首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemical sediments are common and diverse in the c. 3500 Myr old North Pole chert-barite unit in the Warrawoona Group, Western Australia. Although almost all original minerals were replaced during hydrothermal alteration, metamorphism and deformation, pseudomorphic relics of sedimentary and diagenetic textures and structures show that at least six lithofacies were partly or wholly chemical in origin. These contained five main chemical sedimentary components: primary carbonate mud, diagenetic carbonate crystals, primary sulphate crystals, diagenetic sulphate crystals and diagenetic sulphate nodules. All show a wide range of characteristics consistent only with a marine evaporative origin. Diagenetic carbonate and sulphate crystals, once ferroan dolomite and gypsum, were precipitated within volcanogenic lutites high on littoral mudflats. The other evaporative phases were apparently deposited behind a barrier bar composed of stranded pumice rafts. Primary sulphate crystals, once gypsum and now barite, were precipitated in semi-permanent pools immediately behind the bar. Primary carbonate mud, originally calcitic or aragonitic but now silicified, was deposited in nearby channels and on surrounding mudflats. Within these sediments, diagenetic carbonate crystals (formerly ferroan dolomite) and diagenetic sulphate nodules and crystals (once gypsum) grew during later desiccation. The existence of these evaporites, and more like them in the sediments of other Early Archaean cratons, suggests that shallow marine and terrestrial conditions prevailed over a small but significant portion of the early Earth, contrary to some models of global tectonic evolution. Their overall similarity with more recent evaporitic deposits indicates that there was greater conformity between conditions in modern and primeval sea-shore environments than might be expected, given the great age difference. The attitude implicit in many accounts of Earth's early history, that evaporites were either not deposited or not preserved in Archaean sediments, thus seems to be incorrect.  相似文献   

2.
Siderite (FeCO3) is a widespread minor diagenetic mineral in clastic sedimentary basins. Although eodiagenetic authigenesis of siderite is well-known, siderite formed during burial diagenesis shows habits and chemical compositions that are poorly understood. This study tests the hypothesis that diagenetic siderite cements in sandstones in the Scotian Basin, offshore eastern Canada, show systematic variability in chemistry and habit that is a response to recrystallization and changing composition of basinal fluids. Mineral textures were determined from backscattered electron images, and chemistry mostly from electron microprobe analyses. Five chemical types of siderite are identified using k-means cluster analysis, based on the amount of substitution of Ca, Mg and Mn for Fe. Eodiagenetic microcrystalline coated grains, concretions and intraclasts in sandstones are principally Fe-rich siderite and locally have recrystallised to blocky equant crystals. Mesodiagenetic Mg-rich siderite partly replaced these equant crystals and also framework mica and K-feldspar grains, showing textural evidence for coupled dissolution–reprecipitation. Slender Mg-rich siderite rhombs (lozenges, bladed or wheat-seed siderite) have precipitated before and after the formation of quartz overgrowths in geochemical microenvironments. Magnesium substitution reflects Mg-rich formation waters resulting from smectite to illite conversion. Equivalent Ca-rich siderite occurs where sandstones overlie a Jurassic carbonate bank. Late Mn-rich siderite has complex textures resembling those of Mississippi-Valley type ores, with spheroidal rims, a honeycomb-like mesh and concentric infill around secondary pores. It also occurs in veins or replacing intraclasts, post-dating late ferroan-calcite cements in sandstones that show strong dissolution by hot basinal brines. The Ca, Mg and Mn content of diagenetic siderite, coupled with textural evidence for recrystallization, can thus be used to track changes in ambient formation fluids. Siderite habits and chemistry described from the Scotian Basin are found in many clastic basins, suggesting that the observed recrystallization textures and variation in chemical type are of broad application.  相似文献   

