首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
羌塘盆地作为青藏高原面积最大的中—新生代盆地,是揭示特提斯域演化的关键区域,其构造属性与演化历史备受关注。然而,长期以来对于盆地是否具有前寒武纪结晶基底以及其地质构造演化等问题一直存分歧。雁石坪群作为羌塘盆地分布最广,地层出露最全的一套侏罗纪地层,其碎屑沉积物中包含了大量关于羌塘盆地地质构造演化的重要信息。为此笔者选择位于羌塘盆地东部唐古拉山北麓温泉地区雁石坪群砂岩进行碎屑锆石LA-ICPMS U-Pb年代学研究,以期为解决羌塘盆地基底的地质构造演化提供依据。8件砂岩样品429个有效测试点的年龄结果显示,雁石坪群碎屑锆石的年龄时间跨度大,自新太古代至中侏罗世晚期(2668~166 Ma),具有明显的阶段性,可分为10个年龄组。结合区域地质特征,对年龄值大于486 Ma碎屑锆石年龄组进行了重点分析探讨,认为羌塘盆地具有前寒武纪结晶基底,其形成的主要时期为1974~1666 Ma,且结晶基底还遭受了后期地质构造作用的改造,先后经历了与Columbia超级大陆、Rodinia超大陆演化相关的构造热事件、格林威尔—晋宁构造岩浆运动、泛非运动等一系列地质构造演化,支持了羌塘地块属冈瓦纳大陆的认识。  相似文献   

2.
滇西腾冲地块高黎贡群变质沉积岩时代和构造背景的厘定对正确认识原特提斯构造域演化过程及腾冲地块与冈瓦纳大陆之间的关系十分关键。岩石学、岩石地球化学结果表明,高黎贡群变质岩由变质沉积岩和变质岩浆岩组成,前者以片岩和副片麻岩为主,夹少量大理岩和石英岩,其原岩由一套杂砂岩、泥岩夹少量灰岩、硅质岩岩石组合,为深海-半深海相沉积物,形成于活动大陆边缘环境。碎屑锆石LA-ICP-MS U-Pb定年结果表明高黎贡群变质沉积岩中的锆石主要来源于与罗迪尼亚、冈瓦纳超大陆拼合及原特提斯洋俯冲有关的岩浆岩(900~1000Ma和500~600Ma),少量来源于中元古代地层(1500~1600Ma和2300~2400Ma)。4件样品中最年轻碎屑锆石群的加权平均年龄(507~510Ma)及没有出现有意义的小于470Ma碎屑锆石,表明高黎贡群变质沉积岩原岩形成于510~470Ma,是晚寒武世-早奥陶世早期原特提斯洋壳向冈瓦纳大陆下俯冲过程中,在俯冲带上盘沉积的含有大量该期火成岩碎屑的斜坡相沉积物。  相似文献   

3.
南羌塘盆地是特提斯大洋俯冲削减而产生的一套构造增生地质体,也是研究青藏高原早期构造演化的关键地区,盆地内出露的石炭纪地层极少。对晚古生代曲地组2个砂岩样品进行全岩主量、微量、稀土元素的研究,并采用LA-ICP-MS同位素测定技术对其中的碎屑锆石进行U-Pb同位素测定,结果表明,碎屑锆石年龄具有6个峰值:330~270Ma、560~480Ma、880~720Ma、1750~1650Ma、2400~2000Ma和2800Ma;地球化学特征表明,曲地组源区的大地构造环境主要为被动大陆边缘及大陆岛弧环境;沉积物物源具有多源性,但仍需进一步研究。推测其物源主要为晚古生代二叠纪之前的冈瓦纳大陆北缘相关地体。  相似文献   

