首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Although reverse drag, the down warping of hanging wall strata toward a normal fault, is widely accepted as an indicator of listric fault geometry, previous studies have shown that similar folding may form in response to slip on faults of finite vertical extent with listric or planar geometry. In this study we therefore seek more general criteria for inferring subsurface fault geometry from observations of near-surface deformation by directly comparing patterns of displacement, stress, and strain around planar and listric faults, as predicted by elastic boundary element models. In agreement with previous work, we find that models with finite planar, planar-detached, and listric-detached faults all develop hanging wall reverse-drag folds. All of these model geometries also predict a region of tension and elevated maximum Coulomb stress in the hanging wall suggesting that the distribution and orientation of near-surface joints and secondary faults may also be of limited utility in predicting subsurface fault geometry. The most notable difference between the three models, however, is the magnitude of footwall uplift. Footwall uplift decreases slightly with introduction of a detachment and more significantly with the addition of a listric fault shape. A parametric investigation of faults with constant slip ranging from nearly planar to strongly listric over depths from 1 to 15 km reveals that footwall fold width is sensitive to fault geometry while hanging wall fold width largely reflects fault depth. Application of a graphical approach based on these results as well as more complete inverse modeling illustrates how patterns of combined hanging wall and footwall deformation may be used to constrain subsurface fault geometry.  相似文献   

2.
The seismic potential of creeping faults such as the Hayward fault (San Francisco Bay Area, CA) depends on the rate at which moment (slip deficit) accumulates on the fault plane. Thus, it is important to evaluate how the creep rate observed at the surface is related to the slip on the fault plane. The surface creep rate (SCR) depends on the geometry of locked and free portions of the fault and on the interaction between the fault zone and the surrounding lithosphere. Using a viscoelastic finite element model, we investigate how fault zone geometries and physical characteristics such as frictionless or locked patches affect the observed surface creep when the system is driven by far field plate motions. These results have been applied to creep observations of the Hayward fault. This analysis differs from most previous fault creeping models in that the fault in our model is loaded by a distributed viscous flow induced by far field velocity boundary conditions instead of imposed slip beneath the major faults of the region. The far field velocity boundary conditions simulate the relative motion of the stable Pacific plate respect to the Rigid Sierra Nevada block, leaving the rheology, fault geometry, and mechanics (locked or free to creep patches), to determinate the patterns of fault creep.Our model results show that the fault geometry (e.g. length and depth of creeping) and the local rheology influence the surface creep rate (SCR) and the slip on the fault plane. In particular, we show that the viscoelastic layer beneath the elastic seismogenic zone plays a fundamental role in loading the fault. Additionally, the coupling with the surrounding lithosphere results in a smooth transition from regions free to creep to locked patches.  相似文献   

3.
黔南地区古生代正断层对构造特征的制约   总被引:2,自引:1,他引:1  
黔南地区发育东西向的古生代正断层以及南北向的中、新生代逆冲断层和褶皱。通过对地层、褶皱和断层的平面展布、野外地质调查以及地震剖面的解释,结合雪峰隆起的逆冲推覆特征,研究黔南地区古生代正断层对构造特征的制约作用。研究结果表明东西向的古生代正断层在中、新生代的构造变形过程中起构造转换带的作用。通过建立区内构造转换带的几何学模型,对地震线上的构造变形特征进行了解释。在构造转换带(正断层)附近,断层上盘逆冲推覆不明显;在远离断层处,逆冲断层和与断层相关的褶皱发育。随着距离断层面越来越远,构造转换带(正断层)下盘地层的逆冲推覆特征逐渐消失。  相似文献   

4.
The Tulungwan-Chaochou Fault system in southern Taiwan represents the boundary between a slate belt of moderate metamorphic grade and a relatively unmetamorphosed fold-and-thrust belt. The offset between hanging wall and footwall of this fault ranges from 7 to 11 km and is considered one of the major tectonostratigraphic faults in Taiwan. This 75-km-long fault system is also one of the most conspicuous topographic features in Taiwan. The geometry, kinematic history and associated subsidiary structures have not been resolved. Field mapping of fabrics and brittle faults show that a 45-km-long west-northwest-vergent antiform defined by folded slaty cleavage exists in the hanging wall of the fault. This antiform has not been previously described and apparently formed in a brittle environment. The flat crest and tight forelimb of the antiform suggests a two-stage deformation model composed of a fault-bend fold followed by a trishear fold. We infer that regional scale fold is associated with a thrust that splays upward from the main detachment.  相似文献   