3.
Tourmalinite is a common rock type associated with Proterozoic strata-bound mineral deposits. Although common, it is often difficult to recognise in the field, leading to misidentification. It occurs as a conformable banded quartz-tourmaline lithological unit comprising at least 15% and as much as 50% of the rock. At Rum Jungle, tourmalinite occurs within the oldest sediments (arenites and magnesites) as distinct lenses, as facies equivalents of quartz-magnetite units and mafic schists (tuffs?) and distal equivalents of polymetallic sulfides. Distinct layering, slump folding, rip-up clasts and the association with diagenetic pyrite suggest a sedimentary environment. Enechelon fracturing of the fine-grained, light green tourmaline crystals spectacularly supports pre-deformation formation. The crystals are optically and chemically zoned parallel to the c axis, with irregular growth lamellae width — which supports a pre-regional metamorphic origin. Analyses show the tourmaline to be the Mg-rich variety “dravite”. Most tourmalinites are interpreted as subaqueous marine deposits. It is more likely that they form in lacustrine, shallow water, evaporitic environments, particularly continental rifts. Suitable B-bearing fluids can be generated by hotspring activity and mobilized by CO2-rich fluids. Association with chemical sediments suggests tourmalinites also have a chemical sediment precursor. Ample evidence at Rum Jungle supports the notion of a continental rift environment, which was the site of deposition of fluvial arenites and alkaline, evaporitic lake sediments. Localised hot-spring activity contributed B-bearing fluids which precipitated chemical sediments according to the pertaining pH, temperature etc. Diagenetic alteration produced the tourmalinite now present. These tourmalinites are comparable to those of similar age elsewhere e.g. Sullivan, Broken Hill. They can be genetically modelled upon Recent borate concentrations, all of which occur in continental rift environments.  相似文献   

4.
震旦系陡山沱组磷块岩的成岩作用和成岩环境   总被引:1,自引:0,他引:1  
本文重点讨论了磷块岩的成岩作用及其与沉积环境的联系,进而提出了磷块岩成岩环境的五个序列。各成岩自然序列,具有各自独岩的成岩作用特点,代表着不同成岩作用环境。不同成岩环境又与不同的磷酸盐相和沉积环境有关,且在很大程度上依赖于原始沉积及其环境的发展和演化。 探讨磷块岩成岩作用必须考虑到成岩作用发生过程的地质历史演化和条件,必须联系其环境背景。  相似文献   

5.
在地表环境下,钙华沉积常常是物理化学和生物沉积过程共同作用的结果。藻类因其在钙华沉积环境中具有较大的生物量及其自身拥有多样的代谢方式,对钙华沉积过程和形态具有重要影响。本研究以四川黄龙钙华为例,通过对典型沉积点的水化学、藻类群落组成和现代钙华微岩相结构进行综合分析,来揭示藻类在钙华沉积中的作用。研究发现,黄龙钙华沉积环境中分布的藻类主要包括蓝藻、绿藻和硅藻等。这些藻类代谢活动会在一定程度上改变沉积水体水化学环境,但在快速流动的水体中,其影响有限。不同藻类群落常常形成几百微米至1~2 mm厚的微生物席或生物膜层,作为碳酸钙沉积发生的重要场所,即钙华沉积活动层。在该活动层内,藻体及其分泌的胞外聚合物(EPS)能够为碳酸钙晶体生长提供大量成核位点和生长模板,从而极大地促进钙华沉积。同时,EPS可以控制或影响碳酸钙结晶形态及钙华微岩相结构。准确认识和量化藻类在钙华沉积中的作用还需要继续开展更多微观尺度方面的研究,以便更好地理解钙华沉积机制,并为准确解译古老钙华岩相结构和地球化学特征奠定基础,同时为预测钙华景观演化和保育提供更多科学依据。   相似文献   

6.
Manganese carbonate deposits in Japanese Jurassic sedimentary rocks were studied petrogeochemically. The deposits are characteristically composed of spheroidal micronodules, up to 1 mm in diameter, and always contain well-preserved radiolarian shells. Chemical elemental composition and mineralogical characteristics indicate that the micronodules contain rhodochrosite in a mixed carbonate phase composition (Mn86.7?92.2Ca2.2?2.9Mg2.6?6.7Fe2.6?5.6)CO3 Carbon and oxygen isotope values, which range from ?7.99 to ?4.78‰ and ?4.05 to 0.28‰ relative to PDB, respectively, suggest that the manganese carbonate was precipitated in a suboxic zone. The micronodules closely resemble agglutinated benthic foraminifera in shape. We suggest that agglutinated foraminiferal tests composed of radiolarian shells accumulated selectively on the sediment surface during redeposition of bottom sediments and were replaced by manganese carbonate in suboxic diagenetic conditions of manganese reduction.  相似文献   

