首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
徐淮地区丰山花岗闪长斑岩和蔡山石英闪长玢岩的岩石地球化学、Sr-Nd-Hf同位素和石榴石的矿物化学研究对探讨华北克拉通东南缘早白垩世高镁埃达克质岩的岩石成因和构造演化具有重要意义。结果表明,丰山花岗闪长斑岩和蔡山石英闪长玢岩具高SiO_2(60.98%~67.88%)、富Al_2O_3(14.37%~15.04%)以及高的Na_2O/K_2O比值(1.58~2.24)和Mg~#值(57~66)的特征;富集LILE(Rb、Ba、Sr)和LREE,亏损HFSE(Nb、Ta、Ti)和HREE,具有Pb正异常和弱的Eu异常;结合高的Sr含量(579×10~(-6)~778×10~(-6))以及Sr/Y(33~69)和(La/Yb)_N比值(8.63~13.7),低的Y(10.5×10~(-6)~17.8×10~(-6))和Yb含量(0.74×10~(-6)~1.17×10~(-6)),暗示它们属于高镁埃达克质岩。丰山和蔡山埃达克质岩石的初始~(87)Sr/~(86)Sr比值介于0.7079~0.7086之间,ε_(Nd)(t)值变化于-10.77~-7.18之间,t_(DM2)=1504~1793Ma;岩浆锆石的ε_(Hf)(t)值为-14.2~-5.3,t_(DM2)=2101~2898Ma。徐淮地区早白垩世利国、班井、夹沟高镁埃达克质岩石中岩浆锆石的ε_(Hf)(t)值分别介于-13.4~-7.0、-13.4~-7.9和-15.9~-4.5之间,它们的t_(DM2)分别变化于2248~2825Ma、2331~2824Ma和2030~3048Ma之间。徐淮地区丰山和蔡山高镁埃达克质岩的Sr-Nd-Hf同位素组成和丰山花岗闪长斑岩中铁铝榴石残留晶的存在,结合它们高的Pb同位素组成和继承锆石U-Pb年代学暗示,丰山和蔡山高镁埃达克质岩浆主要起源于俯冲断离的扬子克拉通石榴辉石岩相下地壳物质熔融的熔体与地幔橄榄岩的反应,同时有拆沉的华北克拉通基底物质的参与,形成于华北克拉通东部岩石圈减薄的伸展构造背景。  相似文献   

2.
安徽铜陵早白垩世埃达克质岩地球化学:成岩成矿制约   总被引:9,自引:4,他引:5  
谢建成  陈思  孙卫东  杨晓勇 《岩石学报》2012,28(10):3181-3196
安徽铜陵地区是我国最著名的铜金产地之一,成矿与岩浆作用关系密切.近十年来,铜陵及长江中下游地区早白垩世埃达克岩的成因仍然存在分歧.本次我们报道了铜陵地区埃达克质岩新的元素和Sr-Nd-Pb同位素数据.铜陵埃达克质岩(SiO2 =57.6% ~64.2%)具有高Al2O3(>15.3%)、相对高MgO含量、高Ba (Ba> 640×10-6)和Sr含量(>483×10-6,平均900×10-6)、高Sr/Y( >41.3)和(La/Yb) N(>12.1)比值、低Yb和Y含量、低K2O/Na2O (0.54 ~0.83)和Th/U (2.62 ~5.75)比值,表明其来源于俯冲洋壳部分熔融,在上升过程中与富集地幔发生相互作用.相对低εNd(t)值(-11.3~-13.7)和较高的(87Sr/86Sr)i比值(0.7068 ~0.7092)反映本区埃达克质岩可能遭受富集地幔物质或陆壳的混染作用.铜陵埃达克质岩具有高放射性Pb同位素组成((206Pb/204Pb)i=17.93 ~ 18.64、(207Pb/204 Pb),=15.46 ~ 15.59、(208Pb/204Pb)i=37.88 ~38.51),主要落在MORB区域,靠近EM1和EM2交集,明显不同于那些上、下陆壳和大别埃达克岩,排除了陆壳的混染作用.中国东部具有EM1和EM2富集地幔特征,而铜陵地区近于EM1和EM2过渡,铜陵埃达克质岩的上述同位素特征最好的解释是板块熔体同化富集地幔.这些埃达克质岩形成于高温和低压环境,与板块俯冲相关.这些明显的地球化学特征表明铜陵和长江中下游地区埃达克质岩和大规模Cu、Au成矿作用是俯冲洋壳部分熔融结果.  相似文献   

