首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Ayadi  Rahma  Trabelsi  Rim  Zouari  Kamel  Saibi  Hakim  Itoi  Ryuichi  Khanfir  Hafedh 《Hydrogeology Journal》2018,26(4):983-1007

Major element concentrations and stable (δ18O and δ2H) and radiogenic (3H and 14C) isotopes in groundwater have proved useful tracers for understanding the geochemical processes that control groundwater mineralization and for identifying recharge sources in the semi-arid region of Sfax (southeastern Tunisia). Major-ion chemical data indicate that the origins of the salinity in the groundwater are the water–rock interactions, mainly the dissolution of evaporitic minerals, as well as the cation exchange with clay minerals. The δ18O and δ2H relationships suggest variations in groundwater recharge mechanisms. Strong evaporation during recharge with limited rapid water infiltration is evident in the groundwater of the intermediate aquifer. The mixing with old groundwater in some areas explains the low stable isotope values of some groundwater samples. Groundwaters from the intermediate aquifer are classified into two main water types: Ca-Na-SO4 and Ca-Na-Cl-SO4. The high nitrate concentrations suggest an anthropogenic source of nitrogen contamination caused by intensive agricultural activities in the area. The stable isotopic signatures reveal three water groups: non-evaporated waters that indicate recharge by recent infiltrated water; evaporated waters that are characterized by relatively enriched δ18O and δ2H contents; and mixed groundwater (old/recent) or ancient groundwater, characterized by their depleted isotopic composition. Tritium data support the existence of recent limited recharge; however, other low tritium values are indicative of pre-nuclear recharge and/or mixing between pre-nuclear and contemporaneous recharge. The carbon-14 activities indicate that the groundwaters were mostly recharged under different climatic conditions during the cooler periods of the late Pleistocene and Holocene.

  相似文献   

2.
An investigation was conducted in Beijing to identify the groundwater evolution and recharge in the quaternary aquifers. Water samples were collected from precipitation, rivers, wells, and springs for hydrochemical and isotopic measurements. The recharge and the origin of groundwater and its residence time were further studied. The groundwater in the upper aquifer is characterized by Ca-Mg-HCO3 type in the upstream area and Na-HCO3 type in the downstream area of the groundwater flow field. The groundwater in the lower aquifer is mainly characterized by Ca-Mg-HCO3 type in the upstream area and Ca-Na-Mg-HCO3 and Na-Ca-Mg-HCO3 type in the downstream area. The δD and δ18O in precipitation are linearly correlated, which is similar to WMWL. The δD and δ18O values of river, well and spring water are within the same ranges as those found in the alluvial fan zone, and lay slightly above or below LMWL. The δD and δ18O values have a decreasing trend generally following the precipitation → surface water → shallow groundwater → spring water → deep groundwater direction. There is evidence of enrichment of heavy isotopes in groundwater due to evaporation. Tritium values of unconfined groundwater give evidence for ongoing recharge in modern times with mean residence times <50 a. It shows a clear renewal evolution along the groundwater flow paths and represents modern recharge locally from precipitation and surface water to the shallow aquifers (<150 m). In contrast, according to 14C ages in the confined aquifers and residence time of groundwater flow lines, the deep groundwater is approximately or older than 10 ka, and was recharged during a period when the climate was wetter and colder mainly from the piedmont surrounding the plain. The groundwater exploitation is considered to be “mined unsustainably” because more water is withdrawn than it is replenished.  相似文献   