7.
Currently, sedimentologists focus on the challenging issue of microbial carbonates, which are regarded as "one of the sedimentary rocks most difficult to study", having complicated sedimentary fabric. Their characteristic features closely related to microbial activity, distributed over a long period of geological time, and formed in diversified sedimentary environments. The main research concentrations are the calcified microbial mats and biofilms in geological records as the products of lithification and diagenesis. Starting from the origin, this paper systematically reviewed and explained the processes dwelling within two types of microbial communities, the thinner biofilm and the thicker microbial mat, which enabled them to convert into microbial carbonates through biomineralization and lithification. This study proposed that the existence of multiple microbial mats was another important cause for the diversification and complexity of microbial carbonates in addition to its complex depositional process. Moreover, the sedimentary characteristics and classification of different types of microbial carbonates were reviewed, exemplifying the Cambrian microbial carbonates in the North China Platform. These microbial carbonates are suggested to be placed under "bindstone" after Embry and Kloven, which can be further divided into 5 types, stromatolites, thrombolites, oncolites, laminites and leiolites. Dendrolite is not categorized as a separate class, instead attributed to thrombolites. The microbial carbonates may possess good source rock potential because of the enriched organic content, and may also serve as hydrocarbon reservoirs because of certain microbial textures and fabrics leading to significant porosity and permeability. Because of their biomineralization processes related to microbial activity, the microbial carbonates are not only an important window to understand the evolution of the earth's surface environment, but also capable of forming large-scale reservoirs, and their scientific and economic values are self-evident.  相似文献   

8.
Dolomite [CaMg(CO3)2] is abundant in sedimentary rocks throughout the geological record, but it is rarely found in modern sediments. Also, it cannot be precipitated under low‐temperature conditions in the laboratory without microbial mediation and, as a result, its origin remains a long‐standing enigma. This study reports biologically mediated dolomite precipitation in ancient microbial mats and biofilms from the Cambrian Tarim Basin. The ambient temperature at the time of dolomite precipitation was estimated from δ18O values from early diagenetic dolomite, and the presence of structures associated with extracellular polymeric substances (EPS), is composed of fibres arranged in a reticular pattern, would favour epitaxial crystallization of dolomite on an organic substrate. In addition, poorly crystallized dolomite formed nanocrystal aggregates that strongly resemble the morphology and size distribution observed in microbial culture experiments. These lines of evidence confirm that microbial structures can be preserved in ancient dolomite and validate their use as biosignatures.  相似文献   

9.
A balance between primary production, rates of sediment accumulation or dilution, and biological or diagenetic destruction has long been considered a key control on organic carbon preservation in modern offshore marine environments. Additionally, current understanding of sediment transport processes in offshore environments has advanced in the last decade to include variable energy and dynamic mechanisms, requiring a re‐evaluation of ancient deposits in these systems. The Juana Lopez Member of the Mancos Shale preserves organic carbon‐rich mudstone interbedded and interlaminated with sandstone that records high energy traction flow conditions. Core, outcrop and geochemical data from the Juana Lopez Member were used to elucidate sediment provenance and processes controlling organic carbon preservation and distribution in this mudstone‐dominated system. Five dominant lithofacies with varying grain size, sedimentary fabrics, composition and grain origins were differentiated and were deposited in three main environments: the prodelta, fringe zone and low angle offshore ramp. Basal deposits of the Juana Lopez Member consist of siliceous sandstone‐dominated, heterolithic deposits with characteristic sedimentary structures (for example, current ripples and normal grading) that indicate offshore‐directed underflows, or hyperpycnites, delivered from the updip Ferron/Frontier deltaic system. In the upper portion of the Juana Lopez Member, a compositional change to biogenic carbonate‐rich sandstone and mudstone is interpreted to be as a result of increased accommodation in central Utah (USA), associated base‐level rise and shoreline‐parallel sediment transport. Non‐parallel laminated, organic carbon‐rich mudstone is preserved throughout the Juana Lopez Member. Depositional fabrics and trace element signatures suggest that these deposits are the result of dynamic conditions at the sea floor and in the oxic to suboxic water column, further challenging the notion that organic‐bearing mudstone is deposited solely through suspension settling in anoxic waters. Punctuated delivery of organic carbon laden sediment from mixed terrestrial and marine sources resulted in an event‐bed style of organic carbon deposition and preservation.  相似文献   