3.
位于华北克拉通东南缘、郯庐断裂带西侧的利国岩体形成于白垩纪,由闪长玢岩及少量花岗闪长斑岩组成.与之伴生有一些铜-铁矿化.利国岩体的元素地球化学特征与埃达克岩的地球化学特征非常类似如,SiO2>56%,较高Al2O3(13.69%~15.15%)、Sr(452×106~617×106)、Sr/Y(30~93)与La/Yb(8~24),但低Y(4.84×106~15.55×106).Vb(0.48×106~1.45×106),无明显的Eu异常(δEu=0.87~0.98).另外,根据其Mg4/5、FeOT/MgO值,又可以分为高锾、较高镁和低镁三类岩石.高镁的岩石类似于赞岐岩.利国埃达克质岩的(87Sr/86Sr)I=0.7055~0.7071,εNd(t)=-11.46~-4.64.不同于俯冲洋壳熔融形成的埃达克岩.我们认为,利国较高镁和低镁埃达克质岩的形成可能与拆沉榴辉质下地壳熔融产生的熔体受到地幔橄榄岩不同程度的混染有关,但是高镁埃达克质岩可能由被拆沉下地壳熔融产生的熔体交代的地幔橄榄岩熔融形成.利国岩体可能是中国东部中生代岩石圈减薄的产物,并可能与郯庐断裂带的活动有关.拆沉榴辉质下地壳熔融产生的熔体与地幔橄榄岩的强烈相互作用可能导致地幔中金属硫化物的分解,并最终导致区内铜矿化.  相似文献   

4.
海南岛屯昌地区侵入岩由花岗闪长岩、花岗岩及少量辉绿-闪长玢岩(脉)、镁铁质包体组成。本文报道了这些侵入岩的锆石LA-ICPMS U-Pb 定年结果和地球化学组成, 定年结果显示岩石形成于早白垩世晚期(~107 Ma)。地球化学特征显示, 花岗闪长岩和花岗岩具有高的SiO2、Al2O3 含量以及高的Sr 含量和Sr/Y 比值, 低的Y 和Yb 含量, Eu 异常不明显等, 属于埃达克质岩。屯昌埃达克质岩具有比较均一的Sr、Nd 同位素组成(ISr=0.7082~ 0.7096, εNd(t)=?6.55~ ?3.85)。镁铁质岩脉和包体则显示了稍低的ISr (0.7064~0.7086)和变化的εNd(t) (?5.10~ +0.13)。埃达克质岩的锆石原位Hf 同位素组成为: (176Hf/177Hf)i = 0.28257~0.28277, εHf(t)= ?4.86~ +2.09, 相应的两阶段模式年龄TDM2 变化于1.09 Ga 和1.54 Ga 之间。闪长玢岩脉的(176Hf/177Hf)i = 0.28257~0.28264, εHf(t) = ?4.94~ ?2.42, TDM2=1.38~1.55 Ga, 类似于埃达克质岩。屯昌埃达克质岩很可能由新底侵的玄武质下地壳物质部分熔融所形成, 俯冲的古太平洋板块在早白垩世晚期(约107 Ma)的后撤作用所 导致的软流圈上涌为地壳熔融提供了热源。  相似文献   

5.
《福建地质》2021,40(2)
闽东西朝钼矿成矿岩体具高SiO_2、富Al_2O_3、高Sr,低Y、Yb、MgO,高Sr/Y比值和(La/Yb)_N比值的地球化学特征,为典型的埃达克质岩的特征。该岩体具有较低的Ni、Cr和V含量,稀土元素配分为典型的轻重稀土强烈分馏右陡倾,微量元素蛛网图上表现出Rb、Ba、Th、U等LILE富集,P、Ti等HFSE强烈亏损、Sr富集,(~(87)Sr/~(86)Sr)_i比值为0.709 778~0.710 097,εNd(t)值为-7.09~-5.77,这些特征均与华夏地块早白垩世加厚下地壳部分熔融成因的埃达克质岩特征相近。西朝钼矿的成岩成矿是早白垩世挤压向伸展拉张构造环境转换的背景下,在地幔物质上涌加热作用下,加厚的下地壳发生部分熔融且有幔源物质加入形成的。  相似文献   

