首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper proposes that the spatial pattern of known prospects of the deposit‐type sought is the key to link predictive mapping of mineral prospectivity (PMMP) and quantitative mineral resource assessment (QMRA). This proposition is demonstrated by PMMP for hydrothermal Au‐Cu deposits (HACD) and by estimating the number of undiscovered prospects for HACD in Catanduanes Island (Philippines). The results of analyses of the spatial pattern of known prospects of HACD and their spatial associations with geological features are consistent with existing knowledge of geological controls on hydrothermal Au‐Cu mineralization in the island and elsewhere, and are used to define spatial recognition criteria of regional‐scale prospectivity for HACD. Integration of layers of evidence representing the spatial recognition criteria of prospectivity via application of data‐driven evidential belief functions results in a map of prospective areas occupying 20% of the island with fitting‐ and prediction‐rates of 76% and 70%, respectively. The predictive map of prospective areas and a proxy measure for degrees of exploration based on the spatial pattern of known prospects of HACD were used in one‐level prediction of undiscovered mineral endowment, which yielded estimates of 79 to 112 undiscovered prospects of HACD. Application of radial‐density fractal analysis of the spatial pattern of known prospects of HACD results in an estimate of 113 undiscovered prospects of HACD. Thus, the results of the study support the proposition that PMMP can be a part of QMRA if the spatial pattern of discovered prospects of the deposit‐type sought is considered in both PMMP and QMRA.  相似文献   

2.
We present a mineral systems approach to predictive mapping of orogenic gold prospectivity in the Giyani greenstone belt (GGB) by using layers of spatial evidence representing district-scale processes that are critical to orogenic gold mineralization, namely (a) source of metals/fluids, (b) active pathways, (c) drivers of fluid flow and (d) metal deposition. To demonstrate that the quality of a predictive map of mineral prospectivity is a function of the quality of the maps used as sources of spatial evidence, we created two sets of prospectivity maps — one using an old lithologic map and another using an updated lithological map as two separate sources of spatial evidence for source of metals/fluids, drivers of fluid flow and metal deposition. We also demonstrate the importance of using spatially-coherent (or geologically-consistent) deposit occurrences in data-driven predictive mapping of mineral prospectivity. The best predictive orogenic gold prospectivity map obtained in this study is the one that made use of spatial evidence from the updated lithological map and spatially-coherent orogenic gold occurrences. This map predicts 20% of the GGB to be prospective for orogenic gold, with 89% goodness-of-fit between spatially-coherent inactive orogenic gold mines and individual layers of spatial evidence and 89% prediction-rate against spatially-coherent orogenic gold prospects. In comparison, the predictive gold prospectivity map obtained by using spatial evidence from the old lithological map and all gold occurrences has 80% goodness-of-fit but only 63% prediction-rate. These results mean that the prospectivity map based on spatially-coherent gold occurrences and spatial evidence from the updated lithological map predicts exploration targets better (i.e., 28% smaller prospective areas with 9% stronger fit to training gold mines and 26% higher prediction-rate with respect to validation gold prospects) than the prospectivity map based on all known gold occurrences and spatial evidence from the old lithological map.  相似文献   