5.
玛东褶皱-冲断带是世界上保存最好的早古生代褶皱冲断带之一,也是塔里木油气勘探的重点区域之一。褶皱-冲 断带浅部构造由于遭受强烈剥蚀,为玛东褶皱-冲断带的构造样式和变形机制研究带来巨大的挑战。断层相关褶皱理论定 量化建立了断层形态和褶皱形态几何学和运动学的关系,是一种有效的利用断层形态来推测褶皱形态的方法,为恢复玛东 地区被剥蚀区域的构造形态提供了可能。文中详细介绍了断层转折褶皱和断层传播褶皱的几何学和运动学特征,并将其应 用于玛东地区的典型构造中,建立2 种玛东地区构造变形模式。最后结合工业地震剖面和钻井资料,认为玛东地区的主要 构造样式是断层转折褶皱, 并分析了构造样式对油气圈闭的影响。  相似文献   

6.
This paper describes how a model of fixed-hinge, basement-involved, fault-propagation folds may be adapted to apply to thin-skinned thrust faults to generate footwall synclines. Fixed-hinge, fault-propagation folding assumes that the fold-axial surfaces diverge upwards, fold hinges are fixed in the rock, the fault propagated through the forelimb, thickness changes occur in the forelimb and the forelimb progressively rotates with increasing displacement on the underlying fault. The original model for fixed-hinge, fault-propagation folds was developed for the case of a planar fault in basement with a tip line that was at the interface between basement and the overlying sedimentary cover rocks. The two geometries applicable to thin-skinned thrusts are for the cases where a fixed-hinge fault-propagation fold develops above an initial bedding-parallel detachment, and an initial fault ramp of constant dip which flattens down-dip into a bedding-parallel detachment.  相似文献   

7.
Hand-specimen and outcrop scale examples of folds are analyzed here to identify the characteristic signatures of fold-accommodation faults. We describe and analyze the geometric and kinematic relationships between folds and their associated faults in detail including the structural position and spatial distribution of faults within a fold, the displacement distribution along the faults by applying separation–distance plots for the outcrop scale examples, and the change of cut-off angle when the fault cut across folded layers. A comparison between fold-accommodation faults and fault related folds based on their separation–distribution plots and the problem of time sequence between faulting and folding are discussed in order to distinguish fold-accommodation faults from the reverse faults geometrically and kinematically similar to them. The analysis results show that fold-accommodation faults originate and terminate within a fold and usually do not modify the geometry of the fold because of their limited displacement. The out-of-syncline thrust has a diagnostically negative slope (separation value decreasing away from the upper fault tip) in the separation–distance graph. The change of cut-off angle and the spatial distribution of faults display a close relationship with the axial surface of the fold. Our analyses show that fold-accommodation faults are kinematically consistent with the flexural slip of the fold. The interbedded strata with competence contrast facilitate formation of fold-accommodation faults. These characteristic signatures are concluded as a set of primary identification criteria for fold-accommodation faults.  相似文献   

8.
贝尔凹陷苏德尔特构造带的形成与演化   总被引:1,自引:0,他引:1       下载免费PDF全文
苏德尔特构造带是海拉尔盆地贝尔凹陷的重要油气聚集带之一。使用平衡剖面技术和基于斜向剪切模型的人字形桁架法对苏德尔特构造带及其两侧的贝西断陷和贝中断陷进行了详细的构造几何学和运动学解析,认为在南屯期近SN向伸展,形成近EW向断陷盆地群之后,又叠加了大磨拐河组早期的短时间NW向伸展,以及此后的坳陷沉降,才形成了苏德尔特构造带特殊的构造样式。贝中断陷的东侧边界断层是整个贝尔凹陷在大磨拐河组早期伸展的主干边界断层,并且断层面具有坡坪式特征。苏德尔特构造带是发育于第一阶断坪上部的"滚动背斜",是重力和边界断层几何形态共同控制的结果,形成机制属于重力影响下的横弯褶皱作用,而非侧向挤压引起的纵弯褶皱作用。  相似文献   