6.
辽西地区中侏罗世海房沟组火山岩的岩石共生组合为粗安岩粗面岩安山岩英安岩 ,属于高钾钙碱性钙碱性火山岩系 ,全岩Rb_Sr等时线年龄为 177.2± 2 8.0Ma。岩石总体上反映出高Al高Na特点 ,SiO2 ≥ 5 6 .99% ,Al2 O3 ≥ 15 .4 5 % ,Na2 O/K2 O≥ 1.35。稀土元素分馏明显 ,(La/Yb) N≥ 14 .80 ,(Ho/Yb) N≥ 1.15 ,贫Yb、Y(Yb≤ 1.4 2× 10 -6,Y≤ 15 .18× 10 -6) ,基本无Eu负异常 (0 .86~ 1.0 3) ,明显亏损Rb、Nb、Zr、Ti,而Sr、Ba、K及LREE富集 ,Rb/Sr值均小于 0 .1,地球化学特征与埃达克岩十分类似 ,属埃达克质岩。Sr、Pb和Nd同位素资料反映出这套火山岩的源岩较深 ,可能为古老的下地壳中基性变质岩部分熔融产物。研究表明 :海房沟组火山岩形成于板内环境 ,与太平洋板块俯冲没有直接关系 ;辽西地区中生代构造应力场的重大转换、广泛的岩浆活动和大规模断陷盆地群的形成与岩石圈拆沉作用密切相关。海房沟组埃达克质岩的确认对探讨辽西地区火山岩浆起源、壳幔相互作用及大陆动力学背景具有重要意义。  相似文献   

7.
辽西地区早中生代火山岩地球化学特征及成因探讨   总被引:10,自引:3,他引:10  
辽西地区早中生代火山岩的岩石共生组合为粗安岩-安山岩-英安岩-粗面英安岩,属于高钾钙碱性-钙碱性火山岩系.岩石总体上反映出高Al、高Na特点,SiO2≥56.99%,Al2O3≥15.16%,Na2O/K2O≥1.13.其地球化学的显著特点是稀土元素分馏明显(La/Yb≥14.89,Yb≤1.90×10-6);基本无Eu负异常(0.78~0.97);Y值较低(≤1 7.51×10-6);明显亏损Rb,Th,Nb,P,Zr和Ti,而富集Ba,K,Sr及REE,不同于正常岛弧钙碱性火山岩;火山岩的Rb/Sr≤0.15,Sr/Y≥35.1 6,属于高Sr低Yb、低Y岩石.火山岩地球化学研究表明,早中生代火山岩与埃达克岩十分类似,属埃达克质岩.铅、锶和钕同位素资料反映出火山岩的源岩较深,可能为古老的下地壳中-基性变质岩部分熔融产物.辽西地区早中生代火山岩形成于华北板块与西伯利亚板块碰撞-超碰撞的陆内挤压环境,与太平洋板块俯冲没有直接关系,而与加厚地壳导致的下地壳拆沉作用密切相关.辽西地区早中生代埃达克质岩的确认对探讨辽西地区火山岩浆起源、壳幔相互作用及大陆动力学背景具有重要意义.  相似文献   

8.
闫国川  王保弟  刘函  王立全  周放 《地质通报》2017,36(10):1772-1782
班公湖-怒江缝合带是青藏高原的主要缝合带之一,其闭合时限还存在争议,制约了班公湖-怒江特提斯洋演化历史的研究。在班公湖-怒江缝合带洞错地区新识别出一套早白垩世晚期的粗安岩,LA-ICP-MS测得其锆石~(206)Pb/~(238)U年龄为102.0±1.9Ma,岩石高SiO_2、Al_2O_3、富Na及高的Sr/Y值(25.2~42.2),贫Nb(11.1×10~(-6)~16.6×10~(-6))、Y(11.7×10~(-6)~18.3×10~(-6))和Yb(1.06×10~(-6)~1.77×10~(-6)),轻、重稀土元素分异明显,具有与埃达克质岩相似的地球化学特征,同时具有高Mg~#的特点(Mg~#=50.0~54.1)。认为洞错高Mg~#埃达克质岩很可能是残留洋壳部分熔融上升过程中交代地幔的产物,形成于板内构造环境。由此推测,洞错早白垩世晚期埃达克质岩的形成与班公湖-怒江洋盆闭合后拉萨地块与羌塘地块碰撞有关,结合区域地质资料,认为班公湖-怒江特提斯洋闭合时限应该在102Ma之前。  相似文献   