10.
Barite-celestite crystals can be synthesized from aqueous solutions during counter-diffusion in a gel column connecting two reservoirs. It is known that such crystals may exhibit oscillatory zoning, whereby the barium composition in the crystal fluctuates more or less regularly from the core of the crystal to its rim. We present here a simple model of oscillatory zoning in such binary solid solutions A1A2 grown from aqueous solutions. The model combines diffusive transport of the relevant ions with an autocatalytic growth process. The latter is formulated as a continuous growth in which the probability of finding a kink site on the growing surface depends on the chemical composition of that surface. Thus, an A1-rich surface favors the growth of A1 over A2, as long as A1 is present in the vicinity of the surface. Precipitation results in a local depletion of A1 in the aqueous solution, and the system may switch to a A2 growth mode, until diffusion replenishes the amount of A1, and so on. We use a dynamical equation for the molar fraction of component A1 in the crystal, which results from mass conservation across the rough crystal-solution interface. Linear stability analysis and direct numerical solutions show that the system exhibits oscillatory behavior. Using the barite-celestite system as a framework, the scaling is consistent with the experimental observations. We discuss the variety of zoning patterns and textures numerically obtained as the concentrations of reactants in the reservoirs vary. This model might help in understanding the formation of oscillatory zoning in hydrothermal environments.  相似文献   

11.
Two groups of perennial springs are observed in the Canadian High Arctic at Expedition Fjord on Axel Heiberg Island at Colour Peak and Gypsum Hill. Saline discharge (∼1.3–2.5 molal NaCl) produces a variety of calcite (travertine) and gypsum-rich precipitates. Saturation index calculations of the spring waters at Colour Peak suggest CO2 degassing from the waters causes calcite precipitation. Gypsum precipitation dominates at Gypsum Hill, where spring waters have lower alkalinity and higher SO4 concentrations. Mineral accumulations form both channel and rimstone pool morphologies as a result of varying slope conditions. At Colour Peak, confined flow in steep slope areas develop massive structures in contrast to more friable, porous accumulations in areas where waters fan out on shallower slopes; these morphological variations lead to corresponding varying apparent rates of mineral precipitation. Mineral precipitation at Gypsum Hill is far less notable as a result of lower discharge rates and annual degradation by icing formation. Microscopic observations and geochemical analyses of the channel precipitates at Colour Peak reveal alternating light (calcite spar) and dark (anhedral microcrystalline calcite combined with organic matter and non-carbonate minerals) laminae. Rimstone pools forming in lower sections of spring discharge are composed of accumulations of large euhedral calcite crystals interbedded with allochthonous inputs. High concentration of dissolved solids is responsible for slow travertine precipitation rates, which occurs during winter. This precipitation is further retarded during summer months by the introduction of crystal growth inhibitors such as Fe3+ and deposition of organic matter and soil sediments.  相似文献   

