首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
燕山地区冀北坳陷中元古界蓟县系杨庄组主要为一套碳酸盐岩沉积.通过对该地区野外仔细观察、测量,结合室内薄片资料和地球化学分析,认为该区杨庄组沉积相为碳酸盐岩台地相,可进一步划分碳酸盐岩潮坪亚相以及潮上带、潮间带2种微相.在此基础上,结合层序界面特征,对杨庄组层序进行了探讨,由于研究区在杨庄期处于浅水陆表海沉积环境,层序界面主要以浅水环境的沉积物及沉积构造作为识别标志.沉积体系域以海侵体系域和高位体系域为主,普遍缺少低位体系域或陆棚边缘体系域,同时,也不具备形成凝缩层的环境,以最大海泛面沉积物与深海中的凝缩层相对应,最终划分出1个二级层序和3个三级层序.系统地阐述了每个层序的岩石、构造及体系域等特征.  相似文献   

2.
The Lower Cretaceous sections in northern Sinai are composed of the Risan Aneiza (upper Barremian-middle Albian) and the Halal (middle Albian-lower Cenomanian) formations. The facies reflect subtle paleobathymetry from inner to outer ramp facies. The inner ramp facies are peritidal, protected to open marine lagoons, shoals and rudist biostrome facies. The inner ramp facies grade northward into outer ramp deposits. The upper Barremian-lower Cenomanian succession is subdivided into nine depositional sequences correlated with those recognized in the neighbouring Tethyan areas. These sequences are subdivided into 19 medium-scale sequences based on the facies evolution, the recorded hardgrounds and flooding surfaces, interpreted as the result of eustatic sea level changes and local tectonic activities of the early Syrian Arc rifting stage. Each sequence contains a lower retrogradational parasequence set that constituted the transgressive systems tracts and an upper progradational parasequence set that formed the highstand systems tracts. Nine rudist levels are recorded in the upper Barremian through lower Cenomanian succession at Gabal Raghawi. At Gabal Yelleg two rudist levels are found in the Albian. The rudist levels are associated with the highstand systems tract deposits because of the suitability of the trophic conditions in the rudist-dominated ramp.  相似文献   

3.
黔中、黔南下、中三叠统沉积相和层序地层   总被引:3,自引:2,他引:3  
杨瑞东 《沉积学报》1993,11(4):24-29
本文记述了对黔中、黔南地区早、中三叠世的碳酸盐岩和陆源的屑岩沉积的分析研究结果,着重讨论了该区沉积层序及其形成机制。早二叠世该区为缓坡,中三叠世演变为陡坡,沉积层序发生了变化。沉积盆地边缘沉积与海平面波动有密切关系,对斜坡上的层序地层及海平面波动作了初步研究。  相似文献   

4.
层序地层中的混合沉积作用及其控制因素   总被引:10,自引:0,他引:10  
简要介绍了硅质碎屑与碳酸盐混合沉积有关概念及混合沉积作用类型,分析了层序体系域中的混合沉积作用及其控制因素。总结认为,硅质碎屑与碳酸盐的混合沉积作用不仅发生在低水位体系域(LST),而且其它各体系域中也都有不同程度的混合沉积现象,但混合沉积作用方式有差别:LST主要为源区混合,陆棚边缘体系域(SMT)和高水位体系域(HST)晚期以间断混合及相混合占优,海浸体系域(TST)早期以间断混合为主。综合研究显示,准层序一级的海平面变化型式差异可能是导致层序体系域混合沉积作用的主要因素,其中,LST、SMT、晚期HST的混合沉积作用分别与准层序一级海平面变化的幅度、速率、位置和持续时间有关,TST则受控于物源供给;先期地形、气候变化(含碳酸盐生产速率影响)或多或少对体系域的混合沉积作用有影响。此外,某些情况下层序体系域的混合沉积作用可能会受到局部构造活动影响,而层序组或超层序内层序体系域的混合沉积作用强弱及其旋回性变化可以提供脉动性区域构造活动信息。  相似文献   