9.
Kinematics of compressional fold development in convergent wrench terranes   总被引:1,自引:0,他引:1  
Kinematic models are presented for compressional fold development in wrench and convergent wrench terranes that relate fold shortening, axial rotation, and axial extension. Fold shortening may be derived from final fold geometry. Existing fold geometry and axial orientation, two readily measurable quantities, provide the data needed to determine the relative components of shearing and convergence within the fold system. Analyses utilizing these kinematic models indicate that folds developed in sedimentary rocks in the wrench borderlands of both the Rineonada and San Andreas wrench faults in central California are the product of strongly convergent wrenching. The axes of these folds have been rotated no more than a few degrees during the course of their development. In contrast, folds developed in the Alpine Schists along the Alpine fault in New Zealand and in Pleistocene sediments along the southern limit of the San Andreas fault suggest an almost pure wrench setting and large (>25 °) axial rotations.

Significant axial extension is inherent in wrench-related compressional folds. This axial extension is commonly manifest in the form of normal and strike-slip faults that are internal to the folds and trend at high angles to the fold axes. The relative amount of axial extension diminishes as the degree of convergence increases. This axial extension, and the associated extensional features, can be a diagnostic indication of the influence of wrenching.  相似文献   


10.
We present an outcrop-scale example of a localized contractional fault geometry that developed as part of an imbricate normal fault system in response to regional extension. Although extensional regions are dominated by abundant normal faulting, local thrust duplication may occur during the same phase of deformation, and on a regional scale may concentrate important quantities of hydrocarbons. Characteristics of extension-related fold belts have mostly been derived from seismic sections; thus fault geometries, mechanisms of formation, and kinematics of these structures are not precisely understood. Abundant kinematic indicators and complete exposure of an extended sedimentary sequence within the Dead Sea Transform, however, provide the opportunity to examine these fault geometries and mechanisms in detail. The local contractional geometry developed within an imbricate normal fault system, as a result of an out-of-sequence normal fault that detached at a higher structural level. The out-of-sequence normal fault offset pre-existing faults, but was deflected into a contractional geometry upon encountering an earlier-formed rollover anticline, whose curved bedding surface served as a convenient ramp. Consequently, displacement across the out-of-sequence fault generated coeval extensional and contractional geometries along the same detachment surface. Geometries and kinematics derived from the outcrop structural analysis may serve as important analogs for larger structures identified as potential targets for hydrocarbon exploration.  相似文献   

11.
柴北缘冷湖地区构造建模和构造分析   总被引:1,自引:2,他引:1  
通过采用先进的地质解释软件,对柴北缘冷湖地区的三维地震资料进行解释,建立起该区域新生代的三维构造模型。研究区新生代构造主要是由断层F2活动引起的断层相关背斜,发育3条主要断层F2、F5和F6,均具有右行走滑冲断的性质。结合区域地质资料及断层F2的几何学和运动学特征,认为该断层和它的相关背斜为油气的二次运移和聚集提供了较好的通道和构造圈闭。  相似文献   

12.
Large NE–SW oriented asymmetric inversion anticlines bounded on their southeastern sides by reverse faults affect the exposed Mesozoic and Cenozoic sedimentary rocks of the Maghara area (northern Sinai). Seismic data indicate an earlier Jurassic rifting phase and surface structures indicate Late Cretaceous-Early Tertiary inversion phase. The geometry of the early extensional fault system clearly affected the sense of slip of the inverted faults and the geometry of the inversion anticlines. Rift-parallel fault segments were reactivated by reverse slip whereas rift-oblique fault segments were reactivated as oblique-slip faults or lateral/oblique ramps. New syn-inversion faults include two short conjugate strike-slip sets dissecting the forelimbs of inversion anticlines and the inverted faults as well as a set of transverse normal faults dissecting the backlimbs. Small anticline–syncline fold pairs ornamenting the steep flanks of the inversion anticlines are located at the transfer zones between en echelon segments of the inverted faults.  相似文献   

13.
Experimental (clay) models of inversion structures   总被引:3,自引:0,他引:3  
Experimental modeling is used to study the geometry and evolution of inversion structures. Two main types of inversion structures are analyzed:

1. (1) structures formed by fault-propagation folding; and

2. (2) structures formed by fault-bend folding on listric faults.

