首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper attempts an overview of the application of remote sensing to groundwater studies. Its objective is to define the role of the geological features in the underground hydrodynamic in the aquifer system of the Chott El Gharbi Basin (Algerian western high plains) and identify a link between the fracturing and the meteoric water supply of this deep aquifer. The methodology followed consists to study the fracturing map of studied area which is obtained after Landsat 7 ETM+ processing images. It is based on structural lineaments mapping. The obtained map has been validated by geophysical results and geological map. Statistical analysis of the lineaments network shows the presence of about 537 lineaments divided into four families oriented according to the following directions NE-SW, NW-SE, N-S, and E-W. The lineament analysis of the studied basin provides important information on subsurface fractures that may control the circulation and storage of groundwater. These fractures have an undeniable hydrogeological interest because of their size, a priori favorable for the aquifers recharge in the region. The probable link between the Chott El Gharbi implementation and the presence of mega fractures which some of them correspond actually to Wadis is confirmed. The correlation between the productivity of high debit drillings and the closest lineament confirms that these lineaments are surface traces of regional discontinuities and act as main groundwater flow paths.  相似文献   

2.
The study of structural lineaments is important for mineral exploration, geotectonic and geotechnical studies, and for the mitigation of geologic hazards. The present work deals with the extraction of lineaments from satellite imageries of different spatial resolutions as well as the analysis of these extracted lineaments. Wadi Bani Malik area located to the east of Jeddah city on the Red Sea coastal plain is chosen for such a study. Six types of digital satellite imagery data were used in the present study. These comprise satellite imagery of low spatial resolution (LSR) including Landsat MSS of 80-m resolution, Landsat TM of 30-m resolution, and Landsat TM of 25-m resolution; satellite imagery of moderate spatial resolution (MSR) including Landsat ETM+ panchromatic of 15-m resolution and SPOT panchromatic of 10-m resolution; and satellite imagery of high spatial resolution (HSR) including the Indian Remote Sensing satellite IRS data of 5-m resolution. As expected, the analysis of the extracted lineaments from different data sets shows that the imagery data of HSR of the Indian IRS data give the highest frequency of the extracted structural lineaments (N?=?3,235), while the imagery data of LSR of the Landsat MSS data give the lowest frequency of the extracted lineaments (N?=?89). The imagery data of MSR give moderate frequency (N?=?1,643) in average. Due to the present study, it is recommended to use the imagery data of HSR and MSR for the extraction of structural lineaments for detailed and regional studies, respectively. The imagery data of LSR are not recommended for such studies due to the fact that most of the real structural lineaments framework cannot be extracted; accordingly, it is not useful in the analyses of lineaments for geological purposes.  相似文献   

3.
The aim of the present study is to investigate the lineaments of Kolli hills of Tamil Nadu State for which CARTOSAT-1 satellite’s DEM output has been made use of. The extracted lineaments were analysed using ArcGIS and Rockworks software. The total number and length of lineaments are 523 and 943.81 km, respectively. Shorter lineaments constitute about 3/4th of the total number of lineaments. The density of the lineaments varies from 0 to 7.41 km/km2, and areas of very high to high density are restricted to the south central, central and north eastern parts, and these areas reflect the high degree of rock fracturing and shearing which makes these areas unsuitable for the construction of dams and reservoirs. However, these areas could be targeted for groundwater exploitation as they possess higher groundwater potential. The lineaments are oriented in diverse directions. However, those orienting in ENEWSW, NE-SW and NW-SE are predominating followed by those oriented in sub E-W and sub N-S directions. These orientations corroborate with results of previous regional studies and with orientations of prominent geological structures and features of the study area. Distinct variation in the predominant orientations of lineaments of varied sizes is observed, while the shorter ones are oriented in either NW-SE or NNW-SSE directions, the longer ones are oriented in either NE-SW or ENE-WSW. A comparative analysis of lineament datasets of the eight azimuth angles and the final lineament map underlines the need to extract lineaments from various azimuth angles to get a reliable picture about the lineaments.  相似文献   

