首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
廖群安  邱家骧 《地球科学》1996,21(3):300-304
对东南沿海4个包体产地的玄武岩中橄榄石包体的形态,大小,向椭球体转变的程度等统计分析表明,幔源包体在上升期间与岩浆作用的过程中,不仅有棱角圆化的现象,而且伴有由等轴体(近似为球体)向椭球体转为过程其主要原因是包体在相对岩浆运动的过程中包体的表面与岩浆之间粘滞摩擦造成的,粘滞摩擦力的大小,作用于包体表面的时间又取决于岩浆的粘度,包体相对于岩浆的沉降速度,包体半径的大小及岩浆上升的速度,所以这些因素将  相似文献   

2.
豆荚状铬铁矿是蛇绿岩套地幔构造岩中特征的矿产,其矿石发育丰富的岩浆活动-高温变形结构构造类型,豆荚状铬铁矿高温下仍具有稳定的物理化学特性,对认识大洋上地幔扩张、横向运移具有重要指示意义。在对遵化新太古代豆荚状铬铁矿显微构造的深入研究基础上,通过对比分析豆荚状铬铁矿结构构造特征(岩浆活动、低温变形),提出高温变形结构及其特征(拉长网孔结构、条带状、糜棱状结构等)。借鉴现代洋中脊及弧后盆地扩张的构造模型,提出华北新太古代豆荚状铬铁矿扩张中心形成后的显微构造演化序列,豆荚状铬铁矿变形机制的研究,可以提供认识早期大洋上地幔动力学过程的新线索。  相似文献   

3.
对豆荚状铬铁矿床成因的认识   总被引:15,自引:1,他引:15  
周美付 《矿床地质》1994,13(3):242-249
文章提出豆荚状铬铁矿床不是上地幔局部溶融后的残余物,而是亏损地幔又经部分溶融形成的溶体发生液相不混溶,导致硅酸盐岩浆和富铬矿浆的形成。当比重不同高度分馏的溶体在上升过程发生了分离,轻熔体上升侵入于岩浆房、重熔体和铬铁矿浆,就地堆积或贯入围岩形成豆荚状铬铁矿床。豆荚状铬铁矿的伴生围岩纯橄岩,不是高度亏损的上地幔残余,可能是与铬铁矿浆伴随的一种硅酸盐熔体 。与大量纯橄岩脉伴随的基性岩、超基性岩脉,也属  相似文献   

4.
为了厘清铬铁矿床母岩浆的含水性及水在铬铁矿成矿中的作用,本文从岩石矿物学角度对与铬铁矿床有关的三类岩体进行了对比。蛇绿岩和大型层状镁铁-超镁铁岩体是铬铁矿床的主要载体,而弧岩浆堆晶成因的阿拉斯加型岩体则以铬铁矿化为主,少有经济价值的铬铁矿床。前两者均缺少独立产出的含水矿物,表明为典型的贫水体系,与其铬铁矿中含水矿物包裹体和流体包裹体所推测的母岩浆富水特征相悖;贫矿的阿拉斯加型岩体产出大量的含水矿物,与其产出于富水-高氧逸度的俯冲构造背景相一致。因此,岩浆的高含水量并不是铬铁矿成矿的关键。结合实验岩石学结果,我们认为铬铁矿的结晶应与岩浆演化过程中的水饱和及流体不混溶有关,铬铁矿的表面吸附水对铬铁矿的运移富集起到了重要作用。这些表面吸附水最主要是造成了铬铁矿周边橄榄石的蛇纹石化,形成铬铁矿体的选择性蚀变,有时可以进入橄榄石甚至是铬铁矿晶格,发生矿物出溶现象,亦可与演化的熔体混合形成结晶粒间矿物(以辉石为主),也有可能被生长的铬铁矿所包裹形成包裹体。  相似文献   