Fault-propagation inversion structures initially develop as broad drape folds with possible fault breakthrough during an early extensional phase. Syn-extensional strata deposited in the hanging wall typically thicken away from the fault. Compressional reactivation results in reversal of slip on the master and secondary faults, their rotation to shallower dips, and the development of a compressional fault-propagation fold. Key features of the fault-propagation fold are basinward thickening of syn-extensional units and resulting steep dips of the front limb of the structure. Fault-bend inversion structures initiate as rollover folds within extensional half-graben. Deformation is primarily localized along a system of antithetic faults. Syn-extensional strata typically thicken across the fault but also thin basinward away from the fault. During compression, the extensional rollover folds are folded into compressional fault-bend folds. Key features of this structure are thinning of syn-extensional units into the basin. Inversion of more symmetric graben results in a doubly-convex geometry of syn-extensional units. These observations of bed geometry and thickness provide predictive models for interpreting the geometries of inversion structures in areas of poor data quality.  相似文献   


14.
地质体有着十分复杂的结构和构造,因此,如何掌握地质体中各点的位移规律和应力分布规律,对工程地质研究,预测矿山边坡稳定性和地下工程稳定性,地震预测和预报以及地质构造形变的规律都是十分重要的。  相似文献   

15.
山前逆冲褶皱带的几何学和运动学研究属于构造地质学前沿课题,也是全球山前盆地油气勘探开发所关注的问题.综合二维地震剖面、钻测井数据、地质填图资料,建立了库车坳陷东部两类断层几何学和运动学模型,绘制了吐孜洛克断层和东秋里塔格断层断距分布图以及东秋里塔格背斜位移缩短量分布图.研究资料表明库车坳陷东部发育两种类型断层,古近纪发育高角度逆冲断层,造成山前基底抬升,白垩系-古近系被剥蚀;上新世发育低角度逆冲断层,引发库车坳陷中生界-新生界变形,形成盆地腹部隐伏的叠瓦状逆冲构造.   相似文献   

16.
镇江地区位于宁镇山脉东端,地质构造复杂,尤其断裂构造的活动性塑造了镇江地区如今的地形地貌格架。通过地质地貌调查、遥感影像解译、地球物理勘探、钻探、探槽等勘探手段,对镇江地区断裂构造两侧第四纪地层进行年代学研究,基本确定了断裂构造的活动机制、活动时间,结合镇江地区地震发生的规律及地应力场特征的研究,认为镇江地区断裂构造的最后活动时间在更新世,全新世活动较弱,并趋于稳定。   相似文献   

17.
Based on high-resolution remote sensing image interpretation, digital elevation model 3-D analysis, field geologic field investigation, trenching engineering, and ground-penetrating radar, synthetic research on the evolution of the Yuguang Basin South Margin Fault (YBSMF) in northwest Beijing was carried out. We found that the propagation and growth of faults most often occurred often at two locations: the fault overlapping zone and the uneven or rough fault segment. Through detailed observation and analysis of all cropouts of faults along the YBSMF from zone a to zone i, we identified three major factors that dominate or affect fault propagation and growth. First, the irregularity of fault geometry determine the propagation and growth of the fault, and therefore, the faults always propagate and grow at such irregular fault segments. The fault finally cuts off and eliminates its irregularity, making the fault geometry and fault plane smoother than before, which contributes to the slipping movement of the half-graben block in the basin. Second, the scale of the irregularity of the fault geometry affects the result of fault propagation and growth, that is, the degree of the cutting off of fault irregularity. The degree of cutting off decreases as irregularity scale increases. Third, the maximum possible slip displacement of the fault segment influences the duration of fault propagation and growth. The duration at the central segments with a large slip displacement is longer than that at the end segments with a smaller slippage value.  相似文献   