5.
The Beni Suef Basin is a petroliferous rift basin straddling the River Nile containing a thick Mesozoic–Paleogene succession. The Kharita Formation is formed in the syn-rift phase of the basin formation and is subdivided into the Lower and Upper Kharita members. These two members are regarded as two third-order depositional sequences (DSQ-1 and DSQ-2). The lowstand systems tract (LST-1) of the DSQ-1 is represented by thick amalgamated sandstone bodies deposited by active braided channels. Mid-Albian tectonic subsidence led to a short-lived marine invasion which produced coastal marine and inner-shelf facies belts during an ensuing transgressive systems tract (TST-1). At the end of the mid-Albian, a phase of tectonic uplift gradually rose the continent creating a fall in relative sea level, resulting in deposition of shallow marine and estuarine facies belts during a highstand systems tract (HST-1). During the Late Albian, a new phase of land-rejuvenation commenced, with a prolonged phase of fluvial depositional. Fluvial deposits consisted of belts of amalgamated, vertically aggraded sandstones interpreted as braided and moderately sinuous channels, in the lower part of the Upper Kharita Member lowstand stage (LST-2). The continuous basin filling, coupled with significant lowering in the surrounding highlands changed the drainage regime into a wide belt of meandering river depositing the transgressive stage (TST-2). The history of the Kharita Formation finalized with a Cenomanian marine transgressive phase. Economically, the TST-1 and HST-1 play a significant role as source rocks for hydrocarbon accumulations, whereas LST-2 act as good reservoir rocks in the Early Cretaceous in the Basin.  相似文献   

6.
The Lower Eocene Ametlla Formation of the Ager Basin, Spanish Pyrenees, is a rapidly deposited shallow marine unit formed in a setting characterized by syn-sedimentary tectonic activity. Mapping of the formation over a distance of 25 km was conducted according to sequence stratigraphical principles with emphasis on facies analysis. Twelve facies, grouped in five facies associations, have been recognized in the Ametlla Formation. The studied succession records a vertical transition from deltaic systems prograding onto a sediment-starved shelf, via estuarine deposits associated with incised valleys, to sandbar complexes in a tidal seaway. In terms of sequence stratigraphy, three scales of genetic sedimentary units were recognized. (1) At the regional scale, elements of two 3rd-order composite sequences (sensu Exxon) have been recognized. These include a 3rd-order highstand sequence set encompassing the lowermost part of the Ametlla Formation and the underlying Passarella Formation, and a 3rd-order transgressive sequence set that constitutes the middle parts of the Ametlla Formation. The sequence sets are separated by an unconformity with up to 35 m of incision that is interpreted as a major sequence boundary. It is argued that the incised valleys associated with this unconformity were infilled during landward-stepping of the shelfal depositional system. Basinwards, the unconformable surface becomes subhorizontal and is overlain by a 2 m thick oyster bed formed in a sediment-starved setting subsequent to flooding of the incised valleys (which still acted as sediment conduits). Sandstones dominate the transgressive sequence set, whereas the highstand sequence set is dominated by siltstones, particularly in the lower part. In the transgressive sequence set, an upward increase in sand content and calibre is observed, relatable to punctuations of the transgressive trend by high-frequency sea-level fluctuations, and to downslope redistribution of sand. (2) At the subregional scale, detailed mapping indicates the presence of five 4th-order sequences. The 4th-order sequence boundaries are associated with sediment bypassing and minimal erosional relief, and were created by forced regressions during periods of relative sea-level fall. Sharp-based sandstones overlying these unconformities are believed to have accumulated during subsequent rise of relative sea-level. Where 4th-order maximum flooding surfaces can be recognized, the sequences may be subdivided into a sandstone-dominated transgressive systems tract and a siltstone-dominated highstand systems tract. (3) At the local scale, 2–9 5th-order parasequences are present within the 4th-order sequences. Superimposed parasequences are separated by flooding surfaces characterized by bioclastic accumulations, pervasive burrowing and extensive calcite cementation. The parasequences are commonly stacked in a landward-stepping manner.  相似文献   