4.
The NE-oriented Dasht-e-Arjan graben is located 65 km west of Shiraz and has resulted from the active Kare-e-Bas fault segmentations. This extensional graben bounded by two fault system east-Arjan and west-Arjan to the Shahneshin and Salamati anticline. In these study using Landsat 7 ETM images with resolution 2.5 m and directional filtering in the four azimuths and semi-automatic technique for linear structure in the study area. Using the obtained data from extracted lineaments, the rose diagrams of the main strike lineaments are well confirm with field measurements of faults with N56° ± 4°E direction. The structural lineaments of the study area show that the Dasht-e-Arjan area is underlain by the limestone, sandstone, and marl. LANDSAT imagery of the area has been analyzed and interpreted in order to determine the lineament and groundwater quality across the area. The fracture is structurally controlled and mostly influences both the groundwater and surface water pollution and flow directions in the Dasht-e-Arjan. Using visual interpretation, determining the lineaments on the satellite image is very difficult and subjective, and it requires an experienced interpreter. In this study, the lineament analysis is undertaken to examine the orientation of the lineament, the relationship between lineaments and tectonic features and groundwater quality. Lineament density maps show that the lineament density is high around areas. Areas having high lineament density represent areas with relatively high groundwater pollution. Field observations agreed with the results from the analysis of the imagery.  相似文献   

5.
Cauvery Basin is one of the pericratonic rift basins located in the east coast of Tamilnadu. The rifting has resulted in a series of horsts and grabens. The present study uses a new technique which was devised with the help of GIS by analyzing the surface lineaments and subsurface linearities effectively. In this present study, a satellite image based analysis was conducted for extracting surface lineaments, and for the subsurface linearities, the basement linearities were extracted from seismic, magnetic, and gravity data. An orientation analysis of these surface and subsurface linear features was performed to detect the basic structural grains of the study area. The correlation between these structural grains and subsurface oil and gas traps was performed to understand the connectivity to the reservoirs. This article discusses in detail about the same and the importance of using surface and subsurface lineament analyses for delineating hydrocarbon reservoirs in the Nagapattinam Sub-Basin of Cauvery Basin.  相似文献   

6.
Water shortage has become a problem in many arid regions where rainfall is low. Wadi Aurnah Basin, in Saudi Arabia (Arabian Peninsula), where the Holy Islamic cities are located, was selected for study, since it represents a water-scarce region. The potential for groundwater storage was investigated. This was achieved using remote sensing and geographic information system (GIS) techniques to cover the whole area (3,113 km2). Satellite images with high spatial resolution were processed to recognize terrain elements controlling the subsurface rock behavior. Landsat 7 ETM+, ASTER and SRTM satellite images were processed using ERDAS IMAGINE software. The influencing factors on groundwater storage were determined and digitally mapped as thematic layers. This included rainfall, lithology, rock fractures, slope, drainage and land cover/use. These factors were integrated in the GIS system (ArcView). A map was produced, indicating potential areas for groundwater storage. The map shows that 12–15% of Wadi Aurnah Basin has potential for groundwater storage, mainly in areas where intensive fracture systems exist.  相似文献   

7.
Water is a fluctuating resource making it difficult to measure in time and in space. To demonstrate the efficiency of the geographic information system (GIS) for groundwater studies, information on the parameters controlling groundwater such as lithology, geomorphology and lineament analysis were analyzed. LISS-III and Landsat satellite image of the area was used to infer information on the geologic lineaments and geomorphology. To delineate linear features enhancement and direction, filtering was performed on single bands of Landsat images. Thematic maps for geology, slope, geomorphology and lineament were prepared and integrated in GIS by assigning the weights and ranking to various parameters controlling the occurrence of groundwater to generate the groundwater potential map for the study area. The results indicate that the floodplain of river and its adjoining areas have very good groundwater potential, whereas the steeply sloping area in the northern part having high relief and slope possesses poor groundwater potential.  相似文献   