12.
The Trooper Creek Formation is a mineralised submarine volcano‐sedimentary sequence in the Cambro‐Ordovician Seventy Mile Range Group, Queensland. Most of the Trooper Creek Formation accumulated in a below‐storm‐wave‐base setting. However, microbialites and fossiliferous quartz‐hematite ± magnetite lenses provide evidence for local shoaling to above fairweather wave‐base (typically 5–15 m). The microbialites comprise biogenic (oncolites, stromatolites) and volcanogenic (pumice, shards, crystal fragments) components. Microstructural elements of the bioherms and biostromes include upwardly branching stromatolites, which suggest that photosynthetic microorganisms were important in constructing the microbialites. Because the microbialites are restricted to a thin stratigraphic interval in the Trooper Creek area, shallow‐water environments are interpreted to have been spatially and temporarily restricted. The circumstances that led to local shoaling are recorded by the enclosing volcanic and sedimentary lithofacies. The microbialites are hosted by felsic syneruptive pumiceous turbidites and water‐settled fall deposits generated by explosive eruptions. The microbialite host rocks overlie a thick association (≤?300 m) of andesitic lithofacies that includes four main facies: coherent andesite and associated autoclastic breccia and peperite; graded andesitic scoria breccia (scoriaceous sediment gravity‐flow deposits); fluidal clast‐rich andesitic breccia (water‐settled fall and sediment gravity‐flow deposits); and cross‐stratified andesitic sandstone and breccia (traction‐current deposits). The latter three facies consist of poorly vesicular blocky fragments, scoriaceous clasts (10–90%), and up to 10% fluidally shaped clasts. The fluidal clasts are interpreted as volcanic bombs. Clast shapes and textures in the andesitic volcaniclastic facies association imply that fragmentation occurred through a combination of fire fountaining and Strombolian activity, and a large proportion of the pyroclasts disintegrated due to quenching and impacts. Rapid syneruptive, near‐vent aggradation of bombs, scoria, and quench‐fragmented clasts probably led to temporary shoaling, so that subsequent felsic volcaniclastic facies and microbialites were deposited in shallow water. When subsidence outpaced aggradation, the depositional setting at Trooper Creek returned to being relatively deep marine.  相似文献   

13.
The origin of fine‐grained dolomite in peritidal rocks has been the subject of much debate recently and evidence is presented here for a microbial origin of this dolomite type in the Norian Dolomia Principale of northern Calabria (southern Italy). Microbial carbonates there consist of stromatolites, thrombolites, and aphanitic dolomites. High‐relief thrombolites and stromatolites characterize sub‐tidal facies, and low‐relief and planar stromatolites, with local oncoids, typify the inter‐supratidal facies. Skeletal remains are very rare in the latter, whereas a relatively rich biota of skeletal cyanophycea, red algae and foraminifera is present in the sub‐tidal facies. Some 75% of the succession consists of fabric‐preserving dolomite, especially within the microbial facies, whereas the rest is composed of coarse dolomite with little fabric preservation. Three end‐members of dolomite replacement fabric are distinguished: type 1 and type 2, fabric retentive, with crystal size <5 and 5–60 μm, respectively; and type 3, fabric destructive, with larger crystals, from 60 to several hundred microns. In addition, there are dolomite cements, precipitated in the central parts of primary cavities during later diagenesis. Microbialite textures in stromatolites are generally composed of thin, dark micritic laminae of type 1 dolomite, alternating with thicker lighter‐coloured laminae of the coarser type 2 dolomite. Thrombolites are composed of dark, micritic clotted fabrics with peloids, composed of type 1 dolomite, surrounded by coarser type 2 dolomite. Marine fibrous cement crusts are also present, now composed of type 2 dolomite. Scanning electron microscope observations of the organic‐rich micritic laminae and clots of the inter‐supratidal microbialites reveal the presence of spherical structures which are interpreted as mineralized bacterial remains. These probably derived from the fossilization of micron‐sized coccoid bacteria and spheroidal–ovoidal nanometre‐scale dwarf‐type bacterial forms. Furthermore, there are traces of degraded organic matter, probably also of bacterial origin. The microbial dolomites were precipitated in a hypersaline environment, most likely through evaporative dolomitization, as suggested by the excess Ca in the dolomites, the small crystal size, and the positive δ18O values. The occurrence of fossilized bacteria and organic matter in the fabric‐preserving dolomite of the microbialites could indicate an involvement of bacteria and organic matter degradation in the precipitation of syn‐sedimentary dolomite.  相似文献   