7.
Well‐cuttings, wireline logs and limited core and outcrop data were used to generate a regional, three‐dimensional sequence framework for Upper Mississippian (Chesterian), Greenbrier Group carbonates in the Appalachian foreland basin, West Virginia, USA. The resulting maps were used to document the stratigraphic response of the basin to tectonics and to glacio‐eustasy during the transition into ice‐house conditions. The ramp facies include inner ramp red beds and aeolianites, lagoonal muddy carbonates, mid‐ramp ooid and skeletal grainstone shoal complexes, and outer ramp wackestone–mudstone, that grades downslope into laminated silty lime mudstone. The facies make up fourth‐order sequences, a few metres to over 90 m (300 ft) thick. The sequences are bounded along the ramp margin by lowstand sandstones and calcareous siltstones. On the ramp, sequence boundaries are overlain by thin transgressive siliciclastics and aeolianites, and only a few are calichified. Maximum flooding surfaces on the outer ramp lie beneath deeper water facies that overlie lowstand to transgressive siliciclastic or carbonate units. On the shallow ramp, maximum flooding surfaces overlie siliciclastic‐prone transgressive systems tracts, that are overlain by highstand carbonates with significant grainstone units interlayered with lagoonal lime mudstones. The fourth‐order sequences are the major mappable subsurface units; they are bundled into weak composite sequences which are bounded by red beds. In spite of differential subsidence rates across the foreland basin (1 to 3 cm/k.y. up to 25 cm/k.y.), eustatic sea‐level changes controlled regional sequence development. Thrust‐load induced differential subsidence of fault‐blocks, coupled with in‐plane stress, controlled the rapid basinward thickening of the depositional wedge, whose thickness and facies were influenced by subtle structures such as arches trending at high angles as well as parallel to the margin.  相似文献   

8.
Abstract Successions across the Middle–Upper Jurassic disconformity in the Lusitanian Basin (west‐central Portugal) are highly varied, and were probably developed on a large westward‐inclined hangingwall of a half‐graben. The disconformity is preceded by a complex forced regression showing marked variations down the ramp, and provides an example of the effects of rapid, relative sea‐level falls on carbonate ramp systems. In the east, Middle Jurassic inner ramp carbonates (‘Candeeiros’ facies) are capped by a palaeokarstic surface veneered by ferruginous clays or thick calcretes. In the west, mid‐outer ramp marls and limestones (‘Brenha’ facies) are terminated by two contrasting successions: (1) a sharp‐based carbonate sandbody capped by a minor erosion surface, overlain by interbedded marine–lagoonal–deltaic deposits with further minor erosion/exposure surfaces; (2) a brachiopod‐rich limestone with a minor irregular surface, overlain by marls, lignitic marls with marine and reworked non‐marine fossils and charophytic limestones, with further minor irregular surfaces and capped by a higher relief ferruginous erosional surface. The age ranges from Late Bathonian in the east to Late Callovian in the west. This disconformity assemblage is succeeded by widespread lacustrine–lagoonal limestones with microbial laminites and evaporites (‘Cabaços’ facies), attributed to the Middle Oxfordian. Over the whole basin, increasingly marine facies were deposited afterwards. In Middle Jurassic inner‐ramp zones in the east, the overall regression is marked by a major exposure surface overlain by continental sediments. In Middle Jurassic outer‐ramp zones to the west, the regression is represented initially by open‐marine successions followed by either a sharp marine erosion surface overlain by a complex sandbody or minor discontinuities and marginal‐marine deposits, in both cases capped by the major lowstand surface. Reflooding led to a complex pattern of depositional conditions throughout the basin, from freshwater and brackish lagoonal to marginal‐ and shallow‐marine settings. Additional complications were produced by possible tilting of the hangingwall of the half‐graben, the input of siliciclastics from westerly sources and climate change from humid to more seasonally semi‐arid conditions. The Middle–Late Jurassic sea‐level fall in the Lusitanian Basin is also recorded elsewhere within the Iberian and other peri‐Atlantic regions and matches a transgressive to regressive change in eustatic sea‐level curves, indicating that it is related in part to a global event.  相似文献   