3.
This paper describes the geology and tectonics of the Paleoproterozoic Kumasi Basin, Ghana, West Africa, as applied to predictive mapping of prospectivity for orogenic gold mineral systems within the basin. The main objective of the study was to identify the most prospective ground for orogenic gold deposits within the Paleoproterozoic Kumasi Basin. A knowledge-driven, two-stage fuzzy inference system (FIS) was used for prospectivity modelling. The spatial proxies that served as input to the FIS were derived based on a conceptual model of gold mineral systems in the Kumasi Basin. As a first step, key components of the mineral system were predictively modelled using a Mamdani-type FIS. The second step involved combining the individual FIS outputs using a conjunction (product) operator to produce a continuous-scale prospectivity map. Using a cumulative area fuzzy favourability (CAFF) curve approach, this map was reclassified into a ternary prospectivity map divided into high-prospectivity, moderate-prospectivity and low-prospectivity areas, respectively. The spatial distribution of the known gold deposits within the study area relative to that of the prospective and non-prospective areas served as a means for evaluating the capture efficiency of our model. Approximately 99% of the known gold deposits and occurrences fall within high- and moderate-prospectivity areas that occupy 31% of the total study area. The high- and moderate-prospectivity areas illustrated by the prospectivity map are elongate features that are spatially coincident with areas of structural complexity along and reactivation during D4 of NE–SW-striking D2 thrust faults and subsidiary structures, implying a strong structural control on gold mineralization in the Kumasi Basin. In conclusion, our FIS approach to mapping gold prospectivity, which was based entirely on the conceptual reasoning of expert geologists and ignored the spatial distribution of known gold deposits for prospectivity estimation, effectively captured the main mineralized trends. As such, this study also demonstrates the effectiveness of FIS in capturing the linguistic reasoning of expert knowledge by exploration geologists. In spite of using a large number of variables, the curse of dimensionality was precluded because no training data are required for parameter estimation.  相似文献   

4.
This paper describes a quantitative methodology for deriving optimal exploration target zones based on a probabilistic mineral prospectivity map. The methodology is demonstrated in the Rodalquilar mineral district in Spain. A subset of known occurrences of mineral deposits of the type sought was considered discovered and then used as training data, and a map of distances to faults/fractures and three band ratio images of hyperspectral data were used as layers of spatial evidence in weights-of-evidence (WofE) modeling of mineral prospectivity in the study area. A derived posterior probability map of mineral deposit occurrence showing non-violation of the conditional independence assumption and having the highest prediction rate was then put into an objective function in simulated annealing in order to derive a set of optimal exploration focal points. Each optimal exploration focal point represents a pixel or location within a circular neighborhood of pixels with high posterior probability of mineral deposit occurrence. Buffering of each optimal exploration focal point, based on proximity analysis, resulted in optimal exploration target zones. Many of these target zones coincided spatially with at least one occurrence of mineral deposit of the type sought in the subset of cross-validation (i.e., presumed undiscovered) mineral deposits of the type sought. The results of the study showed the usefulness of the proposed methodology for objective delineation of optimal exploration target zones based on a probabilistic mineral prospectivity map.  相似文献   

5.
In this paper, point pattern analysis, fractal analysis and Fry analysis were employed to study the spatial pattern of known occurrences of mineral deposits of the type sought, whereas distance distribution method was applied to study the spatial associations between various geological features and known occurrences of mineral deposits of the type sought. In the Aroroy district (Philippines), the results of the applications of these spatial analytical techniques support a conceptual model of district-scale mechanism of geologic controls on low-sulphidation epithermal Au mineralization, which involves a more-or-less regular mesh of interlinked zones of extension faults/fractures at and/or around intersections of NNW- and NW-trending strike-slip faults/fractures. Integration of spatial evidential data layers representing these structural controls and surficial geochemical anomalies, via knowledge-guided application of data-driven evidential belief functions, results in delineation of prospective areas occupying about 25% of the district, in which there is about 70% likelihood of undiscovered occurrences of low-sulphidation epithermal Au deposits.  相似文献   