14.
Sediments and diatoms from the mudflats of the Bay of Bourgneuf in western France were examined in an electron microscope study of biofilms and microbial mats. The sediments were kept in an aquarium for study and a diatom culture was made of the benthic diatoms. The sediment biofilm was composed of exopolymeric substances (EPS), incorporated clay particles and, rarely, bacteria. This film coated all particles at the sediment-water interface. Its surface morphology reflected its composition and internal structure. Thin films were smooth, whilst a lumpy structure or incorporated fibrils produced either a mammillated or ropy surface, and clays in the structure gave rise to a flaky morphology. At shallow depths in the sediment column (0.5 cm) the biofilm was already degraded. The biofilm coating degraded diatom frustules in the benthic diatom culture consisted of EPS and bacteria and presented a ragged appearance. Microbial mats occurred on the surface of the fresh littoral sediments as well as those in the aquarium, and on the wall of the aquarium. The mat on the surface of the aquarium sediments had an open structure with webs of fibrils and bacteria in the pore space. It formed in a relatively quiet environment. Pore space was more limited in the mat from the surface of the fresh littoral sediments, in which direct contact between biofilm coated particles was common. In the exposed environment of the aquarium wall there was a thick, resistant coating of EPS. In addition to binding particles together, the presence of mats and biofilms in sediments affects sediment physical properties such as porosity and permeability, the flux of dissolved substances in pore waters and the dissolution of particles and can, therefore, influence early diagenesis. Mats and biofilms seem to be more readily preserved in the geological record than the micro-organisms, such as bacteria, which produce them. Their identification in the sedimentary record would greatly aid interpretation of sediment genesis and evaluation of the microbial role in sediment formation.  相似文献   

15.
Microbial deposits at Shark Bay constitute a diverse living microbial carbonate system, developed in a semi‐arid, highly evaporative marine setting. Three tidal flats located in different embayments within the World Heritage area were investigated in order to compare microbial deposits and their Holocene evolution. The stressing conditions in the intertidal–subtidal environment have produced a microbial ecosystem that is trapping, binding and biologically inducing CaCO3 precipitation, producing laminated stromatolites (tufted, smooth and colloform), non‐laminated thrombolitic forms (pustular) and cryptomicrobial non‐laminated forms (microbial pavement). A general shallowing‐upwards sedimentary cycle was recognized and correlated with Holocene sea‐level variations, where microbial deposits constitute the younger (2360 years bp ) and shallower sedimentary veneer. In addition, sediments have been documented with evidence of exposure during the Holocene, from 1040 to 940 14C years bp , when sea‐level was apparently lower than present. Filamentous bacteria constitute the dominant group in the blister, tufted and smooth mat types, and coccus bacteria dominate the pustular, colloform and microbial pavement deposit types. In the subtidal environment within colloform and pavement structures, microbial communities coexist with organisms such as bivalves, serpulids, diatoms, green algae (Acetabularia), crustaceans, foraminifera and micro‐gastropods, which are responsible for exoskeleton supply and extensive bioturbation. The internal fabric of the microbial deposits is laminated, sub‐laminar, scalloped, irregular or clotted, depending on the amount of fine‐grained carbonate and the natural ability of microbial communities to trap and bind particles or induce carbonate precipitation. Nilemah tidal flat contains the thickest (1·3 m) and best‐developed microbial sedimentary system; its deposition pre‐dated the Rocky Point and Garden Point tidal flats, with the most positive isotope values for δ13C and δ18O, reflecting strong microbial activity in a highly evaporative environment. There is an evolutionary series preserved within the tidal flats reflecting relative ages and degree of salinity elevation.  相似文献   