9.
The Early Miocene succession of Kutch represents a mixed carbonate-siliciclastic depositional system. The carbonate part of the succession, characterized by high abundance of shallow marine benthic fauna, hosts typical shell concentrations (also referred as shell beds). The thickness of shell concentrations vary in scale from 5 cm to 100 cm and are separated by poorly fossiliferous to barren silty shales/siltstones. Based on taphonomic and sedimentological observations, shell concentrations are classified as lag, event, composite/multi-event and hiatal types. The occurrence of different types of shell concentrations in the background of sequence stratigraphic framework is the main theme for the present study. Overall, the shell concentrations occupy the middle part of the sequence i.e. upper part of the transgressive systems tract and lower part of the highstand systems tract. Lag concentrations are found in the lower part of the sequence while composite concentrations, the major contributors in the sequence, occur in upper part of the transgressive systems tract and in the lower part of the highstand systems tract. The hiatal concentrations are associated with maximum flooding surface while the position of event concentrations is independent of sequence stratigraphic framework. The shell concentrations occupy marine flooding surface or marine ravinement surface, thus mark parasequence boundaries.  相似文献   

10.
Abstract Six evaporite–carbonate sequences are recognized in the terminal Neoproterozoic–Early Cambrian Ara Group in the subsurface of Oman. Individual sequences consist of a lower, evaporitic part that formed mainly during a lowstand systems tract. Overlying platform carbonates contain minor amounts of evaporites and represent transgressive and highstand systems tracts. Detailed sedimentological and geochemical investigation of the evaporites allowed reconstruction of the depositional environment, source of brines and basin evolution. At the beginning of the evaporative phase (prograding succession), a shallow-water carbonate ramp gradually evolved into a series of shallow sulphate and halite salinas. Minor amounts of highly soluble salts locally record the last stage of basin desiccation. This gradual increase in salinity contrasts sharply with the ensuing retrograding succession in which two corrosion surfaces separate shallow-water halite from shallow-water sulphate, and shallow-water sulphate from relatively deeper water carbonate respectively. These surfaces record repeated flooding of the basin, dissolution of evaporites and stepwise reduction in salinity. Final flooding led to submergence of the basin and the establishment of an open-water carbonate ramp. Marine fossils in carbonates and bromine geochemistry of halite indicate a dominantly marine origin for the brines. The Ara Group sequences represent a time of relatively stable arid climate in a tectonically active basin. Strong subsidence allowed accommodation of evaporites with a cumulative thickness of several kilometres, while tectonic barriers simultaneously provided the required restricted conditions. Subsidence allowed evaporites to blanket basinal and platform areas. The study suggests a deep-basin/shallow-water model for the evaporites.  相似文献   

11.
近海型含煤岩系沉积学及层序地层学研究进展   总被引:3,自引:1,他引:2       下载免费PDF全文
层序地层学是近20年来发展起来的一门新的方法学科,并在聚煤作用分析中得到广泛应用。作者就近海型含煤岩系沉积学研究历史以及煤系层序地层学研究方法及有关问题进行探讨,认为近海环境的聚煤作用实际上是海平面(基准面)上升过程中发生的,同时提出煤层厚度受泥炭堆积速率与可容空间增加速率的控制:靠陆一侧冲积平原和三角洲平原沉积环境中,厚煤层主要出现在最大海泛面位置;而靠海一侧障壁-潟湖或碳酸盐岩台地沉积环境中,厚煤层主要出现在初始海泛面的位置;但就整个三级复合层序来说,层序中厚度最大、分布最广的煤层主要分布于可容空间增加速率最大的最大海泛面附近的位置。对于中国晚古生代近海型煤系中常见的“根土岩-煤-石灰岩”序列,聚煤作用发生于海相石灰岩“滞后时段”,即在海侵之后、海相石灰岩层真正沉积下来之前的时段,这一时段可容空间增加速率与泥炭堆积速率平衡,有利于聚煤作用发生。  相似文献   