6.
The Archaean lode gold deposits in the Mt. York District, Pilbara Block, Western Australia are hosted in banded iron formation (Main Hill/Breccia Hill prospect) of the ca. 3.33 Ga Gorge Creek Group and in amphibolites (Zakanaka prospect) of the ca. 3.46 Ga Warrawoona Group. Gold mineralisation at the Main Hill/Breccia Hill prospect is associated with breccias comprising quartz clasts in a quartz-pyrrhotite matrix, and quartz-amphibole veins, with löllingite being the major host for gold. Minimum temperatures for gold mineralisation at the prospect are constrained as 455°C to 550°C by arsenopyrite thermometry. Gold mineralisation at the Zakanaka prospect is spatially associated with quartzclinopyroxene-calcite-microcline-calcic-amphibole veins and biotite altered wallrock adjacent to the veins. Temperatures for vein emplacement are estimated as 480°C to 570°C using both plagioclase-amphibole thermometry and mineral equilibria with respect to T and XCO2. The timing of gold mineralisation relative to the peak of metamorphism is constrained by mineral textures and the relative temperatures of hydrothermal alteration and metamorphism. Gold mineralisation at both deposits was broadly synchronous with the peak of regional amphibolite facies metamorphism, which reached temperatures of 520°C to 640°C based on amphibole-plagioclase and garnet-biotite thermometry. In this respect, the deposits are similar to other well documented syn-amphibolite facies lode gold deposits from the Archaean Southern Cross greenstone belt in the Yilgarn Block, and represent the deeper section of a crustal continuum of lode gold deposits that includes mesothermal deposits such as those at Kalgoorlie at higher crustal levels.  相似文献   

7.
《Ore Geology Reviews》2003,22(1-2):117-132
A data-driven application of the theory of evidential belief to map mineral potential is demonstrated with a redefinition of procedures to estimate evidential belief functions. The redefined estimates of evidential belief functions take into account not only the spatial relationship of an evidence with the target mineral deposit but also consider the relationships among the subsets of spatial evidences within a set of evidential data layer. Proximity of geological features to mineral deposits is translated into spatial evidence and evidential belief functions are estimated for the proposition that mineral deposits exist in a test area. The integrated maps of degrees of belief for the proposition that mineral deposits exist in a test area is classified into a binary mineral potential map. For the Baguio district (Philippines), the binary gold potential map delineates (a) about 74% of the training data (i.e., locations of large-scale gold deposits) and (b) about 64% of the validation data (i.e., locations of small-scale gold deposits). The results demonstrate the usefulness of a geologically constrained mineral potential mapping using data-driven evidential belief functions to guide further surficial exploration work in the search for yet undiscovered gold deposits in the Baguio district. The results also indicate the usefulness of evidential belief functions for mapping uncertainties in the geologically constrained integrated predictive model of gold potential.  相似文献   

8.
A 2D prospectivity model of epithermal gold mineralisation has been completed over the Taupo Volcanic Zone (TVZ), using the weights of evidence modelling technique. This study was used to restrict a 3D geological interpretation and prospectivity model for the Ohakuri region. The TVZ is commonly thought of as a present-day analogue of the environment in which many epithermal ore deposits, such as in the Hauraki Goldfield, Coromandel Volcanic Zone, are formed. The models utilise compiled digital data including historical exploration data, geological data from the Institute of Geological and Nuclear Sciences Ltd. Quarter Million Mapping Programme, recent Glass Earth geophysics data and historic exploration geochemical data, including rock-chip and stream sediment information. Spatial correlations between known deposits and predictive maps are determined from the available data, which represent each component of the currently accepted mineral system model for epithermal gold. The 2D prospectivity model confirms that the TVZ has potential for gold mineralisation. However, one of the weaknesses of this weights of evidence model is that the studies are carried out in 2D, with an approximation of 3D provided by geophysical and drilling data projected to a 2D plane. Consequently, a 3D prospectivity model was completed over the Ohakuri area, constrained by the results of the 2D model and predictive maps. The 3D model improved the results allowing more effective exploration targeting. However, the study also highlighted the main issues that need to be resolved before 3D prospectivity modelling becomes standard practise in the mineral exploration industry. The study also helped develop a work flow that incorporates preliminary 2D spatial data analysis from the weights of evidence technique to more effectively restrict and develop 3D predictive map interpretation and development.  相似文献   