4.
东特提斯喜马拉雅在中生代位于东冈瓦纳大陆的结合部位,其古地理对于了解东冈瓦纳大陆裂解至关重要.对东特提斯喜马拉雅塔嘎地区沉积地层进行了详细的碎屑锆石U-Pb年代学研究.结果表明,东特提斯喜马拉雅塔嘎地区采样剖面沉积下限为126.6±2.7 Ma.碎屑锆石年龄谱显示东特提斯喜马拉雅塔嘎地区采样地层主要包含~520 Ma、~890 Ma和~1 200 Ma的特征峰值年龄,对比结果表明东特提斯喜马拉雅塔嘎地区沉积地层碎屑锆石年龄谱与印度东部和澳大利亚西南部地层碎屑锆石年龄谱具有一定的相似性.结合东冈瓦纳岩浆活动记录以及该剖面下部玄武岩年龄,东特提斯喜马拉雅塔嘎地区地层沉积于东特提斯喜马拉雅从东冈瓦纳大陆分离时期,其物质来源可能为印度东部、澳大利亚西南部以及南极大陆.   相似文献   

5.
新元古代-早古生代,Rodinia超大陆裂解至Gondwana大陆聚合的过程对华南构造格局与古地理演化具有重要的制约作用,然而在这过程中华夏地块的位置、华夏与扬子之间的关系等问题仍存在争议。本文通过同位素地层年代学、新元古代冰期事件及成矿事件对比了华夏地块武夷南部-南岭地区及华夏西缘新元古代中-晚期地层。在此基础上,对新元古代沉积物进行碎屑锆石物源分析,发现华夏西缘拉伸纪晚期-埃迪卡拉纪曾出现多次物源方向的转换,并在成冰纪晚期同时出现来自华南内部和外部的双向物源。结合浅海陆棚的沉积环境,表明此时扬子与华夏之间并没有宽阔的大洋相隔。华夏地块拉伸纪晚期-埃迪卡拉纪碎屑岩中包含了大量中元古代至新元古代早期的碎屑锆石,与东冈瓦纳北部印度、东南极等地区的沉积记录吻合,指示华夏地块至少自750 Ma时期就接收到来自印度北缘的碎屑物质。在Rodinia超大陆裂解至Gondwana大陆聚合期间,华南一直保持在超大陆边缘的古地理位置,与印度北缘相连。  相似文献   

6.
布朗山位于西南三江南段勐海地区,大面积出露澜沧岩群。澜沧岩群主要由低级变质作用的砂泥质岩石和少量变中基性火山岩组成,其形成时代、物质来源以及地质意义等一系列问题一直存在很多争议。本文选取该地区澜沧岩群上部层位不含变火山岩地层的浅变质岩开展碎屑锆石阴极发光图像分析和LA-ICP-MS U-Pb年代学研究,明显的环带和较高的Th/U比值表明4件浅变质岩的大部分碎屑锆石是岩浆成因。年代学结果显示,该套地层浅变质岩中的锆石记录了与罗迪尼亚、冈瓦纳超大陆拼合及原、古特提斯洋俯冲有关的岩浆作用信息(1182~1104 Ma、593~560 Ma和378 ~328 Ma),其最年轻的碎屑锆石年龄(328 Ma),暗示该套地层形成不早于早石炭世,而非以往认为的新元古代。结合其岩石组合特征,推测该套晚古生代浅变质岩系可能为泥盆-石炭系南段组。在澜沧岩群的年龄频谱特征图中,年轻的550 Ma左右峰期年龄与特提斯喜马拉雅碎屑锆石年龄峰期相同,说明其物源主要为东冈瓦纳北缘的特提斯喜马拉雅构造带,与原特提斯洋和古特提斯洋相关。  相似文献   

7.
通过1∶5万区域地质调查,在青藏高原羌塘地块西南缘鸡夯地区原划上三叠统日干配错群中新识别出一套上侏罗统—下白垩统地层。本文根据该套地层的岩石组合以及古生物面貌特征,初步探讨了该套地层的沉积环境和沉积相特征,对其中发育的玄武岩夹层采用锆石U-Pb(LA-ICP-MS)同位素测年方法,获得其年龄为118.3±2.1Ma。在发育的生物碎屑灰岩夹层中采集了珊瑚、双壳类、腕足、腹足类化石,化石资料显示该套地层形成于晚侏罗世—早白垩世。这是首次在南羌塘地块发现该时期海相地层,这一发现证明南羌塘地块在晚侏罗世—早白垩世时期海水并未完全退出,而是局部发育海相三角洲。  相似文献   