12.
为了揭示鄂尔多斯盆地东缘层序地层与沉积相特征,以层序地层学和沉积学理论为指导,对鄂尔多斯盆地东缘保德扒楼沟剖面及周缘上古生界的层序与体系域界面类型、层序结构、沉积相类型及沉积演化进行研究。依据区域性不整合面、下切谷冲刷面、海侵方向转换面和区域性海退面等层序界面将研究区上古生界划分为7个三级层序,分别对应于本溪组、太原组2段、太原组1段、山西组、下石盒子组、上石盒子组和石千峰组。保德扒楼沟及周缘上古生界剖面发育16种岩石类型和8种岩石组合。区内上古生界发育障壁海岸相、碳酸盐岩台地相、辫状河相和曲流河相。SQ1-SQ3中低位体系域发育风化壳和潮道亚相,海侵体系域发育潮坪亚相和潟湖亚相,高位体系域发育碳酸盐岩台地相、潟湖亚相和潮坪亚相;SQ4-SQ7中低位体系域发育辫状河河床亚相,海侵体系域主要发育曲流河泛滥平原亚相,高位体系域主要发育多期曲流河河床亚相—堤岸亚相—泛滥平原亚相的演化序列。区内上古生界经历了由障壁海岸相和碳酸盐岩台地相向河流相的演化过程,沉积演化主要受物源供给、海平面变化和构造活动的控制。  相似文献   

13.
ABSTRACT Quaternary carbonates in SE Sicily were deposited in seamount and short ramp settings during glacio‐eustatically driven highstand conditions. They provide an excellent opportunity to investigate the depositional and erosional aspects of cool‐water carbonate sedimentation in a microtidal marine water body. The derived ramp facies model differs significantly from modern‐day, open‐ocean ramp scenarios in projected facies depth ranges and in the preservation of inshore facies. A sequence stratigraphic study of the carbonates has confirmed many established aspects of carbonate sedimentation (e.g. production usually only occurred during highstands). It has also revealed several new features peculiar to water bodies with little tidal influence, including ‘catch‐up’ surfaces taking the place of transgressive facies, second‐order sequence boundary events being most important as triggers for initiating resedimentation and a virtual absence of sediment shedding to the basin during the terminal lowstand. Production in the carbonate factory lasted for about 0·5 Myr. Despite this, carbonate production was considerable and included both bioconstructional and bioclastic‐dominated facies and the production of abundant lime muds. A model for eustatically controlled cool‐water carbonate production and resedimentation in microtidal marine water bodies is presented. This is considered to be more applicable to Neogene and Quaternary strata in the Mediterranean region than are current open‐ocean models.  相似文献   

14.
Late Eocene time in the Bremer and western Eucla Basins of southern Western Australia was a period of terrigenous clastic and abundant, unusual, biosiliceous sponge sedimentation. The Pallinup Formation (revised) consists of five units; 1 and 2 are basal sandstones, 3 and 4 are variably spiculitic mudstones, whilst the uppermost unit is spiculite and spongolite, and formalised as the Fitzgerald Member (new). The Pallinup Formation, plus coeval spiculites in palaeovalleys and carbonates in the western Eucla Basin, accumulated during one large‐scale, transgressive‐regressive relative sea‐level cycle. Drowned, low‐gradient rivers supplied mud but little sand. Instead, sand was locally sourced via transgressive shoreface erosion of deeply weathered regolith. Regression terminated shoreface erosion, eliminated the sand source, and resulted in a river‐supplied, clay‐dominated shallow‐marine depositional system. The unit 2–3 sandstone‐mudstone transition, which would normally be interpreted as transgressive drowning, is in this case the result of regressive cessation of sand supply. The peak relative sea‐level (highstand) horizon thus lies within unit 2 sandstones, a facies that would usually be considered wholly transgressive, and no highstand systems tract was deposited. The maximum flooding and downlap surfaces are the same horizon and cap the transgressive systems tract. They formed coincidentally or subsequent to peak relative sea‐level, but prior to initiation of unit 3 mudstone deposition. Upper unit 2 plus unit 3 represent a condensed section systems tract, and unit 4 plus the Fitzgerald Member comprise a regressive systems tract.  相似文献   