9.
Mineral prospectivity mapping is a classification process because in a given study area, a specific region is classified as either a prospective or non-prospective area. The cost of false negative errors differs from the cost of false positive errors because false positive errors lead to wasting much more financial and material resources, whereas false negative errors result in the loss of mineral deposits. Traditional machine learning algorithms using for mapping mineral prospectivity are aimed to minimize classification errors and ignore the cost-sensitive effects. In this study, the effects of misclassification costs on mapping mineral prospectivity are explored. The cost-sensitive neural network (CSNN) for minimizing misclassification costs is applied to map Fe polymetallic prospectivity in China’s southwestern Fujian metalorganic belt (SFMB). A CSNN with a different cost ratio ranging from 1:10 to 10:1 was used to represent various misclassification costs. The cross-validation results indicated a lower misclassification cost compared to traditional neural networks through a threshold-moving based CSNN. The CSNN’s predictive results were compared to those of a traditional neural network, and the results demonstrate that the CSNN method is useful for mapping mineral prospectivity. The targets can be used to further explore undiscovered deposits in the study area.  相似文献   

10.
Data-driven prospectivity mapping can be undermined by dissimilarity in multivariate spatial data signatures of deposit-type locations. Most cases of data-driven prospectivity mapping, however, make use of training sets of randomly selected deposit-type locations with the implicit assumption that they are coherent (i.e., with similar multivariate spatial data signatures). This study shows that the quality of data-driven prospectivity mapping can be improved by using a training set of coherent deposit-type locations. Analysis and selection of coherent deposit-type locations was performed via logistic regression, by using multiple sets of deposit occurrence favourability scores of univariate geoscience spatial data as independent variables and binary deposit occurrence scores as dependent variable. The set of coherent deposit-type locations and three sets of randomly selected deposit-type locations were each used in data-driven prospectivity mapping via application of evidential belief functions. The prospectivity map based on the training set of coherent deposit-type locations resulted in lower uncertainty, better goodness-of-fit to the training set, and better predictive capacity against a cross-validation set of economic deposits of the type sought. This study shows that explicit selection of training set of coherent deposit-type locations should be applied in data-driven prospectivity mapping.  相似文献   

11.
Mineral targets are local geological anomalies. In a study area of a number of unit cells, mapping mineral prospectivity can be implemented by identifying anomaly cells from the unit cell population. One-class support vector machine (OCSVM) models can yield useful results in anomaly detection in high-dimensional data or without any assumptions on the distribution of the inlying data. The OCSVM model was applied to mapping gold prospectivity of the Laotudingzi-Xiaosiping district, an area with a complex geological background, in Jilin Province, China. The decision function value of each unit cell belonging to an anomaly was computed on the basis of the trained OCSVM model and used to express gold prospectivity of the cell. The receiver operating characteristic (ROC) curve, area under curve (AUC) and data-processing efficiency were used to compare the performance of the OCSVM model and a restricted Boltzmann machine (RBM) model in mapping gold prospectivity. The results show that the OCSVM model outperforms the RBM model in terms of ROC, AUC and data-processing efficiency. Gold targets were optimally delineated by using the Youden index to maximise the spatial association between the delineated gold targets and known gold deposits. The gold targets delineated by the OCSVM model occupy 11% of the study area and contain 88% of the known gold deposits; and the gold targets delineated by the RBM model occupy 10% of the study area and contain 81% of the known gold deposits. Therefore, the OCSVM model is a feasible mineral prospectivity mapping approach.  相似文献   