3.
拒马源泉群作为拒马河的源头,受到了较多专家和学者的关注。但这些研究多集中在地下水的水化学、水位动态、泉流量等特征上,对地下水氢氧同位素特征的分析几乎没有,且对北海泉的成因解释多为粗略的定性概述。为了说明涞源北盆地地下水的氢氧同位素特征,详细揭示北海泉的形成模式,首次系统地采集了不同含水岩组的地下水样品,测定了水样的氢氧同位素组分。结果表明:样品点δD和δ18O值均落在区域大气降水线上或附近,大气降水是研究区地下水的主要补给来源;白云岩、灰岩含水岩组高程效应较明显,径流途径长,松散含水层径流途径短,受蒸发作用较强;白云岩、灰岩含水岩组和松散含水层氘盈余d值分别为6.0‰~11.6‰、4.2‰~11.2‰、3.8‰~8.0‰,较大气降水大部分偏小,表明岩溶水和松散孔隙水经历了不同的流动过程;白云岩、灰岩含水岩组从补给区向排泄区各自流动过程中,在小西庄、香炉屯村附近断裂带发生沟通混合,然后在向盆地中心径流过程中受断层阻水上升,上升过程中又接受了松散孔隙水的补给,最后在松散岩层中出露成泉,形成北海泉。在孔隙水混入前,两者的平均补给比例大约为48.4%~57.6%和42.4%~51.6%。  相似文献   

4.
Groundwater recharge and evolution in the Quaternary aquifer beneath the Dunhuang Basin was investigated using chemical indicators, stable isotopes, and radiocarbon data to provide guidance for regional water management. The quality of groundwater and surface water is generally good with low salinity and it is unpolluted. The dissolution of halite and sylvite from fine-grained sediments controls concentrations of Na+ and K+ in the groundwater, but Na+/Cl molar ratios >1 in all samples are also indicative of weathering of feldspar contributing to excess Na+. The dissolution of carbonate minerals yields Ca2+ to the groundwater, thereby exerting a strong influence on groundwater salinity. The δ18O and δ2H values in unconfined groundwater are enriched along the groundwater flow path from SW to NE. In contrast, confined groundwater was depleted in heavy isotopes, with mean values of −10.4‰ δ18O and −74.4‰ δ2H. Compared with the precipitation values, all of the groundwater samples were strongly depleted in heavy isotopes, indicating that modern direct recharge to the groundwater aquifers in the plains area is quite limited. The unconfined water is generally young with radiocarbon values of 64.9–79.6 pmc. In the northern basin, radiocarbon content in the confined groundwater is less than 15 pmc and an uncorrected age of ∼15 ka, indicates that this groundwater was recharged during a humid climatic phases of the late Pleistocence or early Holocene. The results have important implications for inter-basin water allocation programmes and groundwater management in the Dunhuang Basin.  相似文献   

5.
《Applied Geochemistry》2005,20(11):2063-2081
This paper deals with chemical and isotope analyses of 21 springs, which were monitored 3 times in the course of 2001; the monitoring program was focused on the groundwater of the Gran Sasso carbonate karst aquifer (Central Italy), typical of the mountainous Mediterranean area.Based on the hydrogeological setting of the study area, 6 groups of springs with different groundwater circulation patterns were distinguished. The hydrogeochemistry of their main components provided additional information about groundwater flowpaths, confirming the proposed classification. The spatial distribution of their ion concentrations validated the assumptions underlying the hydrogeological conceptual model, showing diverging groundwater flowpaths from the core to the boundaries of the aquifer. Geochemical modelling and saturation index computation elucidated water–carbonate rock interaction, contribution by alluvial aquifers at the karst aquifer boundaries, as well as impacts of human activities.The analysis of 18O/16O and 2H/H values and their spatial distribution in the aquifer substantiated the hydrogeology-based classification of 6 groups of springs, making it possible to trace back groundwater recharge areas based on mean isotope elevations; the latter were calculated by using two rain monitoring stations. 87Sr/86Sr analyses showed seasonal changes in many springs: in winter–spring, the changes are due to inflow of new recharge water, infiltrating into younger rocks and thus increasing 87Sr/86Sr values; in summer–autumn, when there is no recharge and spring discharge declines, changes are due to base flow groundwater circulating in more ancient rocks, with a subsequent drop in 87Sr/86Sr values.The results of this study stress the contribution that spatio-temporal isotope monitoring can give to the definition of groundwater flowpaths and hydrodynamics in fissured and karst aquifers, taking into account their hydrogeological and hydrogeochemical setting.  相似文献   

