直角陡峭的地形地貌、上硬下软的岩性组合是影响崩塌破坏的内在因素;下伏煤层开挖使得岩体下部架空,改变了岩体内部的应力分布并加速了岩体蠕变破坏的发展;节理裂隙发育改造了岩体内部结构,降低了岩体强度,促进了降雨条件下水压力对岩体的作用;强降水作用使得岩体后缘裂隙快速充水,对岩体产生向外的推力,是岩体崩塌倾倒破坏的直接诱因。  相似文献   

6.
鹰嘴岩崩塌体为典型的逆向岩层崩塌,属于拉裂式崩塌,该崩塌的形成受地形地貌、地层岩性、地质构造、大气降雨等因素的控制。由于崩塌体上部岩层和下部岩层坚硬,中间存在软弱夹层,构成了三明治式的地层岩性组合形式,这种地层岩性组合是造成鹰嘴岩崩塌体失稳的重要因素,另外,当大气降雨渗入危岩体裂隙,加速了崩塌的发生。本文对鹰嘴岩崩塌体地质环境条件及该崩塌体的成因机理进行分析,结果表明鹰嘴岩崩塌体目前处于不稳定状态,随着现存危岩体上裂缝的不断发展变化,鹰嘴岩崩塌体有再次发生崩塌的危险。  相似文献   

7.
软硬岩互层边坡崩塌机理及治理对策研究   总被引:4,自引:0,他引:4  
崩塌是红层地区软硬互层型边坡的主要工程地质问题之一。本文以西南地区某公路边坡为例,在边坡地质结构特征调查的基础上,分析了砂泥岩互层边坡崩塌形成机理,采用二维有限元方法研究了崩塌后上部凹腔岩体的变形破坏模式,并采用基于强度理论的稳定性评价方法研究了其稳定性。结果表明,崩塌的形成主要是由于差异风化在下部软岩部位形成凹腔,导致上部硬岩产生拉裂并逐渐贯通;若不及时治理,上部岩体中结构面贯通至60%时,可能产生坠落失稳。综合分析边坡稳定性状况及变形破坏演化模式,采用清坡+局部削坡+挂网喷混凝土+钢筋混凝土支撑柱+排水的治理方案,重点控制凹腔以上岩体中拉裂的发展并做好防、排水工作。  相似文献   

8.
贵州上洋水河流域采矿工作引发了形式多样、成因复杂的崩塌地质灾害。以拉裂倾倒式崩塌失稳模式为例,在分析斜坡结构特征的基础上,运用岩体力学理论对崩塌形成岩体的受力演化过程以及中间出现的压缩、挤胀等现象进行了深入研究,并采用离散元数值模拟再现了崩塌形成的变形破坏过程。研究结果表明:磷矿开采产生采空区引起斜坡的应力应变调整,使得岩体产生变形,出现挤胀扩容现象导致岩体失稳倾倒,继而引发崩塌。岩体受力变形过程分为应力调整结构面张拉贯通-岩体变形受压-坡脚岩体挤胀扩容-岩体失稳破坏等4个阶段。在这整个过程中,应力应变的调整和岩体的变形形态以及裂隙的张拉形成相互作用,共同影响着崩塌的进行。  相似文献   

9.
5 12 汶川地震的强震作用诱发产生了大量崩塌地质灾害,且多发生于碎裂结构岩体中。崩塌后斜坡后缘岩体及前缘堆积体的稳定性和后缘岩体对前缘堆积体稳定性的影响研究同样是震后灾害所面临的问题。以干河沟沟口斜坡为例,在分析该斜坡结构特征及崩塌机理的基础上,采用二维离散元软件UDEC模拟了斜坡在天然或强震条件下的稳定状态和可能失稳过程; 运用极限平衡法对陡壁岩体再次崩塌,产生新物质堆载在现有崩塌堆积体后缘前、后分别建立模型进行了稳定性分析。研究结果表明:碎裂岩体崩塌过程可分为应力重分布、潜在崩塌体形成和地震诱发崩塌3个阶段。崩塌堆积体在考虑后缘堆载作用之前,在天然或地震环境下均处于相对稳定状态,考虑堆载作用之后,其可能会在地震条件下失稳。离散元法和极限平衡法的组合使用,对于解决同类斜坡的同类问题切实可行。  相似文献   

10.
赵家岩崩塌是发生在鄂西山区的一处典型岩质崩塌。野外调查发现,陡峻地形、裂隙发育岩体、平缓软弱夹层是危岩形成的基础,岩溶作用、采煤活动是危岩变形发展的影响因素,强降雨是崩塌发生的直接诱因。为了弄清崩塌的形成机理和失稳模式,文章在对崩塌形成条件和影响因素定性分析的基础上,采用刚体极限平衡方法,分别计算了可能失稳模式下,危岩失稳所需后缘裂缝内的临界水头高度,进而通过对比分析,对危岩的失稳方式进行了讨论。结果显示,崩塌发生是危岩在后缘裂缝静水压力推动下,沿下伏炭质页岩层发生剪切滑动破坏,进而产生了滑移式崩塌。该崩塌形成机理的分析结果,可以为鄂西山区类似的崩塌分析与防治提供参考。  相似文献   