12.
The Lady Bountiful granitoid-hosted lode gold deposit, located in the mid-greenschist facies metamorphosed Ora Banda greenstone sequence, is hosted predominantly by the late-tectonic Liberty Granodiorite. Gold mineralisation is localised along quartz-veined, sinistral, brittle fault-zone(s) that transect the boundary between the Liberty Granodiorite and Mt Pleasant sill. Quartz vein textures indicate two stages of a single gold-related vein-development event, with high-grade gold mineralisation restricted to the second stage. Ore minerals include pyrite, chalcopyrite, pyrrhotite, galena, sphalerite, Au−Ag−Bi−Pb-tellurides, and native gold. Fluid infitration has resulted in narrow (<1 m) bleached wallrock alteration envelopes to the fault zones comprising albite-K-mica ±chlorite±calcite±rutile assemblages. Temperature-pressure conditions varied from Stage I (300°±50°C, ≈2 kbar) to Stage II (250°±50°C, ≈0.5 to 2 kbar), with the hydrothermal fluid in both stages characterised by X(CO2)≤0.15 and moderate salinity (≈1.28 m NaCl). Intermittent phase separation of Stage II mineralising fluids, initiated by pressure fluctuations in dilational sites, and/or fluid-dominated fluid: wallrock interaction, are invoked as the dominant depositional mechanisms. The granitoid-hosted Lady Bountiful lode gold deposit shares many features with other granitoid-hosted lode gold deposits in the Yilgarn Craton and the Superior Province. Granitoid-hosted lode gold deposits, such as the Lady Bountiful deposit, provide additional evidence that the dominant control on the localisation of gold mineralisation within a granitoid host is structure, with competency contrasts playing a significant role. Furthermore, the hydrothermal wallrock alteraction and orefluid chemistry characteristics of the granitoid-hosted lode gold deposits are comparable to those established for greenstone-hosted lode gold mineralisation.  相似文献   

13.
This paper presents a review of the available information on the significant porphyry, epithermal, and orogenic gold districts in Argentina, including the tectonic, geological, and structural settings of large deposits or deposits that have been exploited in the past. Based on this review of the geology and mineralization, targeting models are developed for epithermal and orogenic gold systems, in order to produce GIS-based prospectivity models. Using publically available digital geoscience data, weights of evidence and fuzzy logic prospectivity maps were generated for epithermal and orogenic gold mineralization in Argentina. The results of the prospectivity mapping highlight existing gold deposits within known mineralized districts throughout Argentina, as well as other highly prospective areas with no known deposits within these districts. Additionally, areas within Argentina that have no known gold mineralization (based on publically available information) were highlighted as being highly prospective based on the models used.  相似文献   

14.
Orogenic gold mineral systems in the Western Lachlan Orogen (Victoria) and the Hodgkinson Province (Queensland) produced gold provinces characterised by vastly different scales of gold endowment and strongly uneven distribution of gold mineralisation within each province. The volume of hydrous pyrite-bearing rocks undergoing metamorphic devolatilisation during thermo-tectonic events driving orogenic gold mineral systems represents a fundamental first-order constraint on the total gold endowment and its broad spatial distribution, both between and within the provinces. Most of the largest gold deposits in both regions occur in linear, richly-endowed metallogenic zones, oblique to the dominant regional structures and related to deep crustal domain boundaries. These boundaries, with only subtle surface expressions, were the major regional structural controls which promoted focused near-vertical flow of mineralising metamorphic fluids above the outer margins of cratonic blocks in the lower crust. Recognised major faults represented only more local scale and often indirect controls on the focused fluid flow, particularly effective above the deep cratonic block boundaries overlain by relatively thick crustal source rocks.  相似文献   

15.
The Archaean greenstone terrane between Menzies and Kambalda exhibits a coherent, although deformed, stratigraphic sequence intruded by granitoids and bounded by major NNW-trending shear and/or fault zones. The greenstone terrane hosts a large number of lode gold prospects and deposits, including the giant Kalgoorlie deposits. The initial Pb isotope compositions of lode gold deposits, as determined from ore related galena and pyrite, vary systematically in a linear trend on a207Pb/204Pb versus206Pb/204Pb diagram which reflects crustal heterogeneity at the time of mineralisation. Deposits hosted within a 90 km section of the Menzies-Boorara Shear Zone have a uniform, radiogenic initial Pb isotope composition irrespective of temperature of mineralisation and proximity to granitoid-gneiss in plan view. The Pb in these deposits is considered to be derived largely from older felsic crust underlying the greenstone belt and was accessed via this major shear-zone system. Deposits in a transect unrelated to a major shear zone show a systematic correlation between initial Pb isotope compositions and proximity to granitoid-gneiss and/or to mineralisation temperature. These compositions are less radiogenic than those within the Menzies-Boorara Shear Zone, but trend on a207Pb/204Pb versus606Pb/204Pb diagram between this isotope signature and the uniform Pb isotope signature which characterises the >100 km greenstone transect from the Mt Pleasant area through Kalgoorlie to Kambalda. These data are interpreted to reflect Pb derivation from discrete crustal segments within and below the greenstones, and require that mineralisation was related to crustal-scale hydrothermal systems that accessed both sialic mid- to lower-crust and the greenstone succession.  相似文献   