18.
早中生代(晚印支-早燕山期)岳阳-赤壁断褶带位于江南造山带与中扬子前陆盆地交界地带.作者对该构造带进行了地表地质调查,以此为基础探讨了构造剖面结构及构造变形动力机制.岳阳-赤壁断褶带自南而北可分为岳阳-临湘基底滑脱-逆冲带,桃花泉-肖家湾盖层滑脱褶皱带,以及赤壁-嘉鱼前陆盆地断-褶-盆构造带.岳阳-临湘基底滑脱-逆冲带自南而北依次有郭镇向斜、官山背斜、临湘倒转向斜和聂市背斜,组成隔槽式褶皱组合.褶皱轴面多向南倾,褶皱变形面为南华系盖层与冷家溪群褶皱基底间的角度不整合面和顺界面的滑脱断裂面.桃花泉-肖家湾盖层滑脱褶皱带主要发育轴面南倾倒转褶皱,褶皱波长较小,卷入地层为南华系-志留系以及上石炭统-中三叠统沉积盖层.赤壁-嘉鱼前陆盆地断-褶-盆构造带以南倾蒲圻断裂(江南断裂)为南部边界,发育T3-J2前陆盆地沉积,带内褶皱与断裂卷入地层包括沉积盖层以及T3-J2地层:南部断裂与褶皱轴面南倾.北部轴面近直立.自南西至北东,研究区内构造线走向由EW向渐变为NEE-NE向.上述构造分带及变形特征反映出自南向北的运动指向,表明岳阳-赤壁断褶带具前陆冲断带构造性质.从断裂相关褶皱理论出发,以地表构造特征为依据,厘定了岳阳-赤壁地质剖面结构并进行了变形动力机制分析,认识如下:①自南而北、自下而上的多个滑脱层及其间的南倾逆断裂或断坡(主要为江南断裂)组成近似台阶状的逆冲断裂系统,从总体上控制了构造块体的滑移、逆冲以及相应的构造格架或变形分区.②郭镇向斜为基底滑脱褶皱,官山背斜具滑脱褶皱和断裂传播褶皱双重成因,聂市背斜为断裂转折褶皱;临湘向斜为受两侧背斜控制的被动向斜,由于弯滑褶皱作用在其两翼沿不整合界面形成滑脱断裂.③岳阳-临湘基底滑脱-逆冲带隔槽式褶皱的形成主要受控于褶皱基底的滑脱和基底整体的水平压缩,其形成机制类似于肿缩式褶皱.最后讨论认为湘东北-鄂东南地区不存在大规模、长距离的逆冲推覆构造.  相似文献   

19.
Although it is generally considered that near-surface earthquakes result from movements along faults that cut through the surface, several recent large earthquakes have been partly attributed to blind thrusts. Movements along blind thrusts lead to the formation of surface folds, which are highly dependent upon fault geometry at depth and often not considered in seismic hazard evaluation. Several authors have studied the relationship between surface folding and thrusting for geological situations in which fault geometries are quite simple. However, active fault geometries can be quite complex e.g., segmented thrust faults associated with strike-slip faults. The aim of this contribution is to reconstruct the fault kinematics at depth for a relatively complex geological structure located in the Eastern Betic Cordilleras (Orihuela-Guardamar-Torrevieja region) using the patterns of kilometre-scale folds observed in the field. In order to model surface deformation, the assumption is made that surface km-scale folds have been created by coseismic deformation associated with movement along blind thrusts. By means of a coseismic deformation model, movements at depth have been calculated for three possible hypotheses. Hypothesis 1 assumes that each superficial fold is created by an independent fault. Hypotheses 2 and 3 assume that a sequence of two superficial folds can be created by movement along a single fault displaying a flat and ramp geometry. In Hypothesis 2, the flat is a superficial décollement level between the sedimentary cover and the Betic basement; in Hypothesis 3, it is a deeper décollement level within the Betic basement.

Knowing the approximate age of surface deformation, rough estimates of fault slip-rates and recurrence periods for two possible earthquake magnitudes (7 Ms and 6.7 Ms) have been made, from calculated dislocations at depth. Slip-rates and recurrence periods for flat and ramp fault geometries are in the range of 0.75–1 mm/yr and 1000–2000 yr, respectively. These values are close to those calculated by direct methods in similar seismotectonic contexts.  相似文献   


20.
Two-dimensional, elastic, plane-strain, finite element models (FEMs) are generated to study the state of stress and failure induced by a low-angle normal fault, the Alto Tiberina Fault of the Northern Apennines (central Italy): it is beyond the scope of the present work to show that slip can occur on such a fault. The numerical study was performed to evaluate the influences on the local stress field of the litho-mechanical stratification of formations surrounding the fault, and those induced by the geometry of the fault. The performed models have shown the important role played by evaporites and basement formations of the Umbria-Marche succession as seismogenetic layers. The model results have also underlined that the flat-ramp geometry of the fault induces high relative concentration of stresses in correspondence with the low-angle, east-dipping, synthetic normal faults observed today in shallow depth near the Alto Tiberina surface trace. The stress regime predicted by the final model, in which the behavior of the Alto Tiberina together with the antithetic normal fault of Gubbio was simulated, reconciles available geological and geophysical observable to a greater extent. The numerical results can assist interpretation of the tectonic evolution of the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号