11.
新疆塔县地区广泛分布小规模岩质崩塌,是该地区频繁爆发泥石流的主要物源。调查发现,这些崩塌主要受区域性节理和风化作用控制。为揭示塔县地区岩体冻融劣化及崩塌机理,本文选取崩塌岩体中岩性比例最高的片麻岩,在干燥和饱和条件下进行不同次数的冻融循环试验,通过SEM电镜扫描和吸水率、大开空隙率以及质量损失测试,研究片麻岩样微观结构和宏观物理特性的变化。结果表明,在内部应力以及冻胀力的作用下,片麻岩微观结构发生劣化,联结较弱颗粒的破碎、剥落以及微观裂隙的扩展导致斜坡表层岩体强度降低,抗风化能力下降。而在冻融循环作用的长期影响下,这种风化作用会逐渐进入坡体内部,最终导致连续小规模崩塌,并在坡脚处堆积,为泥石流提供物源。  相似文献   

12.
贵州武陵山区中二叠统崩塌地质灾害形成机理研究   总被引:2,自引:2,他引:0  
程鹏翔  李宗发 《中国岩溶》2019,38(4):565-572
为掌握贵州武陵山区中二叠统地层崩塌地质灾害发生机理,通过实地调查,结合原有地质资料,发现中二叠统主要分布在乌江及其支流两岸,典型的河谷地形为地层崩塌提供条件。分析认为,卸荷作用导致河谷岩体形成垂向的卸荷裂隙,卸荷裂隙在自重、水的侵蚀及溶蚀等外力的共同作用下,不断扩展,形成危岩体的边界,同时卸荷裂隙与层面、节理等结构面将岩体切割成独立的危岩体,从而导致崩塌灾害发生。指出该区域内二叠系中统三种崩塌破坏模式:卸荷—拉裂—倾倒式、卸荷—拉裂—滑移式、卸荷—拉裂—坠落式,而研究区内主要破坏方式为卸荷—拉裂—倾倒式。   相似文献   

13.
柱状岩体崩塌具有分布范围广、破坏能力强、影响范围大的特点。2004年8月12号,重庆甑子岩W12危岩体发生崩塌,崩塌体运动距离约600 m,形成显著超前空气冲击效应,激起浮尘高度约150 m。文章基于MatDEM离散元软件对甑子岩崩塌动力特征与破碎规律进行了研究,建立了按照实际节理分布的崩塌模型,实现了崩塌全过程的模拟,并结合影像资料验证了模型的有效性,在此基础上对MatDEM进行二次开发,统计分析了崩塌过程中岩块粒径演化规律,确定了崩塌过程中的四个显著颗粒破碎时刻,分别为崩塌源区底部岩体受压破碎、中上部岩体撞击低速三角区、中部岩体撞击斜坡地面与上部岩体撞击斜坡地面。引入分形维数与双参数Weibull分布模型分析了崩塌前后颗粒破碎规律,结果显示崩塌后颗粒破碎明显,细粒颗粒占比显著增加。文章为岩体崩塌的动力特征与破碎规律的研究提供了依据。  相似文献   

14.
猴子包危岩体变形机理及稳定性预测   总被引:3,自引:0,他引:3  
猴子包危岩体位于巴东县信陵镇火焰石村长江右岸。危岩体由包含层间错动带等软弱夹层的层状灰岩组成,下伏煤系软岩,具有上硬下软的结构;西侧陡崖下部采煤,斜交坡面的陡倾角裂缝将陡崖切割成链条式块状结构,发生多次崩塌。结合本区发生的崩塌,分析了猴子包危岩体形成发育的环境地质条件、变形失稳的机理和力学模式;运用力学图解的方法对危岩体不同工况下的稳定性进行了预测。研究认为,危岩体在自然状态下是稳定的,在地震及动水压力作用下不稳定,破坏方式为倾倒,视倾角αs(合力角φ)达到临界倾角α0是危岩体从变形到倾倒崩塌的拐点。  相似文献   

15.
重庆南川甑子岩山体崩塌机制研究   总被引:1,自引:1,他引:0       下载免费PDF全文
本文以重庆南川甑子岩崩塌为例,对近水平厚层状高陡灰岩山体座落滑移式崩塌机制进行研究,通过工程地质分析揭示了甑子岩危岩崩塌的成因机制,利用数值模拟开展了初始变形破坏的研究。研究认为,甑子岩崩塌是自然条件下形成发育、受岩溶风化与人类工程活动影响所产生的大型危岩体崩塌。岩体中多组大型陡倾节理发育,卸荷作用下在陡崖边缘形成张拉裂隙,地下水长期溶蚀使裂隙连通率不断增大,地下采空加速软弱基座破坏、危岩体变形。随着裂隙的贯通,软弱基座内部应力累积,应变逐渐增大,当超过岩体强度时发生圆弧形剪切滑移破坏,导致柱状危岩体座落崩塌。  相似文献   