8.
9.
Lineament extraction and analysis is one of the routine work in mapping medium and large areas using remote sensing data, most of which are satellite images. Landsat Enhanced Thematic Mapper (ETM) of 945×1 232 pixels subscene acquired on 21 March 2000 covering the northwestern part of Yunnan Province has been digitally processed using ER Mapper software. This article aims to produce lineament density map that predicts favorable zones for hydrothermal mineral occurrences and quantify spatial associations between the known hydrothermal mineral deposits. In the process of lineament extraction a number of image processing techniques were applied. The extracted lineaments were imported into MapGIS software and a suitable grid of 100 m×100 m was chosen. The Kriging method was used to create the lineament density map of the area. The results show that remote sensing data could be useful to extract the lineaments in the area. These lineaments are closely correlated with the faults obtained through other geological investigation methods. On comparing with field data the lineament-density map identifies two important high prospective zones, where large-scale deposits are already existing. In addition the map highlights unrecognized target areas that require follow up investigation.  相似文献   

10.
Wadi Baba–Wadi Shalal area locates in the westcentral part of Sinai, Egypt. It is covered by a Precambrian basement rocks comprise the northern part of the Precambrian Arabo-Nubian crystalline massive. The lithologic and structural setting of the investigated area was interpreted from the digital Landsat-7 Enhanced Thematic Mapper Plus (ETM+) data. The structural lineament analyses for the lithologic units and their relationships to the high-radioactivity zones (HRZ) and the characterizations of HRZ of the study area are the main tasks of this article. Extraction algorithm was applied using Geomatica PCI package under the user defined parameters. The extracted structural lineaments have been evaluated and chicked using the visual interpretation and published works. The short-wave infrared spectral ETM+ band-7 was selected as an optimum data for automatic lineaments extraction since it scored the highest lineament frequency (1856) compared to the other visible and near infrared bands. The aeroradiometric color raster total count equivalent thorium (eTh) and equivalent uranium (eU) maps were used to delineate the highest radioactivity zones of the study area. A selective image processing technique (SIPT) is a new approach in Geomatica (9.1), which gives rise to valuable results in this work. The SIPT was carried out for the subset of the ETM+ data of the highest radioactivity zones. The spatial distribution of the structural lineament pattern maps for some low-radioactivity zones (LRZ) and for the highest radioactivity zones of the study area are prepared with their frequency rose diagrams. The NE–SW trend is the predominant structural lineaments trend in the investigated area. The NE–SW to the ENE–WSW directions are the predominant structural lineament trends in both the LRZ and the HRZ. These high-radioactivity zones of the investigated area are characterized by high lineaments density and lineaments-intersection density, restricted to Um Bogma Formation and younger granitic rocks and are not controlled by structural lineament trends.  相似文献   

11.
Large-scale geological features have been identified by satellite imagery and global positioning system data in the Wajid Sandstone in Saudi Arabia. The main objective is to evaluate the importance of fractures for the overall flow behaviour in this fractured rock aquifer and to estimate in-situ hydraulic apertures. Data on fractures and lineaments were available for three outcrops. By applying a “cut-out” routine on the fracture endpoint data of these fracture trace windows, three deterministic discrete fracture networks (DFN), with an area of 100 m?×?100 m, could be generated. These were used to simulate the fracture flow and to determine the hydraulic conductivity tensors. Using additional data on hydraulic pumping tests and matrix conductivities, in-situ hydraulic apertures could be determined. Average in-situ hydraulic apertures range from 1,300 to 1,700 µm. Observations from the field support these results. In addition, a hydraulic conductivity ratio between the matrix and fracture system was used to identify the contribution of the DFN to the overall fluid transport. A ratio of 10.4 was determined, which indicates that the effective flow behaviour in the Wajid Sandstone aquifer is not entirely dominated by the fracture system, though evidently strongly controlled by it.  相似文献   