8.
藏北羌塘早古生代岩浆作用及其构造演化对研究青藏高原早期演化历史以及羌塘盆地基底性质结构等具有重要科学意义。本文在综述前人研究基础上,系统总结了藏北羌塘地区早古生代岩浆岩的时空分布特征及年代学格架,初步探讨了青藏高原早古生代构造-岩浆事件对冈瓦纳大陆北缘构造演化以及羌塘盆地基底属性的约束。羌塘地区早古生代岩浆岩主要分布在日湾茶卡、都古尔、戈木日、本松错等地区,岩性以变质辉长岩、变质玄武岩、安山岩、花岗岩、变质流纹岩以及花岗片麻岩等为主。基于区域地质调查和年代学研究结果,羌塘地区早古生代发生了多期岩浆作用,分别为~500 Ma、~482 Ma、~474 Ma、~455 Ma、~438 Ma。这些岩浆岩可能是泛非造山运动结束后,冈瓦纳大陆北缘岩石圈伸展减薄的产物,并构成了羌南-保山板块早古生代的结晶基底,但有关伸展减薄的机制问题仍需开展进一步的研究工作,这些地质记录对恢复和反演青藏高原冈瓦纳大陆北缘的陆缘性质具有重要约束意义。  相似文献   

9.
仲巴微地体夹持在拉萨地块和特提斯喜马拉雅之间,两侧均被蛇绿混杂岩带所围限,是雅鲁藏布江西段重要的地质单元。揭示其构造亲缘性对于探讨新特提斯洋构造演化和青藏高原多地体拼合过程具有重要意义。仲巴微地体中段马攸木地区较好地出露一套志留系—石炭系沉积地层,其中志留系为片理化钙质片岩、大理岩夹砂岩,泥盆系为一套片理化的结晶灰岩夹钙质片岩,石炭系为一套砂岩、粉砂岩夹钙质片岩的碎屑岩组合。碎屑锆石年代学数据表明,志留系、泥盆系和石炭系均表现出约530 Ma和950 Ma的特征年龄峰值,年龄分布样式与西羌塘地体和喜马拉雅地体具有高度的相似性,缺乏拉萨地体以约1 170 Ma的特征的年龄峰值。结合区域地层对比,认为在志留纪—石炭纪,仲巴微地体具有明显的喜马拉雅亲缘性,其构造位置临近印度大陆北缘,是西羌塘—大印度—特提斯喜马拉雅构造体系的一部分。  相似文献   

10.
羌塘盆地位于青藏高原北部,是研究青藏高原古特提斯洋演化及冈瓦纳大陆与欧亚大陆界线的关键区域,其基底的时代和性质直接决定了羌南—保山板块的大地构造属性和冈瓦纳大陆的范围。笔者通过对羌塘中部蜈蚣山花岗片麻岩捕虏体的锆石LA-ICP-MSU-Pb定年,确定该花岗片麻岩形成于晚三叠世(209.1±2.8Ma),是冈瓦纳大陆与欧亚大陆汇聚事件的物质记录,与羌塘中部已有的研究结果相一致;同时还在花岗片麻岩中发现了冈瓦纳大陆泛非运动晚期(464.5±4.8Ma)的年龄记录,是羌塘地区首次发现泛非运动的物质记录,并且该年龄可以与滇西怒江、保山以及印度板块内部和喜马拉雅造山带中发育的大量早古生代花岗质岩石相对比,表明羌南—保山板块与印度大陆具有很好的亲缘性。以上研究成果为探讨羌塘地区的基底属性和确定冈瓦纳大陆与欧亚大陆碰撞的时限提供了新的证据。  相似文献   