16.
通过系统梳理国内外塔柱状岩体崩塌的相关研究资料,对长江经济带及其周边地区塔柱状岩体形成与稳定性影响因素、崩塌失稳模式以及损伤理论应用3个方面进行总结论述,并据此对塔柱状岩体崩塌灾害的发展趋势与问题热点进行了探讨,为长江经济带下一阶段的地质调查与研究提供理论准备与参考。   相似文献   

17.
危岩体是指由结构面切割形成的在一定诱发因素下失稳破坏的岩体,其作为常见的自然地质灾害之一,严重影响山区人类生命财产安全。对危岩体的勘查、稳定性评价、风险评价是地质灾害预防的研究难题。受人类工程活动影响,名山县新店镇白马沟内存在多处危岩体。通过对国内外研究文献的查阅分析并结合白马沟危岩体的分布特征、发育特征、崩塌落石运动特性进行分析与研究,初步总结出了白垩系上统灌口组(K2g)危岩体的形成、分布规律及成灾机理,并对该区4个危岩体利用Rockfall 进行数值模拟计算,计算其运动速度及运动轨迹,计算岩石弹跳高度及距离等。为此类工程地质条件下的的危岩体稳定性评价及运动轨迹的分析提供参考,同时对于崩塌危岩体灾害预防与减灾技术研究有积极意义 。  相似文献   

18.
震后崩塌是强震作用下形成的一类分布广泛、震裂变形严重、潜在威胁大的次生地质灾害。为了较为深入系统地分析其形成机理,本文结合对映秀至卧龙公路沿线震后公路边坡崩塌地质灾害详细调查和115条实测剖面的分析,首先把震后公路边坡崩塌地质灾害从孕育形成到失稳破坏的演化发展过程分为4个阶段,即原始结构面的形成阶段、潜在变形体的形成阶段、震裂岩体的形成阶段和失稳破坏阶段。在此基础上,分析认为震后公路边坡崩塌地质灾害的形成机理可归纳为震裂-滑移式、震裂-倾倒式、震裂-溃屈式和震裂-错断式4种模式,研究成果为灾后公路重建和防灾减灾提供了有力参考。  相似文献   

19.
2017年8月28日10时30分许,贵州省纳雍县张家湾镇普洒村后山约49.1×104 m3的山体发生高位崩塌,高速运动的碎屑物质沿途铲刮坡面原有松散崩滑堆积物,最终形成体积约为82.3×104 m3的堆积体,摧毁坡脚的普洒村大树脚组和桥边组居民区,造成26人遇难,9人失踪。通过对灾害发生现场进行详细的地质调查,本文综合运用无人机航拍、地面合成孔径雷达监测等技术手段,对普洒村崩塌体特征进行了详细描述,初步阐述了崩塌发生的动力学过程和成因机理,并对周边受崩塌体失稳影响而产生的欠稳定区岩体特征的危险性进行了分析评价。初步研究结果认为,崩塌源区岩体在下部巷道采煤的影响下产生拉张裂缝,之后在长期重力作用下,山体开始变形、破碎,最终整体失稳破坏。崩塌体从小规模掉块开始到整体失稳破坏、远程运动,直至最终停积,整个过程用时约7分21秒,其中主崩塌体失稳用时约26 s,远程运动距离约788 m,是一处典型的高位崩塌-碎屑流。深入研究普洒村崩塌的形成过程和成灾机理,对我国西南山区存在的与普洒村崩塌体类似条件的灾害隐患点的减灾防灾工作,具有重要的指导意义。  相似文献   

20.
以新疆维吾尔自治区乌恰县康苏红层崩塌为例, 基于DAN-W运动学模型进行了红层崩塌碎屑流空间预测评价, 同时根据无人机航拍图和野外地质现场调查, 结合崩塌研究区的工程地质要素, 分析该崩塌的形成特征和失稳模式。结果表明:该崩塌为拉裂式崩塌, 主要受危岩体岩性组合和坡体结构面组合控制, 其孕灾模式为差异风化阶段→岩体结构变形破坏阶段→悬挑危岩阶段→崩塌失稳落下阶段, 具有典型的碎屑流运动特征。同时利用动力学模型软件DAN-W对该崩塌碎屑流的运动过程进行计算, 得到崩塌碎屑流的运动时长约为50 s, 堆积体平均厚度达到2 m, 最大速度为11.5 m·s-1, 冲击最远距离达到315 m, 与实际情况相符。表明DAN-W模型可以用来分析红层崩塌碎屑流的动力学灾害效应, 为红层地区类似的潜在崩塌碎屑流灾害的形成特征和运动效应分析提供借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号