12.
Structural maps are traditionally produced by mapping features such as faults, folds, fabrics, fractures and joints in the field. However, large map areas and the spatially limited ground perspective of the field geologist can potentially increase the likelihood that not all structural features will be identified within a given area. The ability to recognise and map both local and regional structural features using high-resolution remote sensing data provides an opportunity to complement field-based mapping to help generate more comprehensive structural maps. Nonetheless, vegetation cover can adversely affect the extraction of structural information from remotely sensed data as it can mask the appearance of subtle spectral and geomorphological features that correspond to geological structures. This study investigates the utility of airborne Light Detection And Ranging (LiDAR) data and airborne multispectral imagery for detailed structural mapping in vegetated ophiolitic rocks and sedimentary cover of a section of the northern Troodos ophiolite, Cyprus. Visual enhancement techniques were applied to a 4-m airborne LiDAR digital terrain model and 4-m airborne multispectral imagery to assist the generation of structural lineament maps. Despite widespread vegetation cover, dykes and faults were recognisable as lineaments in both data sets, and the predominant strike trends of lineaments in all resulting maps were found to be in agreement with field-based structural data. Interestingly, prior to fieldwork, most lineaments were assumed to be faults, but were ground-verified as dykes instead, emphasising the importance of ground-truthing. Dyke and fault trends documented in this study define a pervasive structural fabric in the upper Troodos ophiolite that reflects the original sea-floor spreading history in the Larnaca graben. This structural fabric has not previously been observed in such detail and is likely to be continuous in adjacent regions under sedimentary cover. This information may be useful to future exploration efforts in the region focused on identification of structurally controlled mineral and groundwater resources. Overall, our case study highlights the efficacy of airborne LiDAR data and airborne multispectral imagery for extracting detailed and accurate structural information in hard-rock terrain to help complement field-based mapping.  相似文献   

13.
Hydrogeomorphology and lineament studies have been completed by using satellite data for the Pageru river basin, Cuddapah district, Andhra Pradesh, India through visual interpretation of IRS-1B-LISS II FCC (57J/6, J/7, J/10 and J/11) on a 1:50,000 scale. The area has been visually interpreted to delineate various hydrogeomorphic units and lineaments for the development of groundwater. From these studies, various geomorphic units were classified as favourable, moderately favourable and poor zones of groundwater. The integration of geomorphology and lineament studies reveal that shallow groundwater occurrence is controlled by geomorphological characteristics whereas faults/fractures control the yield of groundwater at intermediate depths.  相似文献   

14.
The Wajid Sandstone of southeastern Saudi Arabia is a prolific aquifer and a recent target for hydrocarbon exploration, but a sedimentologic model and the stratigraphic architecture of the sediments have only recently been presented for the type area of the Wajid Group around Wadi Dawasir. Farther to the west, the Wajid Sandstone was also recognized, but stratigraphic architecture and sedimentology are poorly known. This paper presents the preliminary results of investigations targeted at the outcrops west and south of the type area, covering the area between Wadi Dawasir, Najran in the south, and Abha in the west. Two successions are recognized, a lower red one and an upper beige one. Although the lower one sedimentologically shares several features with the lowermost unit in the type area, the marine Dibsiyah Formation, a correlation remains doubtful. The red succession lacks the Skolithos fauna of the Dibsiyah Formation, and its facies associations point to a fluvial depositional environment. From its stratigraphic position and from its lithology, the red succession is similar to the Siq Formation of the northern Kingdom and it will be discussed whether the red succession might be a yet unrecognized equivalent of the Siq Formation. The lower red unit is bounded by a major unconformity, separating it from the underlying basement. This pan-African unconformity developed during a latest Neoproterozoic–Cambrian episode of intensive weathering and peneplanation. It is characterized by a thick weathering zone and an overlying coarse but thin quartz pebble breccia to conglomerate, which together represent a regolith. The beige succession is definitely correlated to the Khusayyayn Formation. Both successions are characterized by macro-scale to giant 2D and 3D submarine dunes and share many other phenomena. The basal unconformity also shows regolith development with a quartz pebble conglomerate, whose clasts seem to have been reworked from the pan-African regolith.  相似文献   