16.
Regional Exploration Targeting Model for Gangdese Porphyry Copper Deposits   总被引:1,自引:0,他引:1  
An exploration targeting model for Gangdese porphyry copper deposit in Tibet, China, is constructed based on (i) the age of porphyry intrusions within Gangdese magmatic arc; (ii) the regional‐scale normal E–W, N–S and N–E striking faults; and (iii) comprehensive anomalously high concentrations of Cu‐Mo‐Au‐Ag‐Pb‐Zn. These targeting elements are derived from geological map and geochemical dataset, and are integrated by weights of evidence with the aid of geographic information system (GIS). The resulting prospectivity for porphyry copper deposits delineated by posterior probability demonstrates that the target areas extend along the Yaluzangbujiang River and contain the two large deposits, Qulong and Chongjiang, located in the eastern and central part of the Gangdese belt, respectively. These results indicate that the proposed exploration targeting model is a potential tool to map regional‐scale mineral prospectivity. The target areas with high values of favorability, especially where high concentrations of Cu‐Mo‐Au‐Ag‐Pb‐Zn are present, are the potential areas for finding undiscovered porphyry copper deposits.  相似文献   

17.
塔尔巴哈台-萨吾尔地区位于中国新疆西北部,目前已发现若干处铜、金矿床,具有很好的成矿潜力。成矿定量预测方法常被用于综合成矿标志信息,进行成矿远景区的定量预测和评价。本文首先结合多重分形理论-奇异性指数模型进行地球化学异常提取,之后通过对区域成矿条件进行综合分析,基于地球化学异常以及构造、岩浆岩、地层与矿化的相关关系构建了塔尔巴哈台-萨吾尔地区铜-金成矿预测模型;研究进一步基于新近的找矿成果,以已知矿床和新近发现的矿化点信息作为依据,利用证据权重方法对研究区铜-金矿化的远景区进行了定量预测。预测结果显示出塔尔巴哈台-萨吾尔地区具有良好的找矿前景,区内存在多个新的成矿远景区,可作为新的找矿勘探的目标,开展进一步找矿勘查工作。  相似文献   