5.
太古宙绿岩带中铬铁矿床不仅具有重要经济价值,而且是研究地球早期物质组成和地幔演化的重要对象。太古宙铬铁矿床形成时代久远,普遍经历了后期复杂的变质、变形和流体改造等一系列地质作用。相较于显生宙豆荚状铬铁矿和元古宙层状铬铁矿,对太古宙绿岩带内产出铬铁矿的研究还较为薄弱,尤其对铬铁矿体形成的地质背景和岩浆作用缺乏深入系统的研究。本文综述了格陵兰、印度、澳大利亚西部、加拿大以及津巴布韦等典型太古宙绿岩带中铬铁矿床的主要地质特征和研究现状,讨论了相关科学问题和研究展望。绿岩带中铬铁矿床主要产在古太古代-新太古代(3.3~2.7Ga)克拉通内的超基性岩石单元中,矿体常与蛇纹石化纯橄岩伴生。铬铁矿体产状复杂,既有层状和似层状,也有透镜状和不规则状,因此不能简单归于层状铬铁矿或豆荚状铬铁矿。铬铁矿岩以块状为主,其铬铁矿Cr#相对较高(>60),属高铬型,Mg#中等偏高(21~93)且与Cr#呈负相关关系。研究认为,绿岩带中铬铁矿的成矿母岩浆来自深部亏损含水地幔分异所形成的科马提质岩浆,且受到了地壳物质混染。在开放的岩浆房内,含矿原...  相似文献   

6.
豆荚状铬铁矿:古大洋岩石圈残片的重要证据   总被引:16,自引:2,他引:16  
豆荚状铬铁矿为蛇绿岩的特征性矿产 ,保留了上地幔岩浆构造作用、高温变形以及岩石成因的重要信息。它们常见于方辉橄榄岩内 ,位于大洋岩石圈莫霍面下 1~ 2km的古深度范围内。豆荚状铬铁矿常被纯橄岩薄壳围限 ,保留特征的豆状、豆壳状等构造。豆荚状铬铁矿的TiO2 含量较低 ,铂族元素 (PGE)的分布模式显示特征的负斜率。普遍认为 ,豆荚状铬铁矿形成于部分熔融条件下 ,涉及原始地幔熔体与亏损地幔橄榄岩的相互作用 ,伴随复杂的岩浆混合及结晶过程。狭窄的上地幔岩浆通道或孔穴为豆荚状铬铁矿理想的堆积部位。超俯冲带 (弧后盆地、岛弧、弧前 )、大洋中脊、转换断层均可能是豆荚状铬铁矿形成的理想环境。其中 ,洋脊扩张模式及大洋上俯冲带模式较好地解释了豆荚状铬铁矿成因。对于经历高级变质及多期变形的华北大陆基底 ,豆荚状铬铁矿是研究古老蛇绿岩最直接而有效的地质标志 ,对于研究古大洋岩石圈增生过程 ,上地幔演化 ,探索早期板块构造意义重大。  相似文献   

7.
田亚洲  杨经绥  杨华燊  田云雷 《地质学报》2019,93(10):2639-2655
新疆萨尔托海高Al型铬铁矿中几乎不含原生的铂族矿物(PGM)和贱金属硫化物(BMS)包体,显示出成矿岩浆贫硫的特征。BMS多产于铬铁矿铬粒间裂隙、基质及蚀变环带中,主要以赫硫镍矿和针镍矿为主,其次为辉铜矿、砷镍矿、硫砷镍矿、毒砂等。PGM以包体产于BMS或铬铁矿粒间缝隙中,以硫钌矿(RuS2)为主,还包括硫锇矿(OsS2)、硫镍锇矿\[(Os,Ni)S2\]、硫钌锇矿\[(Ru,Os)S2\],锑钯矿(Pd5Sb2)和少量Cu、Pt、Au的硫化物。铬铁矿全岩ΣPGE含量50. 64×10-9~92. 00×10-9,较世界范围内蛇绿岩型铬铁矿低,且具有IPGE较PPGE富集的特点,PdN/IrN在0. 1~0. 9之间,具有Os相对Ir富集的特点。铬铁矿主量元素和原位微量元素显示出与菲律宾阿科杰高Al型铬铁矿以及MORB中尖晶石相似的地球化学特征。根据萨尔托海铬铁矿中PGM及BMS的种类、产出特征,结合铬铁矿全岩PGE及单矿物微量元素地球化学特征,认为铬铁矿的形成与贫硫的拉斑玄武质岩浆与地幔橄榄岩的熔体岩石反应有关。铬铁矿形成后的晚期岩浆阶段使得自形程度较高的PGM(如硫锇矿)和BMS(如赫硫镍矿)形成,随后向热液阶段转变的过程中,由于温压条件改变、热液蚀变,形成了萨尔托海铬铁矿中Fe- Ni- As- S和PGM矿物组合。  相似文献   