15.
Understanding the orientation distribution of structural discontinuities using the limited information afforded by their trace in outcrop has considerable application, with such analysis often providing the basis for geological modelling. However, eigen analysis of 3D structural lineaments mapped at decimetre to regional scales indicates that discontinuity best fit plane estimates from such datasets tend to be unreliable. Here, the relationship between digitised lineament vertex geometry (coplanarity/collinearity) and the reliability of their estimated best fitting plane is investigated using Monte Carlo experiments. Lineaments are modelled as the intersection curve between two orthonormally oriented fractional Brownian surfaces representing the outcrop and discontinuity plane. Commensurate to increasing lineament vertex collinearity (K), systematic decay in estimated pole vector precision is observed from these experiments. Pole vector distributions are circumferentially constrained around the axis of rotation set by the end nodes of the synthetic lineaments, reducing the rotational degrees of freedom of the vertex set from three to one. Vectors on the unit circle formed perpendicular to this arbitrary axis of rotation conform to von Mises (circular normal) distributions tending towards uniform at extreme values of K. This latter observation suggests that whilst intrinsically unreliable, confidence limits can be placed upon orientation estimates from 3D structural lineaments digitised from remotely sensed data. A probabilistic framework is introduced which draws upon the statistical constraints obtained from our experiments to provide robust best fit plane estimates from digitised 3D structural lineaments.  相似文献   

16.
The relationship between major structural lineaments and locations of ore deposits in Iran has been investigated using geospatial data. In the course of lineament extraction, satellite images, aeromagnetic data, digital elevation model (DEM) and structural maps were processed and the lineaments and large-scale faults were identified. The extracted lineaments, based on subjective assessment, from each dataset were imported into GIS software and the “lineament map of Iran” was prepared by data integration. The analysis for selecting significant lineament was mainly based on fault correlated lineament and lineament with field map fractures, which was sets as benchmarks for compiling a final output map. Four major regional lineament trends of N–S, E–W, NW–SE and NE–SW were identified in the data of all images, which are corresponded to the structural zones and the major fault systems of Iran. The mineral deposits (active and abandoned) and mineral indications database compiled are based on the published maps, papers, reports and the ore deposits data files of Geological Survey of Iran. Integrating the output of these two datasets by GIS software resulted in the “Combined Map of Lineaments and Gold, Copper, Lead, Zinc and Iron Deposits of Iran”. The number and distance of ore deposits toward the lineaments were processed by the counting and cumulative methods in the GIS software's. Approximately, over 90% of the ore deposits of Iran are located in the central part of the lineaments (15 km on each side) which are concordant with a definition of large lineament. About 50% of these mineral deposits are closer than 5 km to the lineaments. There are significant correlations between lineament density and intersections with ore deposits occurrences. The observed associations at this scale are informative in establishing exploration strategy and decreasing exploration risks for detailed work on ore deposit scale.  相似文献   