11.
ABSTRACT

This article reports the results of field mapping and the petrology of clastic rocks in the Dabure area, southern Qiangtang, Tibet, together with the results of U–Pb dating of detrital zircons from these rocks. The Dabure clastic rocks are characterized by low compositional and textural maturity, and they have been affected by lower greenschist facies metamorphism. The deposits exhibit the typical features of turbidites. Altogether, 279 detrital zircons were selected for U–Pb dating, and the ages fall into five groups: 550–650, ~800, 900–1100, 1600–1800, and 2300–2500 Ma. In general, the ages of the detrital zircons that are older than ~550 Ma are similar to those found elsewhere in the southern Qiangtang and Himalayan terranes. The most reliable youngest age of a detrital zircon from the Dabure clastic rocks is ~550 Ma. In the southern part of the Tibet Plateau, strata with the same ages and lithologies as the Dabure clastic rocks are widespread, especially in the Himalayan terrane. Combining our data with previous work on the basalts in the Dabure area (the Dabure basalts), we tentatively suggest that the Dabure clastic rocks represent the late Ediacaran (~550 Ma) sedimentary record for the Qiangtang terrane, and that before the late Neoproterozoic the southern Qiangtang terrane was possibly connected to the Himalayan terrane.  相似文献   

12.
Abstract

This article reports the depositional environment and provenance for the Tianquanshan Formation in the Longmuco–Shuanghu–Lancangjiang suture zone, and uses these to better understand the tectonic evolution of this region. Zircons in the andesite of the Tianquanshan Formation yielded concordia ages of 246, 247, and 254 Ma, indicating that the Tianquanshan Formation formed during the late Permian–Early Triassic. The Tianquanshan Formation consists of flysch and ocean island rock assemblages, indicating that the Longmuco–Shuanghu–Lancangjiang Palaeo-Tethys Ocean continued to exist as a mature ocean in the late Permian–Early Triassic. The detrital zircons in the greywackes of the Tianquanshan Formation yielded peak ages of 470–620, 710–830, 910–1080, 1450–1660, and 2400–2650 Ma, indicating the provenance of the Tianquanshan Formation was either Indian Gondwana or terranes that have an affinity with Indian Gondwana in the Tibetan Plateau (i.e. the Southern Qiangtang, Lhasa, and Himalayan terranes). The Ordovician quartzites, Carboniferous sandstones, Carboniferous–Permian diamictites, and the Upper Permian–Lower Triassic greywackes in the Southern Qiangtang, Lhasa, and Himalayan terranes all contain detrital zircons with youngest ages of ca. 470 Ma, indicating their source areas have been in a stable tectonic environment since the Ordovician, and this inference is supported by the continuous deposition in a littoral–neritic passive margin in these regions from the Ordovician to the lower Permian. Combining the present results with regional geological data, we infer that the Southern Qiangtang, Lhasa, and Himalayan terranes were all in a stable passive continental margin along the northern part of Indian Gondwana during the long period from the Ordovician to the early Permian. At early Permian, because of the opening of the Neo-Tethys Ocean, the tectonic framework of this region underwent a marked change to a rifting and active environment.  相似文献   