8.
众所周知,铬铁矿是典型的岩浆产物,它的形成主要是由于超基性岩浆中分散的Cr_2O_3.聚集的结果.因此对超基性岩中Cr_2O_3分布规律的研究,有助于分析岩浆分异作用和成矿作用,从而为评价超基性岩体的含矿(铬)性提供依据.实际资料表明,北祁连山超基性岩体中,凡是Cr_2O_3含量较高且变化较大的岩体,往往为成矿的岩体.而Cr_2O_3含量的高低,变化程度的大小,又直接与岩体的成矿规模有关.  相似文献   

9.
豆荚状铬铁矿是蛇绿岩套地幔构造岩中特征的矿产 ,其矿石发育丰富的岩浆 -变形结构构造类型 ,对认识大洋上地幔成因及其成矿过程具有重要意义。对遵化新太古代豆荚状铬铁矿的深入研究 ,发现它们发育了丰富的岩浆结构 (豆状结构、豆壳状结构等 ) ,还保留了大量凝缩标志和旋转特征。对比分析其各种特征结构发现豆状结构是由浸染状结构逐步演化形成的 ,并且旋转和凝缩是形成豆状结构的主要机理。豆荚状铬铁矿以其独特而稳定的物理化学特性 ,记录了大洋地幔深部岩浆活动(特别是扩张中心原始岩浆活动 )以及大洋岩石圈运动过程。因此 ,研究其成因机制能够为研究大洋上地幔动力学机制提供重要线索  相似文献   

10.
一、铬铁矿床类型及其在基性、超基性岩体中的分布特征铬铁矿床是典型的岩浆矿床,其成矿过程与成岩过程紧密相关。尽管铬铁矿的成矿过程受多种地质因素的影响,但起主导作用的是生成基性、超基性岩的岩浆本身的特征。  相似文献   

11.
As the water concentration in magma decreases during magma ascent, olivine-hosted melt inclusions will reequilibrate with the host magma through hydrogen diffusion in olivine. Previous models showed that for a single spherical melt inclusion in the center of a spherical olivine, the rate of diffusive reequilibration depends on the partition coefficient and diffusivity of hydrogen in olivine, the radius of the melt inclusion, and the radius of the olivine. This process occurs within a few hours and must be considered when interpreting water concentration in olivine-hosted melt inclusions. A correlation is expected between water concentration and melt inclusion radius, because small melt inclusions are more rapidly reequilibrated than large ones when the other conditions are the same. This study investigates the effect of diffusive water loss in natural samples by exploring such a correlation between water concentration and melt inclusion radius, and shows that the correlation can be used to infer the initial water concentration and magma ascent rate. Raman and Fourier transform infrared spectroscopy measurements show that 31 melt inclusions (3.6–63.9 μm in radius) in six olivines from la Sommata, Vulcano Island, Aeolian Islands, have 0.93–5.28 wt% water, and the host glass has 0.17 wt% water. The water concentration in the melt inclusions shows larger variation than the data in previous studies (1.8–4.52 wt%). It correlates positively with the melt inclusion radius, but does not correlate with the major element concentrations in the melt inclusions, which is consistent with the hypothesis that the water concentration has been affected by diffusive water loss. In a simplified hypothetical scenario of magma ascent, the initial water concentration and magma ascent rate are inferred by numerical modeling of the diffusive water loss process. The melt inclusions in each olivine are assumed to have the same initial water concentration and magma ascent rate. The melt inclusions are assumed to be quenched after eruption (i.e., the diffusive water loss after eruption is not considered). The model results show that the melt inclusions initially had 3.9–5.9 wt% water and ascended at 0.002–0.021 MPa/s before eruption. The overall range of ascent rate is close to the lower limit of previous estimates on the ascent rate of basalts.  相似文献   