18.
Geographic Information Systems (GIS) provide an efficient vehicle for the generation of mineral prospectivity maps, which are products of the integration of large geological, geophysical and geochemical datasets that typify modern global‐scale mineral exploration. Conventionally, two contrasting approaches have been adopted, an empirical approach where there are numerous deposits of the type being sought in the analysed mature terrain, or a conceptual approach where there are insufficient known deposits for a statistically valid analysis. There are also a variety of potential methodologies for treatment of the data and their integration into a final prospectivity map. The Lennard Shelf represents the major Mississippi Valley‐type (MVT) province in Australia; however, there are only 13 deposits or major prospects known, making an empirical approach to prospectivity mapping impractical. Instead, a conceptual approach was adopted, where critical features that control the location of MVT deposits on the Lennard Shelf, as defined by widely accepted genetic models, were translated into features related to fluid pathways, depositional traps and fluid outflow zones, which can be mapped in a GIS and categorised as either regional or restricted diagnostic, or permissive criteria. All criteria were derived either directly from geological and structural data, or indirectly from geophysical and geochemical datasets. A fuzzy‐logic approach was adopted for the prospectivity analysis, where each interpreted critical feature of the conceptual model was assigned a weighting between 0 and 1 based on its inferred relative importance and reliability. The fuzzy‐logic method is able to cope with incomplete data, a common problem in regional‐scale exploration datasets. The data were best combined using the gamma operator to produce a fuzzy‐logic map for the prospectivity of MVT deposits on the southeastern Lennard Shelf. Five categories of prospectivity were defined. Importantly, from an exploration viewpoint, the two lowest prospectivity categories occupy ~90% and the highest two categories only 1.6% of the analysed area, yet eight of the 13 known MVT deposits lie in the latter and none in the former: i.e. all lie within ~10% of the area, despite the fact that deposit locations were not used directly in the analysis. The propectivity map also defines potentially mineralised areas in the central southeastern Lennard Shelf and the southern part of the Oscar Ranges, where there are currently no known deposits. Overall, the analysis demonstrates the power of fuzzy‐logic prospectivity mapping on a semi‐regional to regional scale, and emphasises the value of geological data, particularly accurate geological maps, in exploration for hydrothermal mineral deposits that formed late in the evolution of the terrain under exploration.  相似文献   

19.
Mineral exploration programs commonly use a combination of geological, geophysical and remotely sensed data to detect sets of optimal conditions for potential ore deposits. Prospectivity mapping techniques can integrate and analyse these digital geological data sets to produce maps that identify where optimal conditions converge. Three prospectivity mapping techniques – weights of evidence, fuzzy logic and a combination of these two methods – were applied to a 32,000 km2 study area within the southeastern Arizona porphyry Cu district and then assessed based on their ability to identify new and existing areas of high mineral prospectivity. Validity testing revealed that the fuzzy logic method using membership values based on an exploration model identified known Cu deposits considerably better than those that relied solely on weights of evidence, and slightly better than those that used a combination of weights of evidence and fuzzy logic. This led to the selection of the prospectivity map created using the fuzzy logic method with membership values based on an exploration model. Three case study areas were identified that comprise many critical geological and geophysical characteristics favourable to hosting porphyry Cu mineralisation, but not associated with known mining or exploration activity. Detailed analysis of each case study has been performed to promote these areas as potential targets and to demonstrate the ability of prospectivity modelling techniques as useful tools in mineral exploration programs.  相似文献   

20.
空间模式的广义自相似性分析与矿产资源评价   总被引:20,自引:3,他引:17  
成秋明 《地球科学》2004,29(6):733-744
尺度不变性(scale invariance)包括自相似性(各向同性)、自仿射性(成层结构)、广义自相似性(各向异性标度不变性),是由各种地质过程和地质事件所产生的地质特征和模式的本质属性.尺度不变性可用分形和多重分形模型来表征.这些尺度特征的定量化可为刻画地质空问模式和模式识别提供有力的工具.例如。热液矿床的群聚现象可以用局部分形特征(局部奇异性)来刻画.通过在特征空问中(如频率空问)识别空问模式的广义自相似性.可以将空间混合模式进行分解或异常的识别.介绍了几种相关的分形模型和方法。包括度量空问模式广义尺度独立性(GSI)的线性模型;基于广义尺度独立性的异常分解S—A方法;度量空问模式的局部奇异性方法;以及如何利用分形特征预测未发现矿床的2种方法.有些方法已应用于许多矿产资源评价实例中.给出了对加拿大Nova Scotia省西南部湖泊沉积物样品中的4种元素As、Pb、Zn和Cu的地球化学数据处理分析结果。证明了局部奇异性分析和S—A异常分解方法对地球化学异常的增强和分离的有效性.研究表明:由S—A方法分解的异常往往具有多重分形的特点,而且普遍具有局部奇异性.研究区内具有明显奇异性的地区(元素含量富集区)是金矿异常区域。它们与金矿成矿作用和已知矿床的赋存密切相关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号