13.
The subduction polarity and related arc–magmatic evolutional history of the Bangong–Nujiang Ocean, which separated the South Qiangtang terrane to the north from the North Lhasa terrane to the south during the Mesozoic, remain debated. This study tries to reconstruct the subduction and evolution of the Bangong–Nujiang Ocean on the basis of U–Pb and Hf isotopic analyses of detrital zircons in samples from sedimentary rocks of the middle-western section of the Bangong–Nujiang suture zone in Gerze County, central Tibet. The Middle Jurassic Muggargangri Group in the Bangong–Nujiang suture zone was deposited in a deep-sea basin setting on an active continental margin. The Late Jurassic strata, such as the Sewa Formation, are widely distributed in the South Qiangtang terrane and represent deposition on a shelf. The Early Cretaceous Shamuluo Formation in the Bangong–Nujiang suture zone unconformably overlies the Muggargangri Group and was probably deposited in a residual marine basin setting. The detrital zircons of the Muggargangri Group contain seven U–Pb age populations: 2.6–2.4 Ga, 1.95–1.75 Ga, 950–900 Ma, 850–800 Ma, 650–550 Ma, 480–420 Ma, and 350–250 Ma, which is similar to the age populations in sedimentary rocks of the South Qiangtang terrane. In addition, the age spectra of the Shamuluo Formation are similar to those of the Muggargangri Group, indicating that both had a northern terrane provenance, which is conformed by the north-to-south palaeocurrent. This provenance indicates northward subduction of the Bangong–Nujiang oceanic crust. In contrast, two samples from the Sewa Formation yield variable age distributions: the lower sample has age populations similar to those of the South Qiangtang terrane, whereas the upper possesses only one age cluster with a peak at ca. 156 Ma. Moreover, the majority of the late Mesozoic detrital zircons are characterized by weakly positive εHf(t) values that are similar to those of magmatic zircons from arc magmatic rocks in the South Qiangtang terrane. The findings, together with information from the record of magmatism, indicate that the earliest prevalent arc magmatism occurred during the Early Jurassic (ca. 185 Ma) and that the principal arc–magmatic stage occurred during the Middle–Late Jurassic (ca. 170–150 Ma). The magmatic gap and scarcity of detrital zircons at ca. 140–130 Ma likely indicate collision between the Qiangtang and Lhasa terranes. The late Early Cretaceous (ca. 125–100 Ma) magmatism on both sides of the Bangong–Nujiang suture zone was probably related to slab break-off or lithospheric delamination after closure of the Bangong–Nujiang Ocean.  相似文献   

14.
位于羌塘地体与拉萨地体之间的尼玛盆地包含有青藏高原演化过程中重要的沉积记录,恢复该地区的古地理特征及讨论其构造演化过程,具有重要地质意义。尼玛盆地南部古近系由古新世-始新世牛堡组与渐新世丁青湖组构成,主体为一套扇三角洲相与湖泊相碎屑沉积建造。采用沉积学、年代学方法,对该盆地南部古近系查昂巴剖面进行沉积特征、碎屑锆石U-Pb年代学及古地理研究,以确定其物源区,并分析构造作用对盆地的改造过程。从牛堡组到丁青湖组,稳定碎屑组分逐渐减少而不稳定组分增加,显示古近纪时盆地沉积过程中受到构造活动影响;碎屑锆石U-Pb年龄中存在36~70 Ma,100~130 Ma,500~550 Ma,750~900 Ma,1800~1900 Ma及~2500 Ma等年龄峰值。碎屑岩组分、锆石年龄特征及其他分析显示,拉萨地体、羌塘地体及缝合带内的逆冲带为其物源区,存在多向物源。在古近纪碰撞、挤压的构造条件下,伴随着地壳缩短、逆冲断层及造山系统的活动,尼玛盆地南部演化为一个受构造活动控制的独立沉积中心;挤压及逆冲变形决定了其古地理特征,沉积过程及物源与区域隆升、剥蚀活动联系密切。  相似文献   

15.
滇西潞西地区位于青藏高原东南缘,大地构造位置上属于保山地体。由于新生代强烈的陆内变形作用,保山地体与青藏高原腹地体的对应关系难以确定。野外观察及LA-ICP-MS锆石U-Pb测年结果表明,潞西新元古代—早古生代地层(震旦系—寒武系蒲满哨群及下奥陶统大矿山组)大部分碎屑锆石Th/U0.1,说明其大多为岩浆成因。U-Pb年龄跨度较大,太古宙—早古生代都有分布,且具有明显的562Ma、892Ma及2265Ma年龄峰,以及较弱的1680Ma和2550Ma年龄峰。保山地体潞西地区沉积岩碎屑锆石年龄分布特征与特提斯喜马拉雅、南羌塘沉积地层碎屑锆石年龄分布特征相似,说明其具有相同的物源——冈瓦纳大陆北部的印度大陆。在新元古代晚期—早古生代,保山地体位于印度大陆北缘,与南羌塘、喜马拉雅地体相邻。伴随着俯冲相关的增生造山过程,保山地体形成相应的新元古代末期—早古生代沉积地层。  相似文献   