12.
P. Peltonen  K. A. Kinnunen  H. Huhma 《Lithos》2002,63(3-4):151-164
Diamondiferous Group A eclogites constitute a minor portion of the mantle-derived xenoliths in the eastern Finland kimberlites. They have been derived from the depth interval 150–230 km where they are inferred to occur as thin layers or small pods within coarse-grained garnet peridotites. The chemical and isotopic composition of minerals suggest that they represent (Proterozoic?) mantle-derived melts or cumulates rather than subducted oceanic lithosphere. During magma ascent and emplacement of the kimberlites, the eclogite xenoliths were mechanically and chemically rounded judging from the types of surface markings. In addition, those octahedral crystal faces of diamonds that were partially exposed from the rounded eclogite xenolith became covered by trigons and overlain by microlamination due to their reaction with the kimberlite magma. The diamonds bear evidence of pervasive plastic deformation which is not, however, evident in the eclogite host. This suggests that annealing at ambient lithospheric temperatures has effectively recrystallised the silicates while the diamond has retained its lattice imperfections and thus still has the potential to yield information about ancient mantle deformation. One of our samples is estimated to contain approximately 90,000 ct/ton diamond implying that some diamonds occur within very high-grade pods or thin seams in the lithospheric mantle. To our knowledge, this is one of the most diamondiferous samples described.  相似文献   

13.
The chromitite-bearing peridotites of the Zambales mafic-ultramafic complex form the lowermost level of the Zambales ophiolite, which exposes a complete ophiolitic sequence. The chromitites occur close to the peridotite/gabbro transition zone.The chromite orebodies are structurally classified into three major types: (1) concordant tabular deposits, (2) strings of pods and (3) pocketlike deposits.Concordant tabular deposits show a gradational transition from chromitite to host rock (modal grading) and are characterized by the parallelism of ore and host-rock structures. Primary magmatic features like inch-scale layering, size grading, glomeroporphyric chromite aggregates, skeletal chromite growth and adcumulus growth (cumulus textures) are common.The concordant chromite bodies are often tectonically disrupted and boudined forming strings of pods or fault-controlled pocketlike deposits. With increasing tectonization chromite shows pull-apart textures and lineations (plastic deformation), shearing, prismatic jointing, brecciation and mylonitization (brittle deformation). Recrystallization of cataclastic chromite occurs on a microscopic scale.Plastic deformation is caused by mantle flow and/or the volume increase of the peridotites during serpentinization. The influence of mantle flow is indicated by the orientation of the pod strings and lineations in chromitite perpendicular to the ridge axis. Brittle deformation of chromite (cataclasis) and disruption by faults is related to the emplacement of the ophiolite.  相似文献   