9.
冶山岩体位于苏皖交界处江苏境内,下扬子地块东北部,为一大致呈“V”字形的岩株。岩体主体岩性为花岗闪长岩,西北边缘见石英二长岩、闪长岩。锆石LA-ICPMS U-Pb定年结果表明,冶山侵入体的形成年龄为128.0±1.5 Ma,属于早白垩世早期。冶山侵入岩为一套富硅(SiO2为63.34%~66.44%)、富镁(Mg#为50.6-57.6)、钙碱性(σ为2.54~2.69)、准铝质(A/CNK为0.867~0.946)岩石;具较强的轻重稀土元素分异、无明显-弱正Eu异常、富集Ba、K、Sr等大离子亲石元素,而亏损Ta、Nb、Ti等高强场元素、高Sr/Y和(La/Yb)N比值等特点,与C型埃达克岩具有相似的地球化学特征,属于C型埃达克岩。锆石Lu-Hf同位素证据显示,冶山埃达克质岩具有较低且均一的εHf(t)值(-15.76~-18.54)和较古老的地壳模式年龄t(DM)C(2170~2340 Ma)。结合前人Sr-Nd-Pb同位素、地球物理学等资料,认为冶山侵入体可能来源于拆沉下地壳的部分熔融,并在源区混入地幔组分,形成于郯庐断裂带早白垩世活化阶段。  相似文献   

10.
刘园园  马昌前  吕昭英  黄卫平 《岩石学报》2012,28(10):3287-3305
长江中下游贵池地区燕山期侵入岩发育,与成矿关系密切.本文对该区侵入岩开展了详细的锆石U-Pb年代学、地球化学及Sr-Nd-Hf同位素研究.结果表明,马头花岗闪长斑岩形成于147±2Ma,而花园巩石英二长岩形成于127±1Ma,比花岗闪长斑岩晚约20Ma.早期的花岗闪长斑岩(147 ~ 145Ma)为高钾钙碱性系列,具有高Al2O3、Sr含量和Sr/Y、La/Yb比值,以及低的Y、Yb含量,与埃达克质岩的地球化学特征一致;而晚期石英二长岩(127Ma)和石英正长岩为钾玄岩系列,具有高的(Na2O+ K2O)、Zr、Nb、Y含量和Y/Nb、Yb/Ta比值,与造山带A2型花岗岩地球化学特征相似;碱长花岗岩(125~124Ma)同样具有A型花岗岩的地球化学特征,但与石英二长岩、石英正长岩相比,碱长花岗岩的Y/Nb、Yb/Ta比值相对较低,具板内环境A1型花岗岩的地球化学特征.因此,贵池地区岩浆岩从早期的埃达克质岩变为晚期的A型花岗岩,反应了晚中生代时期长江中下游地区的构造环境由大陆边缘环境向伸展环境的转变.  相似文献   

11.
This article reports systematic zircon U–Pb dating, whole-rock geochemistry, and Sr–Nd isotopic data for the Early Cretaceous Jialou granitoids along the southernmost margin of the North China Craton (NCC), adjacent to the Tongbai Orogen. These results will provide significant constrains on the crustal evolution of the southern margin of the NCC. Zircon U–Pb analyses, using laser ablation–multicollector–inductively coupled plasma–mass spectrometry, indicate that the Jialou granitoids were emplaced at ~130 Ma. The granitoids have high SiO2, K2O, Al2O3, Sr, and Ba contents, high Sr/Y and (La/Yb)N ratios, and low concentrations of MgO, Y, and heavy rare earth elements, indicating a low-Mg adakitic affinity. They have relatively high initial 87Sr/86Sr ratios (0.707464–0.708190) and negative εNd(t) values (–11.8 to –15.2), similar to those of the Palaeoproterozoic lower crust in the NCC. These geochemical and isotopic features indicate that the Jialou low-Mg adakitic rocks were derived by partial melting of mafic Palaeoproterozoic lower crust of the NCC at >50 km depth, leaving behind a garnet amphibolite residue. The petrogenesis of the Jialou low-Mg adakitic rocks, plus the petrogenesis of Mesozoic granitoids and lower crustal xenoliths entrained in the Late Jurassic Xinyang volcaniclastic diatreme, suggests that the continental crust along the southern margin of the NCC was thickened during the Middle Jurassic to Early Cretaceous, but thinned after 130 Ma. We propose that crustal thickening was caused by a late Middle Jurassic to Early Cretaceous intra-continental orogeny, rather than continent–continent collision between the NCC and the Yangtze Craton. We also suggest that crustal thinning and Early Cretaceous magmatism were related to subduction of the palaeo-Pacific plate, rather than post-orogenic collapse of the Qinling–Tongbai–Dabie Orogen.  相似文献   