15.
The Late Neoproterozoic Buah Formation (Nafun Group, Oman) is a carbonate unit outcropping in the Jabal Akhdar and Huqf areas. It is composed mostly of shallow‐water carbonates deposited on a distally steepened carbonate ramp. Correlation of two δ13C isotope shifts shows that in the Jabal Akhdar ramp differentiation into fast and slow subsiding areas was followed by lateral progradation. In the Huqf area, however, a uniform scenario of upward shallowing of the facies and lateral progradation is demonstrated by chemostratigraphic timelines cross‐cutting the facies belts. The chemostratigraphic profiles show that the Buah Formation was deposited during sea‐level highstand conditions and that ramp differentiation was due to synsedimentary tectonics. High‐resolution correlation of δ13C profiles from the same lithostratigraphic unit (whether Precambrian or Phanerozoic in age) lacking biostratigraphic data can shed light on carbonate systems dynamics, tectonic vs. eustatic controls on depositional sequences and basin subsidence.  相似文献   

16.
Upper Carboniferous to Lower Permian sedimentary rocks extend along the periphery of the northern Sydney Basin, a sub‐basin of the Sydney‐Gunnedah‐Bowen Basin complex. The basin contains basal basalts and volcanic sediments deposited in a nascent rift zone. This rift zone was created through crustal thinning during trench rollback on the eastern edge of the New England Orogen. Thermal subsidence created accommodation for predominantly marine Dalwood Group sediments. Clastic sedimentation then occurred in the Maitland‐Cessnock‐Greta Coalfield and Cranky Corner Basin during the Early Permian. This occurred on a broad shelf undergoing renewed thermal subsidence on the margin of a rift flank of the Tamworth Belt of the southern New England Orogen. Braidplain fans prograded or aggraded in two depositional sequences. The first sequence commences near the top of the Farley Formation and includes part of the Greta Coal Measures, while the second sequence includes the majority of the Greta Coal Measures and basal Branxton Formation. Thin, areally restricted mires formed during interludes in a high sedimentation regime in the lowstand systems tracts. As base‐level rose, areally extensive mires developed on the transgressive surface of both sequences. A paludal to estuarine facies changed to a shallow‐marine facies as the braidplain was transgressed. The transgressive systems tracts continued to develop with rising relative sea‐level. Renewed uplift in the hinterland resulted in the erosion of part of the transgressive systems tract and all of the highstand systems tract of the lower sequence. In the upper sequence a reduction in relative sea‐level rise saw the development of a deltaic to nearshore shelf highstand systems tract. Extensional dynamics caused a fall in relative base‐level and the development of a sequence boundary in the Branxton Formation. Finally, renewed thermal subsidence created accommodation for the overlying, predominantly marine Maitland Group.  相似文献   

17.
对鄂西—湘西北地区多个沉积剖面的地层及沉积相进行了详细分析,结果表明,该区二叠纪栖霞期至茅口初期主要为内克拉通碳酸盐岩缓坡环境,发育内缓坡相、中缓坡相、外缓坡相和盆地相.内缓坡相以厚层至块状生物碎屑石灰岩为主,生物颗粒以绿藻和底栖有孔虫为主,缺乏高能沉积的生物颗粒.中缓坡相以中厚层含生物碎屑颗粒石灰岩以及厚层灰泥石灰岩...  相似文献   

18.
The study area is located in the east Tabas Block in Central Iran. Facies analysis of the Qal’eh Dokhtar Formation (middle Callovian to late Oxfordian) was carried out on two stratigraphic sections and applied to depositional environment and sequence stratigraphy interpretation. This formation conformably overlies and underlies the marly-silty Baghamshah and the calcareous Esfandiar formations, respectively. Lateral and vertical facies changes documents low- to high energy environments, including tidal-flat, beach to intertidal, lagoon, barrier, and open-marine. According to these facies associations and absence of resedimentation deposits a depositional model of a mixed carbonate–siliciclastic ramp was proposed for the Qal’eh Dokhtar Formation. Seven third-order depositional sequences were identified in each two measured stratigraphic sections. Transgressive systems tracts (TSTs) show deepening upward trends, i.e. shallow water beach to intertidal and lagoonal facies, while highstand systems tracts (HST) show shallowing upward trends in which deep water facies are overlain by shallow water facies. All sequence boundaries (except at the base of the stratigraphic column) are of the no erosional (SB2) types. We conclude eustatic rather than tectonic factors played a dominant role in controlling carbonate depositional environments in the study area.  相似文献   