6.
The Xiangxi River basin, South China, is a steep terrane with well-developed karst features and an important Cambrian-Ordovician aquifer. Meteoric water in this mountainous area features a mean δ18O elevation gradient of –2.4?‰/km. This gradient was used to estimate mean recharge elevations of 760 m for Shuimoxi (SMX) spring, 1,060 m for Xiangshuidong (XSD) spring, and 1,430 m for drill hole ZK03, indicating multiple flow paths in the Cambrian-Ordovician karst aquifer. Mean residence times of 230 and 320 days and ~2 years were estimated for these features, respectively, using the damped running average model that predicts the isotopic variations in groundwater from those in precipitation. Groundwater in the regional karst flow system has the longest residence time, the highest recharge elevation, the longest flow paths, the lowest addition of anthropogenic components, and the greatest amount of water–rock interaction as indicated by its higher dissolved solids, Mg2+ concentrations and Mg/Ca ratios than the springs. In contrast, the local and shallow karst flow systems respond rapidly to recharge events. Artificial tracer tests prove that these shallow karst systems can also quickly transmit anthropogenic contaminants, indicating that they are highly vulnerable to human impacts, which include the enrichment of NO3 . The intensity of water–rock interaction and groundwater vulnerability are mainly determined by the structure and dynamics of the multiple karst flow systems.  相似文献   

7.
Korba aquifer is one of the most typical examples of overexploited coastal aquifer in the Mediterranean countries. In fact, from 1985, a considerable piezometric level drop, water salinization, and seawater intrusion were registered in the aquifer. In December 2008, Tunisian authorities initiated a general plan to groundwater management in order to augment groundwater resources, restore the piezometric levels, and improve water quality. The plan consists of artificial recharge of groundwater used treated wastewater through three infiltration basins. During the first 4 years (from December 2008 to December 2012), 1.41 Mm3 of treated wastewater was injected to the Korba aquifer. This study presents a hydrogeological assessment of groundwater evolution during the recharge processes. In this study, 32 piezometric and chemical surveys of 70 piezometers and observed wells are used to present hydrogeological investigation and water quality evolution of wastewater reuse through artificial recharge in Korba coastal aquifer. The piezometric evolution maps are used to specify the positive effect in groundwater level that exceeding 1.5 m in some regions. The interpretation of salinity evolution maps are used to indicate the improving of groundwater quality.  相似文献   

8.
Stable isotopes of water and 3H–3He were used to delineate recharge patterns and contaminant transport for a granitic regolith aquifer in an industrial complex in Wonju, South Korea, that has historically been contaminated with chlorinated solvents including trichloroethene (TCE) and carbon tetrachloride (CT). Groundwater recharge mainly occurred in upgradient forested areas while little recharge occurred in the downgradient industrial areas covered with extensive sections of impermeable pavement and paddy fields. δ18O and δD data indicated that groundwater was mainly derived from summer precipitation. The apparent groundwater ages using 3H–3He ranged from 1 to 4 yrs in the upgradient area and from 9 to 10 yrs in the downgradient area. Comparison of groundwater flow velocities based on Darcy’s law and those calculated with simple mass balance models and groundwater age supported the presence of preferential pathways for TCE movement in the study area. Measureable TCE was observed in groundwater irrespective of groundwater age. Considering the 3-yr duration of the TCE spill, 14 yrs before sampling, this indicates that TCE plumes were continuously fed from sources in the unsaturated zone after the spill ended and moved downgradient without significant degradation in the aquifer.  相似文献   

9.
The present work studies the environmental isotopes assess groundwater characteristics of the different parts of the main aquifer in the northeast Missan Province in south of Iraq.Water samples of groundwater and surface water were collected for two dry and wet seasons during the water year of 2011–2012.The study shows that most of the groundwater in the aquifer falls above the global meteoric water line,and all the samples fall below the Mediterranean meteoric water line,indicating that these samples are a mixture of two water types.The tritium content of these samples supports this conclusion.The overall conclusion of this study indicates that there are two sources of groundwater recharge in the studied area:the ephemeral streams(Teeb and Dewerge) and major precipitation sources.According to the tritium levels at or below one tritium unit(TU) obtained from the water,supply wells are highly confined or "not vulnerable".Overall,the 3H results imply that recent recharge has taken place during the last four to five decades.In the recharge area,the high tritium content in the southern part of the Teeb area suggests that the recharge originates from rapid infiltration of surface runoff.Therefore,the groundwater resources in the study area should be protected from contamination,because it will influence the aquifer in a relatively short period of time if any contamination enters the recharge areas of the aquifer.  相似文献   