17.
Remote sensing, evaluation of digital elevation models (DEM), geographic information systems (GIS) and fieldwork techniques were combined to study the groundwater conditions in Eritrea. Remote sensing data were interpreted to produce lithological and lineament maps. DEM was used for lineament and geomorphologic mapping. Field studies permitted the study of structures and correlated them with lineament interpretations. Hydrogeological setting of springs and wells were investigated in the field, from well logs and pumping test data. All thematic layers were integrated and analysed in a GIS. Results show that groundwater occurrence is controlled by lithology, structures and landforms. Highest yields occur in basaltic rocks and are due to primary and secondary porosities. High yielding wells and springs are often related to large lineaments, lineament intersections and corresponding structural features. In metamorphic and igneous intrusive rocks with rugged landforms, groundwater occurs mainly in drainage channels with valley fill deposits. Zones of very good groundwater potential are characteristic for basaltic layers overlying lateritized crystalline rocks, flat topography with dense lineaments and structurally controlled drainage channels with valley fill deposits. The overall results demonstrate that the use of remote sensing and GIS provide potentially powerful tools to study groundwater resources and design a suitable exploration plan.The online version of the original article can be found at  相似文献   

18.
In the Hazara arc region of northern Pakistan, some of the active basements structures buried below a thick, detached sedimentary layer are inferred from the distribution of lineaments and the drainage patterns, as viewed in Landsat satellite imagery and from river profiles.A prominent set of NW-trending lineaments seen on satellite imagery, coincides approximately with the southwest or updip side of the Indus—Kohistan seismic zone (IKSZ) —the most active basement structure of the region, even though this structure is buried beneath and decoupled from a 12 km thick sedimentary layer. The IKSZ has been interpreted as an extension of the Himalayan Basement Thrust, and is also associated with a prominent topographic “step”.Knickpoints on major rivers in the region lie on or north of the IKSZ. All Indus River tributaries, examined north of the IKSZ, show prominent knickpoints, while two tributaries draining south of the IKSZ have no knickpoints. These results suggest ongoing uplift above and north of the IKSZ, and are consistent with the tectonic model obtained from the seismic data.Another prominent lineament set is detected along the north—south section of the Indus River. This set is probably related to the Indus River horst—anticline and associated reentrant.One of the two highest lineament concentrations occurs at the intersection between the NW-trending IKSZ lineament and the N-trending Indus River lineament. The other is along the west bank of the Indus Valley, 25 km north of Tarbela Dam.A topographic ridge (Swabi—Nowshera ridge) appears to be forming along the west side of the Indus River, in the Peshawar Basin. The rising ridge is ponding the Kabul River upstream of Nowshera, where the drainage is braided.  相似文献   

19.
柴达木盆地北缘地区构造复杂,特征明显。在经过增强处理的ETM卫星遥感图像上,通过详细分析构造判别标志,对研究区线性构造进行解译,并对解译结果进行分区统计分析。线性构造走向玫瑰花图统计表明,构造走向在东、中、西部构造分区内呈现明显的规律性:西部地区断层发育较为复杂,中部地区断裂发育中等,东部地区断层发育比较单一,呈现过渡带性质。构造密度等值线图显示,线性构造总体展布呈北西—南东向,与区域主干构造线方向一致,等值线图清楚的展示出断层发育的“南北分带、东西分块”的特征。  相似文献   

20.
The remotely sensed data provides synoptic viewing and repetitive coverage for thematic mapping of natural resources. In the present study hydrogeomorphological mapping has been carried out in Kakund watershed, Eastern Rajasthan for delineating groundwater potential zones. IRS-1D LISS III Geocoded FCC data in conjunction with Survey of India toposheet (1:50000 scale) and field inputs were used for thematic mapping. Geomorphic units identified through visual interpretation of FCC include: alluvial plain, plateau, valley fills, intermontane valleys, burried pediment, residual hills, and linear ridges. In addition, lineaments were mapped since they act as conduit for groundwater recharge. Majority of the lineaments trends NE-SW and a few along NW-SE directions and are confined to the southern and southeastern parts of the watershed. Based on hydrogeomorphological, geological and lineament mapping the Kakund watershed has qualitatively been categorized into four groundwater potential zones, viz. good to very good, moderate to good, poor to moderate and very poor to poor. The study reveals that only 10.97% of the area has good to very good, 35.41% area with moderate to good, 49.04 % of the area has poor to moderatel, while remaining 4.57% has poor to very poor groundwater potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号