16.
Many (bio)geochemical processes that bring about changes in sediment chemistry normally begin at the sediment-water interface, continue at depth within the sediment column and may persist throughout the lifetime of sediments. Because of the differential reactivity of sedimentary phosphate phases in response to diagenesis, dissolution/precipitation and biological cycling, the oxygen isotope ratios of phosphate (δ18OP) can carry a distinct signature of these processes, as well as inform on the origin of specific P phases. Here, we present results of sequential sediment extraction (SEDEX) analyses combined with δ18OP measurements, aimed at characterizing authigenic and detrital phosphate phases in continental margin sediments from three sites (Sites 1227, 1228 and 1229) along the Peru Margin collected during ODP Leg 201. Our results show that the amount of P in different reservoirs varies significantly in the upper 50 m of the sediment column, but with a consistent pattern, for example, detrital P is highest in siliciclastic-rich layers. The δ18OP values of authigenic phosphate vary between 20.2‰ and 24.8‰ and can be classified into at least two major groups: authigenic phosphate precipitated at/near the sediment-water interface in equilibrium with paleo-water oxygen isotope ratios (δ18Ow) and temperature, and phosphate derived from hydrolysis of organic matter (Porg) with subsequent incomplete to complete re-equlibration and precipitated deeper in the sediments column. The δ18OP values of detrital phosphate, which vary from 7.7-15.4‰, suggest two possible terrigenous sources and their mixtures in different proportions: phosphate from igneous/metamorphic rocks and phosphate precipitated in source regions in equilibrium with δ18Ow of meteoric water. More importantly, original isotopic compositions of at least one phase of authigenic phosphates and all detrital phosphates are not altered by diagenesis and other biogeochemical changes within the sediment column. These findings help to understand the origin and provenance of P phases and paleoenvironmental conditions at/near the sediment-water interface, and to infer post-depositional activities within the sediment column.  相似文献   

17.
末次间冰期以来新疆巴里坤湖蒸发盐的沉积环境记录   总被引:25,自引:9,他引:16       下载免费PDF全文
沉积物岩芯的碳酸盐、石膏等蒸发盐含量和矿物组成的证据显示了新疆巴里坤湖末次间冰期以来一直是一个水位变化频繁的浅水盐湖,有时甚至为间歇式的湖泊,约在34000aB.P.前后巴里坤湖沉积相发生了显著的变化,34000aB.P.之前为泥坪-湖滨相沉积,34000aB.P.之后为成湖相沉积。尽管我们对巴里坤湖34000aB.P.前后的沉积相变难以理解,但是长期处于浅水状态的巴里坤湖沉积物中蒸发盐的含量和矿物组成仍然与气候变化密切相关。在泥坪-湖滨相形成的碳酸盐中白云石相对的增加是地表强烈蒸发的结果。以石膏为主的蒸发盐含量增加是温度和降水增加所致,而其含量减少则是冰川前进致使补给水矿化度降低造成的。这使我们获得了该区古气候变化并不服从于冰期与雨期同步模式的信息。  相似文献   

18.
Calcite dendrite crystals are important but poorly understood components of calcite travertine that forms around many hot springs. The Lýsuhóll hot-spring deposits, located in western Iceland, are formed primarily of siliceous sinters that were precipitated around numerous springs that are now inactive. Calcite travertine formed around the vent and on the discharge apron of one of the springs at the northern edge of the area. The travertine is formed largely of two types (I and II) of complex calcite dendrite crystals, up to 1 cm high, that grew through the gradual addition of trilete sub-crystals. The morphology of the dendrite crystals was controlled by flow direction and the competition for growth space with neighbouring crystals. Densely crowded dendrites with limited branching characterize the rimstone dams whereas widely spaced dendrites with open branching are found in the pools. Many dendrite bushes in the pools nucleated around plant stems. Growth of the dendrite crystals was seasonal and incremental. Calcite precipitation was driven by rapid CO2 degassing of CO2-rich spring waters during the spring and summer. During winter, when snow covered the ground and temperatures were low, opal-A precipitated on the exposed surfaces of the dendrites. Segmentation of dendrite branches by discontinuities coated with opal-A and overgrowth development around sub-crystals resulted from this seasonal growth cycle. The calcite dendrite crystals in the Lýsuhóll travertine differ in morphology from those at other hot springs, such as those at Lake Bogoria, Kenya, and Waikite in New Zealand. Comparison with the calcite dendrite crystals found at those sites shows that dendrite morphology is site-specific and probably controlled by carbonate saturation levels that, in turn, are controlled by the rate of CO2 degassing and location in the spring outflow system.  相似文献   