10.
This paper gives an account of the implementation of hydrochemical and isotopic techniques to identify and explain the processes that govern solute exchange in two groundwater-dependent shallow lakes in the Southeastern Pampa Plain of Argentina. Water samples (lakes, streams, spring water and groundwater) for hydrochemical and stable isotopic determination were collected and the main physical–chemical parameters were measured. The combination of stable isotope data with hydrogeochemical techniques was used for the identification of sources and preferential recharge areas to these aquatic ecosystems which allowed the explanation of the lake water origin. The hydrochemical processes which explain Los Padres Lake water chemistry are evaporation from groundwater, CO2 input, calcite dissolution, Na+ release by Ca2+ and Mg2+ exchange, and sulfate reduction. The model that best aligns with La Brava Lake hydrochemical constraints includes: mixing, CO2 and calcite dissolution, cationic exchange with Na+ release and Mg2+ adsorption, and to a lesser extent, Ca/Na exchange. This model suggests that the fractured aquifer contribution to this water body is greater than 50 %. An isotopic-specific fingerprint for each lake was identified, finding a higher evaporation rate for La Brava Lake compared to Los Padres Lake. Isotopic data demonstrate the importance of these shallow lakes as recharge areas to the regional aquifer, becoming areas of high groundwater vulnerability. The Tandilia Range System, considered in many hydrogeological studies as the impermeable bedrock of the Pampean aquifer, acts as a fissured aquifer in this area, contributing to low salinity waters and with a fingerprint similar to groundwater isotopic composition.  相似文献   

11.
Sousan Spring emerges from the Keyno Anticline, Zagros Mountains (Iran), and the mean annual discharge is ~24 m3/s. Geological and hydrochemical evaluations suggest that the spring recharge is from the limestone Ilam-Sarvak Formation (Cretaceous) but the Mafaroon Fault, a major thrust feature, influences the regional groundwater flow path by juxtaposing other strata. Geological, geochemical, stable isotope and water balance studies were employed to interpret this behavior. Using the isotope data, the sources and elevations of the recharge area were found. Temporal variations of the isotopic data were compared with variations of electrical conductivity (EC). Unexpectedly, high EC was associated with a relative increase of discharge and depletion of δ18O. Several hypotheses were investigated and approximate water balance studies employed for validation. It was found that an elongated catchment on the Keyno Anticline plus a lesser catchment on a pair of parallel anticlines recharge the aquifer. While the long groundwater flow path along the Keyno Anticline plus guidance by Mafaroon Fault and the adjacent Garou shaly strata lead to increased EC in the Sousan Spring at the end of the dry season, a flow pulse from two adjoining anticlines (Mahalbakh and Shirgoon) arrives at the same time to increase the discharge and deplete the δ18O signal. Apparently the spring did not experience true base flow conditions during the recorded hydrological year. Although the spring response to specific precipitation events was similar to typical karst aquifers, standard interpretation of recession curves and related coefficients will not be practical at Sousan.  相似文献   