16.
《International Geology Review》2012,54(14):1791-1805
Newly discovered basalts in the Dabure area (central Qiangtang block, northern Tibet) were subjected to laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U–Pb zircon dating, geochemical analyses, and zircon Hf isotope analyses. Dating of magmatic zircons from three basalt samples indicates that the Dabure basalts formed during the late Ediacaran (~550 Ma). Xenocrystic zircons yield ages of 700–1150 Ma, providing evidence of the Cryogenian crust in the Tibet block. The Dabure basalts are alkaline, rich in Ti and Fe, and are strongly enriched in light rare earth elements without Eu anomalies. The basalts are geochemically similar to within-plate basalts but are relatively depleted in Nb and Ta. Although the analysed zircons show differences in their Hf isotope compositions, the geochemical data suggest that the Dabure basalts were derived from enriched mantle and that the source magmas were contaminated by the continental crust. The basalts may have erupted during rifting at ~550 Ma (from the dating of magmatic zircons), and may have been a product of the initial breakup of Gondwanaland.  相似文献   

17.
《Gondwana Research》2016,29(4):1530-1542
In this study, we conducted profile measurements, gravel composition analyses, and U–Pb dating on detrital zircons from a representative glacial marine diamictite in the Gangmaco–Dabure area of the Southern Qiangtang–Baoshan block, Tibetan Plateau. We conclude that the diamictite was formed in a glacial marine environment from the outer edge of the continental shelf to the continental slope and deep sea, in what is now the Southern Qiangtang–Baoshan block. Four distinct glacial–interglacial cycles were identified in the diamictite, which record a minimum of four stages of Gondwana glaciation in the area of the Southern Qiangtang–Baoshan block. Combined with regional geological information, we also conclude that during the Carboniferous–Permian, sediments containing the glacial marine diamictite derived from Gondwana, in the region extending from India to the Tethys Himalaya area, and Lhasa and Southern Qiangtang–Baoshan blocks, recorded the transition from continental, neritic to abyssal environments. Gravel assemblages and U–Pb dating of detrital zircons in the glacial marine diamictite indicate that the provenance of the diamictite was Indian Gondwana. We infer that during the Late Paleozoic, the northern margin of the Indian Gondwana continued to be influenced by the Early Palaeozoic tectonic set-up, when Indian Gondwana was under an erosional regime, and the Tethys Himalaya area, and Lhasa and Southern Qiangtang–Baoshan blocks were deposited on a passive continental margin.  相似文献   

18.
ABSTRACT

To determine the Late Palaeozoic evolution of the Lhasa terrane, we report the results of field mapping, petrological and fossil investigations, and U–Pb dating of detrital zircon grains (n = 474) from lower-greenschist-facies clastic rocks of the Lagar Formation in the Baruo area, Tibet. Our results indicate that the Lagar Formation was deposited during the Late Carboniferous to Early Permian in a shallow-marine environment on the northern margin of Gondwana. Glacial marine diamictites are common within the Lagar Formation and record glaciation of Gondwana during the Late Palaeozoic. Moreover, the detrital materials of the Lagar formation originated mostly from the collision orogenic belt. The ages of detrital zircon grains from the Lagar Formation make up five main groups with ages of 410–540 Ma, 550–650 Ma, 800–1100 Ma, 1600–1800 Ma, and 2300–2500 Ma, which display three characteristic age peaks at ~1150, 2390 and 2648 Ma. We tentatively suggest that the Lhasa terrane was a shallow-marine basin under the influence of the Gondwanan glaciation during the Late Carboniferous–Early Permian.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号