14.
《Journal of Structural Geology》1999,21(8-9):1161-1173
Diapirism as a crustal magma ascent mechanism has been recently criticized. We contend that this reflects an overly simplistic view that diapirs must resemble modeled hot-Stokes diapirs and the perception that magma ascent in dikes is a more problem-free mechanism for the construction of plutons. We describe four Cordilleran plutons that have characteristics much more compatible with diapirs than dike-fed chambers. These plutons were emplaced at depths ranging from ∼10 to 30 km and record different parts of diapiric ascent paths. Most ascended during complex visco-elastic flow of host rock during regional deformation, have narrow structural aureoles indicating power-law behavior of host rock, and were constructed of multiple batches of magma, attributes enabling them to ascend greater distances than single hot-Stokes diapirs. Some features of these plutons are not typically attributed to diapirs, and thus we introduce the term visco-elastic diapir for bodies consisting of one or more batches of magma rising together, with length to width ratios <100, surrounded by host rock deforming by brittle and ductile processes, and for which ascent is driven by buoyancy plus regional stress. We conclude that diapirism remains a valid magma ascent mechanism for the crust.  相似文献   

15.
The Bir Tuluha ophiolite is one of the most famous chromitite-bearing occurrences in the Arabian Shield of Saudi Arabia, where chromitite bodies are widely distributed as lensoidal pods of variable sizes surrounded by dunite envelopes, and are both enclosed within the harzburgite host. The bulk-rock geochemistry of harzburgites and dunites is predominately characterized by extreme depletion in compatible trace elements that are not fluid mobile (e.g., Sr, Nb, Ta, Hf, Zr and heavy REE), but variable enrichment in the fluid-mobile elements (Rb and Ba). Harzburgites and dunites are also enriched in elements that have strong affinity for Mg and Cr such as Ni, Co and V. Chromian spinels in all the studied chromitite pods are of high-Cr variety; Cr-ratio (Cr/(Cr + Al) atomic ratio) show restricted range between 0.73 and 0.81. Chromian spinels of the dunite envelopes also show high Cr-ratio, but slightly lower than those in the chromitite pods (0.73–0.78). Chromian spinels in the harzburgite host show fairly lower Cr-ratio (0.49–0.57) than those in dunites and chromitites. Platinum-group elements (PGE) in chromitite pods generally exhibit steep negative slopes of typical ophiolitic chromitite PGE patterns; showing enrichment in IPGE (Os, Ir and Ru), over PPGE (Rh, Pt and Pd). The Bir Tuluha ophiolite is a unimodal type in terms of the presence of Ru-rich laurite, as the sole primary platinum-group minerals (PGM) in chromitite pods. These petrological features indicates that the Bir Tuluha ophiolite was initially generated from a mid-ocean ridge environment that produced the moderately refractory harzburgite, thereafter covered by a widespread homogeneous boninitic melt above supra-subduction zone setting, that produced the high-Cr chromitites and associated dunite envelopes. The Bir Tuluha ophiolite belt is mostly similar to the mantle section of the Proterozoic and Phanerozoic ophiolites, but it is a “unimodal” type in terms of high-Cr chromitites and PGE-PGM distribution.  相似文献   

16.
One of the most puzzling features of the UG1 chromitite layers in the famous exposures at Dwars River, Eastern Bushveld Complex, is the bifurcation, i.e. convergence and divergence of layers along strike that isolate lenses of anorthosite. The bifurcations have been variously interpreted as resulting from: (1) the intermittent accumulation of plagioclase on the chamber floor as lenses, terminated by crystallization of continuous chromitite layers (the depositional model); (2) late-stage injections of chromite mush or chromite-saturated melt along anastomosing fractures that dismembered semi-consolidated plagioclase cumulates (the intrusive model); (3) post-depositional deformation of alternating plagioclase and chromite cumulates, resulting in local amalgamation of chromitite layers and anorthosite lenses that wedge out laterally (the deformational model). None of these hypotheses account satisfactorily for the following field observations: (a) wavy and scalloped contacts between anorthosite and chromitite layers; (b) abrupt lateral terminations of thin anorthosite layers within chromitite; (c) in situ anorthosite inclusions with highly irregular contacts and delicate wispy tails within chromitite; many of these inclusions are contiguous with footwall and hanging wall cumulates; (d) transported anorthosite fragments enclosed by chromitite; (e) disrupted anorthosite and chromitite layers overlain by planar chromitite; (f) protrusions of chromitite into underlying anorthosite; (g) merging of chromitite layers around anorthosite domes. We propose a novel hypothesis that envisages basal flows of new dense and superheated magma that resulted in intense thermo-chemical erosion of the temporary floor of the chamber. The melting and dissolution of anorthosite was patchy and commonly inhibited by chromitite layers, resulting in lens-like remnants of anorthosite resting on continuous layers of chromitite. On cooling, the magma crystallized chromite on the irregular chamber floor, draping the remnants of anorthosite and merging with pre-existing chromitite layers excavated by erosion. With further cooling, the magma crystallized chromite-bearing anorthosite. Emplacement of multiple pulses of magma led to repetition of this sequence of events, resulting in a complex package of anorthosite lenses and bifurcating chromitite layers. This hypothesis is the most satisfactory explanation for most of the features of this enigmatic igneous layering in the Bushveld Complex.  相似文献   