12.
Groundwater resources in the North China Plain (NCP) are undergoing tremendous changes in response to the operation of groundwater exploitation reduction (GWER) project. To identify groundwater evolution in this complex context, hierarchical cluster analysis (HCA) and principal component analysis (PCA) were combined to interpret an integrated dataset of stable isotopes and chemical data from four sampling campaigns in a pilot area of groundwater control. We proposed a novel HCA approach integrating stable isotopes and chemical signals, which successfully partitioned the groundwater samples into the unconfined and the confined water samples. Stable isotopic evidence showed that the lateral inflow and the surface water may contribute more to groundwater recharge in this region than local modern precipitation. The unconfined water’s main hydrochemical types were Na type with mixed anions, and Na–Cl–SO4 type, while the confined water was mainly Na–Cl and Na–SO4 types. Geochemical processes mainly involved the dissolution/precipitation of halite, gypsum, Glauber's salt, feldspar, calcite and dolomite, as well as the cation exchange. PCA results showed that water–rock interaction (i.e., salinity-based and alkalinity-based processes) predominated the hydrochemical evolution, along with local nitrate contamination resulting from fertilizers and domestic sewage. The GWER project regulated the natural evolution of unconfined water chemistry, and significantly reduced the unconfined water’s salinity (mainly Na+, Mg2+, SO42?). This may be attributed to upward leakage from low-salinity confined water at some parts of the aquifer. Additionally, insignificant changes in the confined water’s salinity reflected that the impact of GWER on the confined aquifer was negligible. This study facilitates the groundwater classification effectively in the areas lack of geological data, and enhances the knowledge of groundwater chemical evolution in such a region where groundwater restoration is in progress, with important implications for groundwater sustainable management in similar basins worldwide.  相似文献   

13.
The study on the evolution of groundwater sources has arisen because of growing concern about deterioration of groundwater resources due to overexploitation. The chemical nature of a coastal aquifer depends on the initial composition of aquifer media, internal geochemical processes and external chemical inputs. Therefore, geochemical characteristics of an aquifer can be used as indicative components on elaborating the origin of aquifer media and its evolutionary processes. This study was aimed at understanding the evolution of Quaternary coastal aquifers of the Kalpitya area, Sri Lanka, by studying groundwater quality and aquifer media. The textural, mineralogical and chemical characteristics of aquifer media and chemical nature of groundwater of the area imply that the aquifer media may not have been derived from marine processes and paleo coastal formations of the western coast but are indicative of a fluvial origin due to past strong fluvial processes. Fluviatile sand depositions had taken place initially and with the gradual sea level rise, deposits were transported, sorted and then re-deposited to form barrier islands parallel to the coast. These have evolved to the present state during the Quaternary period. Intermittent climatic changes caused several changes in the depositional pattern of the aquifer material and the chemical nature of the aquifer. Present day groundwater geochemistry indicates an evolution of a fresh water aquifer with relics of ionic constituents showing paleo geochemical processes that were active during the evolution. In addition, anthropogenic activities have also significantly altered the geochemical nature of groundwater in the present aquifer system.  相似文献   

14.
Continental Flood Basalts (CFB) occupy one fourth of the world’s land area. Hence, it is important to discern the hydrological processes in this complex hydrogeological setup for the sustainable water resources development. A model assisted isotope, geochemical, geospatial and geophysical study was conducted to understand the monsoonal characteristics, recharge processes, renewability and geochemical evolution in one of the largest continental flood basalt provinces of India. HYSPLIT modelling and stable isotopes were used to assess the monsoonal characteristics. Rayleigh distillation model were used to understand the climatic conditions at the time of groundwater recharge. Lumped parameter models (LPM) were employed to quantify the mean transit time (MTT) of groundwater. Statistical and geochemical models were adopted to understand the geochemical evolution along the groundwater flow path. A geophysical model was used to understand the geometry of the aquifer. The back trajectory analysis confirms the isotopic finding that precipitation in this region is caused by orographic uplifting of air masses originating from the Arabian Sea. Stable isotopic data of groundwater showed its meteoric origin and two recharge processes were discerned; (i) quick and direct recharge by precipitation through fractured and weathered basalt, (ii) low infiltration through the clayey black cotton soil and subjected to evaporation prior to the recharge. Tritium data showed that the groundwater is a renewable source and have shorter transit times (from present day to <30 years). The hydrogeochemical study indicated multiple sources/processes such as: the minerals dissolution, silicate weathering, ion exchange, anthropogenic influences etc. control the chemistry of the groundwater. Based on the geo-electrical resistivity survey, the potential zones (weathered and fractured) were delineated for the groundwater development. Thus, the study highlights the usefulness of model assisted isotopic hydrogeochemical techniques for understanding the recharge and geochemical processes in a basaltic aquifer system.  相似文献   