19.
《Precambrian Research》2005,136(1):1-26
Late Riphean to early Vendian metasedimentary rocks of the Offerdal Nappe, central Scandinavian Caledonides, were studied by field mapping and measured sections. Even though the rocks have been metamorphosed and tectonically deformed, preserved sedimentary structures and outcrop exposure permit the interpretation of a little-known area with respect to the break-up of Rodinia. This work shows that although the primary sedimentary textures are strongly altered during metamorphism the primary sedimentary structures and bed geometries are commonly preserved. Moreover, the sedimentary structures, where identified, can be used to hydrodynamically estimate the primary grain-size of the metasedimentary rocks.Seven sedimentary facies were identified in three tectonostratigraphic units. The lower tectonostratigraphic unit consists of polymict conglomerates deposited in alluvial fans. The lower part of the middle tectonostratigraphic unit consists of channelled turbidite deposits. The upper part of the middle tectonostratigraphic unit consists of a regressive to transgressive succession with southeast to northwest transition from fluvial deposits, to storm-dominated deposits and into offshore mudstones. The lower part of the upper tectonostratigraphic unit consists of a regressive succession with southeast to northwest transition from channelled turbidites into sheet-like turbidites. The upper part consists of fluvial deposits in updip (southeast) areas, whereas in downdip (northwest) areas the sheet-like turbidites reflect continued deepwater deposition.(1) The ∼1500 m thickness of the Offerdal succession, (2) the occurrence of >300 m thickness of the pebble- to boulder-bearing continental-basement derived alluvial fan conglomerates, (3) the high sediment input rates, and (4) the high subsidence rates suggest an actively subsiding basin and a relatively uplifted hinterland. Furthermore, the arkosic composition of the Offerdal metasandstones, as well as the Precambrian porphyry, syenite and quartzite clast composition of the lithic conglomerates, recognised from the subjacent continental basement of Baltica, suggest a continental sediment source. The rapid accommodation changes, and especially the simultaneous subsidence of downdip areas and uplift of updip areas in UTU2 suggest syn-depositional extensional block rotation. Collectively, this evidence suggests that the Offerdal succession was deposited in a continental rift basin related to break-up of Rodinia.  相似文献   

20.
Santonian-Lower Campanian and Lower Maastrichtian phosphatic chalks in northern France, southern England and Belgium are Europe's largest sedimentary phosphatc deposits. The stratigraphy, sediment-ology, petrography, mineralogy and geochemistry of the lithofacies are reviewed and new data presented. Depositional and diagenetic models for phosphatic chalk deposits are developed using published experimental work and from observations of modern high- and low-productivity phosphogenic systems. It is concluded that phosphatic chalks were deposited in well-oxygenated, current-swept environments. Phosphatization required a delicate balance to be maintained between moderate organic carbon and carbonate sedimentation rates, reduced bulk sediment accumulation rate and an enhanced rate of bioturbation. Precipitation of carbonate-fluorapatite (francolite) accompanied the bacterially mediated decomposition of organic matter, occurring within centimetres of the sediment-seawater interface, and taking place preferentially within microbial bodies and coatings. In addition to the organically derived component, pore water phosphate levels were enhanced by phosphate absorbed on ferric oxyhydroxides which was liberated during iron reduction. Mineralization was probably a dominantly post-oxic process, but occurred in a thick sediment mixed layer in which marine organic matter was undergoing intense mixed aerobic and anaerobic microbial degradation. Phosphogenesis occurred predominantly on the NE margins of the Anglo-Paris Basin where shallower sea floors and suitable palaeoceanographic conditions prevailed. Phosphogenic episodes were limited by sea level fluctuations'which controlled the effectiveness of the erosional currents that formed and maintained the phosphatic basins and may have stimulated local productivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号