12.
To date, few adakitic rocks have been reported in direct association with contemporary intra-continental extensional structures, which has cast doubt on genetic models involving partial melting of the lower crust. This study presents Early Cretaceous (143-129 Ma, new Sensitive high-resolution ion microprobe (SHRIMP) zircon U-Pb ages) adakitic granites, which are directly associated with a contemporary metamorphic core complex (i.e., the Northern Dabie Complex in the Dabie area). These granites exhibit relatively high Sr contents, negligible to positive Eu and Sr anomalies, high La/Yb and Sr/Y ratios, but very low Yb and Y contents, similar to subducted oceanic crust-derived adakites. They are also characterized, however, by very low MgO or Mg# and Ni values, and Nd-Sr isotope compositions (εNd(t) = −14.6 to −19.4 and (87Sr/86Sr)i = 0.7067-0.7087) similar to Triassic continent-derived eclogites subducted in the Dabie-Sulu Orogen. Additionally, late granitic dikes in the adakitic intrusions exhibit low Sr contents, clearly negative Eu and Sr anomalies, low La/Yb and Sr/Y ratios, but relatively high Yb and Y contents, similar to 118-105 Ma granites in the Northern Dabie Complex. Based on composition and geochronology data of Neoproterozoic amphibolites and orthogneisses, Triassic high- to ultra-high pressure metamorphic rocks, and Early Cretaceous mafic-ultramafic intrusive rocks, and the constraints provided by experimental melt data for tonalites, metabasaltic rocks and eclogites, we suggest that the adakitic granites were most probably generated by partial melting of thickened amphibole or rutile-bearing eclogitic lower crust as a consequence of Triassic-Middle Jurassic subduction and thrusting. The late dikes probably originated from plagioclase-bearing intermediate granulites. Moreover, we suggest that late Mesozoic delamination or foundering of thickened eclogitic lower crust is also a more plausible mechanism for the petrogenesis of Early Cretaceous mafic-ultramafic intrusive rocks in the Dabie area, and probably involved partial melting of a mixed source comprising eclogitic lower crust that had delaminated or foundered into upper lithospheric or asthenospheric mantle peridotite. Asthenospheric upwelling in response to post-collisional delamination of lithospheric mantle was likely to have provided the heat source for the Cretaceous magmatism.  相似文献   

13.
The Jigongshan and Qijianfeng batholiths in the Tongbai orogen consist mainly of porphyritic hornblende-biotite monzogranite, biotite monzogranite, and biotite syenogranite, which are variably intruded by lamprophyre, diorite, and syenogranite dykes. Mafic microgranular enclaves commonly occur in the hornblende-biotite monzogranite, whereas surmicaceous enclaves are found in the biotite monzogranite. Both batholiths have zircon U–Pb ages ranging from ca. 139 to 120 Ma, indicating their emplacement in the Early Cretaceous. The hornblende-biotite monzogranite has an adakitic affinity marked by relatively high Sr/Y and (La/Yb) N ratios, lack of Eu anomalies, low MgO and Ni contents, and Na2O > K2O. Its chemical compositions, combined with enriched Sr–Nd isotopic signatures, suggest formation by dehydration melting of mafic rocks in a thickened lower crust. This thickened crust resulted from the Permo-Triassic subduction-collision between the North China and South China blocks and persisted until the Early Cretaceous. The biotite monzogranite and biotite syenogranite have low Al2O3, CaO, and Sr contents, low Rb/Sr, FeOt/MgO, and (Na2O + K2O)/CaO ratios, and flat HREE patterns with moderate to weak Eu anomalies. They were produced by partial melting of crustal materials under relatively low pressure. Partial melting at different crustal levels could have significantly contributed to mechanical weakening of the crust. The diorite and lamprophyre dykes show linear trends between SiO2 and major or trace elements on Harker diagrams, with two lamprophyre samples containing normative nepheline and olivine. These rocks have high La/Yb and Dy/Yb ratios, both displaying co-variation with contents of Yb. They were originated from relatively deep lithospheric mantle followed by fractionation of olivine + clinopyroxene + apatite + Fe–Ti oxides. Extensive partial melting in the lithospheric mantle indicates relatively high temperatures at this level. We suggest that the presence of adakitic magmas, thickened but weakened crust and high temperatures in the lithosphere mantle point to lower crustal delamination in the Early Cretaceous in the Tongbai orogen.  相似文献   