15.
The Agadir-Essaouira area in the occidental High Atlas Mountains of Morocco is characterized by a semi-arid climate. The scarcity and quality of water resources, exacerbated by long drought periods, constitute a major problem for a sustainable development of this region. Groundwater resources of carbonate units within Jurassic and Cretaceous aquifers are requested for drinking and irrigation purposes. In this study, we collected 84 samples from wells, boreholes, springs, and rivers. Hydrochemical and isotopic data were used to examine the mineralization and origin of water, which control groundwater quality. The chemical composition of water seems to be controlled by water-rock interactions, such as dissolution of carbonates (calcite and dolomite), weathering of gypsum, as well as ion exchange processes, which explain the observed variability. Stable isotopes results show that groundwater from the mainly marly Cretaceous aquifer are submitted to an evaporation effect, while samples from the chiefly calcareous Jurassic aquifer indicate a meteoric origin, due to a rapid infiltration of recharge runoff through the karstic outcrops. The low values of δ18O and δ2H suggest a local recharge from areas with elevations ranging from 400 to 1200 m for the Cretaceous aquifer and from 800 to 1500 m for the Jurassic units.  相似文献   

16.
The groundwater of major karst systems and submarine springs in the coastal limestone aquifer of Syria has been investigated using chemical and isotopic techniques. The δ18O values of groundwater range from ?6.8 to ?5.05‰, while those for submarine springs vary from ?6.34 to +1.08‰ (eastern Mediterranean seawater samples have a mean of +1.7‰). Groundwater originates from the direct infiltration of atmospheric water. Stable isotopes show that the elevation of the recharge zones feeding the Banyas area (400–600 m a.s.l.) is higher than that feeding the Amrit area (100–300 m a.s.l.). The 18Oextracted (18O content of the seawater contribution) for the major submarine springs suggests a mean recharge area elevation of 600–700 m a.s.l., and lower than 400 m a.s.l. for the spring close to Amrit. Based on the measured velocity and the percentage of fresh water at the submarine springs outlet, the estimated discharge rate is 350 million m3/year. The tritium concentrations in groundwater (1.6–5.9 TU) are low and very close to the current rainfall values (2.9–5.6 TU). Adopting a model with exponential time distribution, the mean turnover time of groundwater in the Al-sen spring was evaluated to be 60 years. A value of about 3.7 billion m3 was obtained for the maximum groundwater reservoir size.  相似文献   

17.
Water in the fissured limestone and dolomite of the Turonian aquifer of Tunisia has been investigated using geochemical (major ions) and isotopic (δ18O, δ2H, 14C) data. To carry out a characterization of aquifer behaviour, 48 representative samples were collected at the end of the humid season. The evolution of chemical composition of groundwater from recharge areas to discharge areas is characterized by increasing sodium, chloride and sulphate contents as a result of leaching of evaporite rock. In the study, three distinct chemical trends in groundwater were identified. The major reactions responsible for the chemical evolution of groundwater in the investigated area fall into three categories: (1) calcite precipitation, (2) gypsum and halite dissolution, and (3) ion exchange. The stable isotope composition of water samples indicates large-scale interaction between the Continental Intercalaire and the Turonian aquifer and the presence of a young local component which probably enters the system via faults and/or fractures.  相似文献   