17.
The ascent and emplacement of granites in the upper crust is a major geological phenomenon accomplished by a number of different processes. The active processes determine the final geometry of the bodies and, in some favourable cases, the inverse problem of deducing mechanisms can be undertaken by relying on the geometry of plutons. This is the case of the La Bazana granitic pluton, a small Variscan igneous body that intruded Cambrian rocks of the Ossa-Morena Zone (SW Iberian Massif) in the core of a large late upright antiform. The granite shows no appreciable solid-state deformation, but has a late magmatic foliation whose orientation, derived from field observations, defines a gentle dome. The regional attitude of the main foliation in the country rock (parallel to the axial plane of recumbent folds) is NW–SE, but just around the granite, it accommodates to the dome shape of the pluton. Flattening in the host rock on top of the granite is indicated by boudinaged and folded veins, and appears to be caused by an upward pushing of the magma during its emplacement. The dome-shaped foliation of the granite, geometrically and kinematically congruent with the flattening in the host rock, can be related in the same way to the upward pushing of the magma. The level of final emplacement was deduced from the mineral associations in the thermal aureole to be of 7–10 km in depth. Models of the gravity anomaly related to the granite body show that the granite has a teardrop–pipe shape enlarged at its top. Diapiric ascent of the magma through the lower middle crust is inferred until reaching a high viscous level, where final emplacement accompanied by lateral expansion and vertical flattening took place. This natural example suggests that diapirism may be a viable mechanism for migration and emplacement of magmas, at least up to 7–10 km in depth, and it provides natural evidence for theoretical discussion on the ability of magmatic diapirs to pierce the crust.  相似文献   

18.
Kefdag and Soridag chromite pods occur in upper mantle residual peridotites, which consist of harzburgite and dunites. The peridotites represent the residual of multistage, depleted upper-mantle peridotites. The chromitite bodies were formed during the uprising of chromium-rich picritic melts, through the residual upper mantle diapir, along the magma conduits. Chromitite grains were deposited in the caves of the magma conduits under the control of the convection currents.  相似文献   

19.
《Journal of Structural Geology》1999,21(8-9):1125-1130
Integrated studies that correlate gravity data with magmatic structures or geochemical analysis reveal that the organization of granitic plutons (shape and feeder) varies according to the tectonic regime (brittle or ductile) and type (extension, strike-slip or compression) under which magma was generated. Deformation clearly controls granite emplacement. It also has influence during the ascent, segregation of melt and indirectly during the phase of initial melting. Because of the contrast of viscosity between melt and its plastic matrix, strain partitioning develops during magma ascent that facilitates melt flow, which bears consequences for the chemical evolution of the magma. Fast rate of melt extraction out of the source may lead to chemical disequilibrium. At a larger scale, petrochemical zoning of plutons is described as a dynamic process that results from the competition between the rate of magma emplacement (the rate of the room provided by deformation) and the rate of magma delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号