14.
Both adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province, eastern China are associated with Cretaceous Cu–Au mineralization. The Shaxi quartz diorite porphyrites exhibit adakite-like geochemical features, such as light rare earth element (LREE) enrichment, heavy REE (HREE) depletion, high Al2O3, MgO, Sr, Sr / Y and La / Yb values, and low Y and Yb contents. They have low εNd(t) values (− 3.46 to − 6.28) and high (87Sr / 86Sr)i ratios (0.7051–0.7057). Sensitive High-Resolution Ion Microprobe (SHRIMP) zircon analyses indicate a crystallization age of 136 ± 3 Ma for the adakitic rocks. Most volcanic rocks and the majority of monzonites and syenites in the Luzong area are K-rich (or shoshonitic) and were also produced during the Cretaceous (140–125 Ma). They are enriched in LREE and large-ion lithophile elements, and depleted in Ti, and Nb and Ba and exhibit relatively lower εNd(t) values ranging from − 4.65 to − 7.03 and relatively higher (87Sr / 86Sr)i ratios varying between 0.7057 and 0.7062. The shoshonitic and adakitic rocks in the Luzong area have similar Pb isotopic compositions (206Pb / 204Pb = 17.90–18.83, 207Pb / 204Pb = 15.45–15.62 and 208Pb / 204Pb = 38.07–38.80). Geological data from the Luzong area suggest that the Cretaceous igneous rocks are distributed along NE fault zones (e.g., Tanlu and Yangtze River fault zones) in eastern China and were likely formed in an extensional setting within the Yangtze Block. The Shaxi adakitic rocks were probably derived by the partial melting of delaminated lower crust at pressures equivalent to crustal thickness of > 50 km (i.e., 1.5 GPa), possibly leaving rutile-bearing eclogitic residue. The shoshonitic magmas, in contrast, originated mainly from an enriched mantle metasomatized by subducted oceanic sediments. They underwent early high-pressure (> 1.5 GPa) fractional crystallization at the boundary between thickened (> 50 km) lower crust and lithospheric mantle and late low-pressure (< 1.5 GPa) fractional crystallization in the shallow (< 50 km) crust. The adakitic and shoshonitic rocks appear to be linked to an intra-continental extensional setting where partial melting of enriched mantle and delaminated lower crust was probably controlled by lithospheric thinning and upwelling of hot asthenosphere along NE fault zones (e.g., Tanlu and Yangtze River fault zones) in eastern China. Both the shoshonitic and adakitic magmas were fertile with respect to Cu–Au mineralization.  相似文献   

15.
Early Cenozoic (48–50 Ma) adakitic volcanic rocks from the Eastern Pontides, NE Turkey, consist of calc-alkaline and high-K calc-alkaline andesite and dacite, with SiO2 contents ranging from 56.01 to 65.44 wt.%. This is the first time that Early Eocene volcanism and adakites have been reported from the region. The rocks are composed of plagioclase, amphibole, quartz, and Mg-rich biotite. They have high and low-Mg# values ranging from 55 to 62 and 13 to 42, respectively. High-Mg# rocks have higher Ni and Co contents than low-Mg# samples. The rocks exhibit enrichments in large ion lithophile elements including the light rare earth elements, depletions in Nb, Ta and Ti and have high La/Yb and Sr/Y ratios. Their relative high ISr (0.70474–0.70640) and low εNd (50 Ma) values (? 2.3 to 0.8) are inconsistent with an origin as partial melts of a subducted oceanic slab. Combined major- and trace element and Sr–Nd isotope data suggest that the adakitic magmas are related to the unique tectonic setting of this region, where a transition from a collision to an extension stage has created thickening and delamination of the Pontide mafic lower crust at 50 Ma. The high-Mg adakitic magmas resulted from partial melting of the delaminated eclogitic mafic lower crust that sank into the relatively hot subcrustal mantle, and its subsequent interaction with the mantle peridotite during upward transport, leaving garnet as the residual phase, elevates the MgO content and Mg# of the magmas, whereas low-Mg# magmas formed by the melting of newly exposed lower crustal rocks caused by asthenospheric upwelling, which supplies heat flux to the lower crust. The data also suggest that the mafic lower continental crust beneath the region was thickened between the Late Cretaceous and the Late Paleocene and delaminated during Late Paleocene to Early Eocene time, which coincides with the initial stage of crustal thinning caused by crustal extensional events in the Eastern Pontides and rules out the possibility of an extensional regime before ~ 50 Ma in the region during the Late Mesozoic to Early Cenozoic.  相似文献   