18.
The present work was conducted in the Sinai Peninsula (1) to identify the recharge and flow characteristics and to evaluate the continuity of the Lower Cretaceous Nubian Sandstone aquifer; and (2) to provide information for the aquifer's rational appraisal. Isotopic and hydrochemical compositions combined with the geological and hydrogeological settings were used for this purpose. A considerable depletion in isotopic content (oxygen-18 and deuterium) and low d-excess values exist in the studied groundwater, reflecting the contribution of old meteoric water that recharged the aquifer in pluvial times. Modern recharge also occurs from precipitation that falls on the aquifer outcrops. The wide scatter of the data points around the two meteoric lines, the global meteoric water line (GMWL) and Mediterranean meteoric water line (MMWL), in the δ18O–δD diagram indicates considerable variation in recharge conditions (amount, altitude, temperature, air masses, distances from catchment, overland flow, etc.). The isotopic composition in the El-Bruk area is minimum (18O=–9.53‰), very close to the average value of the Western Desert Nubian Sandstone (18O=–10‰), where the local structural and lithologic conditions retard groundwater flow and the main bulk of water becomes noncyclic. The continuity of the aquifer in northern and central Sinai is evidenced by the isotopic similarity between samples taken from above and below the central Sinai Ragabet El-Naam fault, the distribution of potentiometric head, and hydrogeological cross sections. The combination of isotopic composition in terms of 18O and chemical composition in terms of TDS and salt contents is the basis for separating the studied groundwater into groups that reflect the recharge sources and isotopic and chemical modifications during flow. Electronic Publication  相似文献   

19.
The southwestern Chad basin is a semi-arid region with annual rainfall that is generally less than 500 mm and over 2,000 mm of evapotranspiration. Surface water in rivers is seasonal, and therefore groundwater is the perennial source of water supply for domestic and other purposes. Stable isotope has been measured for rainwater, surface water and groundwater samples in this region. The stable isotope data have been used to understand the inter-relationships between the rainwater, surface water, shallow and deep groundwater of this region. This is being used in a qualitative sense to demonstrate present day recharge to the groundwater. Stable isotope in rainwater for the region has an average value of –4‰ δ18O and –20‰ δ2H. Surface water samples from rivers and Lake Chad fall on the evaporation line of this average value. The Upper Zone aquifer water samples show stable isotope signal with a wide range of values indicating the complex character of the aquifer Zone with three distinguishable units. The wide range of values is attributable to waters from individual unit and/or mixture of waters of different units. The Middle and Lower aquifers Zones’ waters show similar stable isotopes values, probably indicating similarity in timing and/or mechanism of recharge. These are palaeowaters probably recharged under a climate that is different from today. The Upper Zone aquifer is presently being recharged as some of its waters show stable isotope compositions similar to those of average rainfall waters of the region.  相似文献   

20.
The study area, the Fasa Plain, is situated in the semiarid region of Fars Province in the south of Iran. The Salloo diapir is a salt dome that crops out in the northwest of the study area. Isotopic and hydrochemical analyses were used to examine the water and how the origin of salinity and the diapir affect the quality of the groundwater quality in the study area. Groundwater was sampled from 31 representative pumping wells in alluvial aquifer and five springs in order to measure their stable isotope compositions, bromide ion concentration, and physical and chemical parameters. The alluvial aquifer was organized into two main groups based on the chemistry, with Group 1 consisting of low-salinity well samples (544–1744 µS/cm) with water type Ca–Mg–HCO3–SO4 which were taken in the center and north of the area, and Group 2 consisting of high-salinity samples (2550–4620 µS/cm) with water type Ca–Mg–Cl–SO4 which were taken from the wells in the south and southwest of the area. A saline spring near the salt dome with an EC of 10,280 µS/cm has water type Na–Cl, while the compositions of the water in the other karstic springs is comparable to the fresh groundwater samples. All groundwater samples are undersaturated with respect to gypsum, anhydrite, and halite and are supersaturated with respect to calcite and dolomite. Stable isotopes (δ18O and δ2H) differentiated four water types: saline springs, freshwater spring, fresh groundwater, and saline groundwater. The results indicate that meteoric water is the main origin of these water resources. Halite dissolution from the salt dome was identified as the origin of salinity. The Na/Cl and Cl/Br ratios confirmed the results. Groundwater compositions in the southwestern part of the area are affected by the intrusion of saltwater from the salt dome. The average saltwater fraction in the some water wells is about 0.2%. In the south and southwestern part of the area, the saltwater fraction is positive in mixed freshwater/saltwater (Group 2). Different processes interact together to change the hydrochemical properties of Fasa’s alluvial aquifer. The main processes that occur in the aquifer are mixing, gypsum dissolution, and calcite precipitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号