19.
Cenomanian–Turonian strata of the south‐central Pyrenees in northern Spain contain three prograding carbonate sequences that record interactions among tectonics, sea level, environment and sediment fabric in controlling sequence development. Sequence UK‐1 (Lower to Upper Cenomanian) contains distinct lagoonal, back‐margin, margin, slope and basin facies, and was deposited on a broad, flat shelf adjacent to a deep basin. The lack of reef‐constructing organisms resulted in a gently dipping ramp morphology for the margin and slope. Sequence UK‐2 (Upper Cenomanian) contains similar shallow‐water facies belts, but syndepositional tectonic modification of the margin resulted in a steep slope and deposition of carbonate megabreccias. Sequence UK‐3 (Lower to Middle Turonian) records a shift from benthic to pelagic deposition, as the shallow platform was drowned in response to a eustatic sea‐level rise, coupled with increased organic productivity. Sequences UK‐1 to UK‐3 are subdivided into lowstand, transgressive and highstand systems tracts based on stratal geometries and facies distribution patterns. The same lithologies (e.g. megabreccias) commonly occur in more than one systems tract, indicating that: (1) the depositional system responded to more than just sea‐level fluctuations; and (2) similar processes occurred during different times throughout sequence development. These sequences illustrate the complexity of carbonate platform dynamics that influence sequence architecture. Rift tectonics and flexural subsidence played a major role in controlling the location of the platform margin, maintaining a steep slope gradient through syndepositional faulting, enhancing slope instability and erosion, and influencing depositional processes, stratal relationships and lithofacies distribution on the slope. Sea‐level variations (eustatic and relative) strongly influenced the timing of sequence and parasequence boundary formation, controlled changes in accommodation and promoted platform drowning (in conjunction with other factors). Physico‐chemical and climatic conditions were responsible for reducing carbonate production rates and inducing platform drowning. Finally, a mud‐rich sediment fabric affected platform morphology, growth geometries (aggradation vs. progradation) and facies distribution patterns.  相似文献   

20.
The Lower Jurassic Mashabba Formation crops out in the core of the doubly plunging Al-Maghara anticline, North Sinai, Egypt. It represents a marine to terrestrial succession deposited within a rift basin associated with the opening of the Neotethys. Despite being one of the best and the only exposed Lower Jurassic strata in Egypt, its sedimentological and sequence stratigraphic framework has not been addressed yet. The formation is subdivided informally into a lower and upper member with different depositional settings and sequence stratigraphic framework. The sedimentary facies of the lower member include shallow-marine, fluvial, tidal flat and incised valley fill deposits. In contrast, the upper member consists of strata with limited lateral extension including fossiliferous lagoonal limestones alternating with burrowed deltaic sandstones. The lower member contains three incomplete sequences (SQ1-SQ3). The depositional framework shows transgressive middle shoreface to offshore transition deposits sharply overlain by forced regressive upper shoreface sandstones (SQ1), lowstand fluvial to transgressive tidal flat and shallow subtidal sandy limestones (SQ2), and lowstand to transgressive incised valley fills and shallow subtidal sandy limestones (SQ3). In contrast, the upper member consists of eight coarsening-up depositional cycles bounded by marine flooding surfaces. The cycles are classified as carbonate-dominated, siliciclastic-dominated, and mixed siliciclastic-carbonate. The strata record rapid changes in accommodation space. The unpredictable facies stacking pattern, the remarkable rapid facies changes, and chaotic stratigraphic architecture suggest an interplay between allogenic and autogenic processes. Particularly syndepositional tectonic pulses and occasional eustatic sea-level changes controlled the rate and trends of accommodation space, the shoreline morphology, the amount and direction of siliciclastic sediment input and rapid switching and abandonment of delta systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号