16.
Abstract. The late Jurassic Tongshankou and Yinzu plutons in southeast Hubei have been investigated for their contrasting metal mineralization features. The former is closely associated with porphyry Cu‐Mo mineralization, while the latter is barren of metal mineralization, althouth both are located very close to each other. The Tongshankou granodiorite porphyries and the Yinzu granodiorites are geochemically similar to adakites, e.g., high Al2O3 and Sr contents and La/Yb and Sr/Y ratios, enriched in Na2O, depleted in Y and Yb, very weak Eu anomalies and positive Sr anomalies. However, different geochemi‐cal characteristics exist between the two plutons: the Tongshankou adakitic rocks (1) are relatively enriched in SiO2, K2O, MgO, Cr, Ni, and Sr and depleted in Y and Yb; (2) have higher degree REE differentiation; (3) have positive Eu anomalies in contrast with very weak negative or unclear Eu anomalies in the Yinzu rocks; and (4) isotopically have relatively higher ePNd(t) values (‐5.19 to ‐5.38) and lower initial 87Sr/86Sr ratios (0.7060 to 0.7062), while the Yinzu adakitic rocks have relatively lower ePNd(t) values (‐7.22 to ‐8.67) and higher initial 87Sr/86Sr ratios (0.7065 to 0.7074). The trace element and isotopic data demonstrate that the Tongshankou adakitic rocks were most probably originated from partial melting of delaminated lower crust with garnet being the main residual mineral whereas little or no plagioclase in the source. On the contrary, the Yinzu adakitic rocks were likely derived from partial melting of thickened lower crust, with residual garnet and a small quantity of plagioclase and hornblende in the source. Interactions between the adakitic magmas and mantle peridotites possibly took place during the ascent of the Tongshankou adakitic magmas through the mantle, considering that MgO, Cr, and Ni contents and ePNd(t) values of the adakitic magmas were possibly elevated and initial 87Sr/86Sr ratios were possibly lowered due to the contamination of mantle peridotites. In addition, the Fe2O3 of the adakitic magmas was likely released into the mantle and the oxygen fugacities (?o2) of the latter were obviously possibly raised, which made metallic sulfide in the mantle oxidized and the chalcophile elements such as Cu were incorporated into the adakitic magmas. The ascent of the adakitic magmas enriched in Cu and Mo will lead to the formation of porphyry Cu‐Mo deposit. Nevertheless, the Yinzu adakitic magmas were possibly lack of metallogenetic materials due to not interacting with mantle peridotite, and thus unfavorable to metal mineralization.  相似文献   

17.
在华北克拉通东部鲁西—徐淮地区,存在一套辉石闪长岩-二长闪长岩-花岗闪长岩组成的adakitic岩石。锆石SHRI MP和LA-ICP-MS U-Pb定年结果表明它们形成于早白垩世(130~132Ma)。该类岩石具有较高的MgO含量(质量分数为1·46%~9·76%)、高的Mg#值(0·46~0·68)和高的Sr/Y值(主体介于30~52之间,个别高达410)。这些特征类似于由俯冲大洋板片部分熔融形成的adakitic岩石。然而,它们所表现出来的相对较高的87Sr/86Sr初始比值(0·7051~0·7077)和较低的εNd(t)值(-4·43~-15·92)则反映岩浆形成或演化过程中应有陆壳物质的参与。徐淮地区该类岩石中榴辉岩类捕虏体和石榴石捕虏晶的存在和鲁西辉石闪长岩中众多地幔橄榄岩捕虏体的发现,以及这些捕虏体中普遍发育富硅质交代作用,由此可以判定该类岩浆应起源于拆沉下部大陆地壳的部分熔融及其在上升过程中与地幔橄榄岩的反应,石榴石作为残留相。华北克拉通东部早白垩世adakitic岩石的存在以及榴辉岩类捕虏体的年代学表明,中生代早期曾存在一次重要的陆壳加厚过程,之后相继出现的加厚岩石圈的拆沉应是中生代岩石圈减薄的主导机制。  相似文献   

18.
A large amount of igneous rocks in NE China formed in an extensional setting during Late Mesozoic. However, there is still controversy about how the Mongol-Okhotsk Ocean and the Paleo-Pacific Ocean effected the lithosphere in NE China. In this paper, we carried out a comprehensive study for andesites from the Keyihe area using LA-ICP-MS zircon UPb dating and geochemical and Hf isotopic analysis to investigate the petrogenesis and tectonic setting of these andesites. The U-Pb dating yields an Early Cretaceous crystallization age of 128.3±0.4 Ma. Geochemically, the andesites contain high Sr(686–930 ppm) and HREE contents, low Y(11.9–19.8 ppm) and Yb(1.08–1.52 ppm) contents, and they therefore have high Sr/Y(42–63) and La/Yb(24–36) ratios, showing the characteristics of adakitic rocks. Moreover, they exhibit high K_2O/Na_2O ratios(0.57–0.81), low Mg O contents(0.77–3.06 wt%), low Mg# value(17–49) and negative εHf(t) values(-1.7 to-8.5) with no negative Eu anomalies, indicating that they are not related to the oceanic plate subduction. Based on the geochemical and isotopic data provided in this paper and regional geological data, it can be concluded that the Keyihe adakitic rocks were affected by the Mongol-Okhotsk tectonic regime, forming in a transition setting from crustal thickening to regional extension thinning. They were derived from the partial melting of the thickened lower crust. The closure of the Mongol-Okhotsk Ocean may finish in early Early Cretaceous, followed by the collisional orogenic process. The southern part region of its suture belt was in a post-orogenic extensional setting in the late Early Cretaceous.  相似文献   

19.
ABSTRACT

The adakitic dikes with zircon ages of ~120–118 Ma are identified in the Xiejiagou gold deposit, Jiaobei terrain. The Early Cretaceous intermediate-acidic dikes include monzonite, quartz monzonite, and monzogranite, which have SiO2, Al2O3, K2O, Na2O contents ranging from 61.01 to 74.72 wt. %, 14.42 to 17.28 wt.%, 2.55 to 4.45 wt.%, and 3.09 to 4.64 wt.%, respectively. The dikes are enriched in large ion lithophile elements (LILEs) (e.g., Rb, Sr, and Ba) and light rare earth elements (LREEs), but are depleted in high field strength elements (HFSEs) (e.g., Nb, Ta) and heavy rare earth elements (HREEs). They are also characterized by continental crust-like isotopic compositions: whole-rock δ18O = 7.6–9.9‰, (87Sr/86Sr)i = 0.70893–0.71036, and εNd(t) = ?13.16 to ?17.06. Assimilation and fractional crystallization are limited, and partial melting of source rock is the main mechanism in controlling the compositional variation. The high Sr/Y (41.51–93.25) and (La/Yb)N (22.9–44.7) ratios imply that the dikes have affinities similar to adakitic rocks. The regional geological setting, coupled with the geochemical and isotopic data, indicate that the adakitic dikes were unlikely produced by partial melting of a subducted oceanic slab or a thickened/delaminated lower crust, or AFC processes of mantle-derived magmas. We conclude that the adakitic dikes are generated by partial melting of lower crust which was triggered and modified by underplating of the lithospheric mantle. We also propose that the eastern part of the North China Craton experienced severe thinning in the Early Cretaceous (~135–120 Ma), and the lithospheric thinning is related to delamination of the lower crust.  相似文献   

20.
This study presents new geochronological and geochemical data for Early Cretaceous volcanic rocks in the southern margin of the North China Craton (NCC), to discuss the crust–mantle interaction. The studied rocks include pyroxene andesites from Daying Formation, hornblende andesites and andesites from Jiudian Formation, and rhyolites from a hitherto unnamed Formation. These rocks formed in Early Cretaceous (138–120 Ma), with enrichment in light rare earth elements (REE), depletion in heavy REE and arc-like trace elements characteristics. Pyroxene andesites show low SiO2 contents and enriched Sr–Nd–Pb–Hf isotopic compositions, with orthopyroxene phenocryst and Paleoproterozoic (2320–1829 Ma) inherited zircons, suggesting that they originated from lithospheric mantle after metasomatism with NCC lower crustal materials. Hornblende andesites have low SiO2 contents and high Mg# (Mg# = 100 Mg/(Mg + Fe2+)) values, indicating a lithospheric-mantle origin. Considering the distinct whole-rock Sr isotopic compositions we divide them into two groups. Among them, the low (87Sr/86Sr)i andesites possess amount inherited Neoarchean to Neoproterozoic (2548–845 Ma) zircons, indicating the origin of lithospheric mantle with addition of Yangtze Craton (YC) and NCC materials. In comparison, the high (87Sr/86Sr)i andesites, with abundant Neoarchean–Paleozoic inherited zircons (3499–261 Ma), are formed by partial melting of lithospheric mantle with incorporation of NCC supracrustal rocks and YC materials. Rhyolites have extremely high SiO2 (77.63–82.52 wt.%) and low total Fe2O3, Cr, Ni contents and Mg# values, combined with ancient inherited zircon ages (2316 and 2251 Ma), suggesting an origin of NCC lower continental crust. Considering the presence of resorption texture of quartz phenocryst, we propose a petrogenetic model of ‘crystal mushes’ for rhyolites prior to their eruption. These constraints record the intense crust–mantle interaction in the southern margin of the NCC. Given the regional data and spatial distribution of Early Cretaceous rocks within NCC, we believe that the formation of these rocks is related to the contemporaneous far-field effect of the Paleo-Pacific Plate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号