首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
氯稳定同位素作为示踪剂,能指示水体演化和探索地质环境变化,在地球科学领域具有广泛的应用前景。连续流同位素质谱法(CF-IRMS)具有样品用量少和灵敏度高的优点,被广泛应用于氯等稳定同位素的测试。氯甲烷作为一种易挥发的气体,在反应过程及测试管路中容易逸出,造成样品损失。如何减少反应及测试过程中氯甲烷的流失,实现氯甲烷的分离纯化一直以来是影响CF-IRMS法测试精度的关键。本文利用稳定同位素比例质谱仪(IRMS),结合GC色谱分离技术,以氯同位素的国际标准物质(ISL-354)为基准,选择分析纯、标样、地下水样品三种类型的样品开展地下水无机物中氯稳定同位素CF-IRMS测试方法及影响因素的研究。通过采用GC手动进样和双路进参考气联合配置的进样方式,减少了反应和测试过程中氯甲烷的流失,保障了在线测试过程中氯甲烷的浓度,获得较好的测试精度。结果表明:本方法测定样品的37Cl/35Cl比值的标准偏差基本保持在±0.20‰范围内,不同实验室间样品测量值对比结果的误差小于0.035‰,满足地质样品再现性0.5‰的要求;在实验测试过程中,光、温度、硫酸盐的去...  相似文献   

2.
建立了利用GasBenchⅡ联用同位素比值质谱仪(GasBench Ⅱ-IRMS)用于测定地下水中溴稳定同位素的方法。基于溴比氯更容易被重铬酸钾氧化的性质,将Br-氧化成Br2,而氯残留在原溶液中,从而把溴与氯分离开;再利用AgNO3将溴以AgBr的形式沉淀下来,然后将AgBr转化成CH。Br进行溴稳定同位素质谱测定。反应中,CHsI用量为20μL,AgBr用量为0.5mg。本测试流程需溴4~10mg,质谱测试时问由1.5h缩短为800s,测试精度优于±0.1‰(2σ)。该方法可以用于地下水中溴同位素测定,在水文地质研究中具有广阔的应用前景。  相似文献   

3.
<正>相对于其它轻稳定同位素(H、O、C)而言,自然界中稳定氯同位素的分馏并不明显,地球上的大气圈、水圈和岩石圈的氯同位素组成(以δ37Cl表示)的变化范围约为30‰(-14‰~+16‰),主要集中在-2‰~+2‰。近年来,随着稳定氯同位素分离和测试方法的不断提高,使其得以广泛应用于对蒸发盐、地下水体的演化,海水入侵,矿床形成过程中的成矿流体作用,氯代有机溶剂的分馏机理,人工合成与自然降解的有机物示踪,以及雨水中氯的来源示踪等方面的研究(Kaufmann,et al.,1984,1993;Xiao,et al.,1997;Eastoe,  相似文献   

4.
随着多接收电感耦合等离子体质谱(MC-ICP-MS)的应用,金属稳定同位素的分析方法不断得到改善和突破,这使得金属稳定同位素地球化学成为国际上新兴的地球科学方向。本文以V和Ba同位素为代表,详述了这两个体系近年来分析方法的进展。重点介绍了中国科学技术大学金属稳定同位素实验室建立的高精度的V同位素分析方法[δ~(51)VAA的长期外部测量精度好于±0.1‰(2SD)],以及将SRM3104a作为基准标样的Ba同位素分析方法[δ~(137/134)Ba_(SRM3104a)长期外部测量精度优于±0.05‰(2SD)]。  相似文献   

5.
基于碱熔法的改进和多接收电感耦合等离子质谱仪(MC-ICP-MS)的发展,近年来高精度Si同位素组成(δ30Si)分析方法取得了长足进步,分析精度(2SD)自气体质谱仪(GS-MS)时代的±0.15‰~±0.30‰ 提高到优于±0.10‰,足以辨析高温过程中Si同位素发生的微小分馏,并且避免了实验流程中使用含氟等危险化学品。二次离子质谱(SIMS)和飞秒激光剥蚀(fs LA)的发展使得原位Si同位素组成分析精度近期也优化到±0.10‰~±0.22‰。文章对近年来Si同位素分析方法的发展沿革进行综述,探讨建立溶液法MC-ICP-MS的高精度Si同位素分析方法的进展与局限,并比对了国内外各个实验室已发表国际国内Si同位素标准物质测定值,最后总结了硅酸盐地球(BSE)、地壳和陨石等主要地质储库的δ30Si组成范围。  相似文献   

6.
地质样品Sr同位素激光原位等离子体质谱(LA-MC-ICP-MS)测定   总被引:6,自引:2,他引:4  
Sr同位素在研究岩浆演化及其源区具有重要的示踪作用.MC-ICP-MS的出现为具有高Sr含量地质样品的激光原位Sr同位素测定变成了现实.本文利用Netpune MC-ICP-MS和193nm准分子激光联机,通过滨珊瑚、斜长石、磷灰石和钙钛矿等系列实验,建立了激光原位Sr同位素测定方法.实验结果表明,激光Sr同位素测定中Kr、Rb和稀土元素二价离子的干扰能够有效扣除,而钙聚合物的干扰在Neptune型MC-ICP-MS并不显著.不同激光参数的实验表明,大激光束斑产生更高信号强度,因而Sr同位素精度更高,同一激光束斑大小,激光脉冲频率对Sr同位素精度无明显影响.  相似文献   

7.
多接收器等离子体质谱法Zn同位素比值的高精度测定   总被引:12,自引:3,他引:9       下载免费PDF全文
详细报道了Zn同位素比值的多接收器等离子体质谱(MC-ICP-MS)高精度测定方法,包括:MC-ICP-MS Zn同位素测量过程中的质量歧视校正、同质异位素干扰评估、基质效应调查和同位素测量的长期重现性检验.研究表明,在测定条件下,运用标样一样品交叉法能有效地进行仪器质量歧视校正.同质异位素干扰的评估通过3种方式进行,即:在高分辨状态下同质异位数干扰信号的直接测定,低分辨状态下Zn同位素原始数据间相关关系的检验和低分辨下浓度梯度效应研究.结果表明,在低分辨模式下,尽管66Zn、67Zn、68Zn的同质异位素干扰信号很小,但的确存在,要获得准确同位素比值,必须使标样和样品的浓度在合适的范围内匹配.在基质效应方面,主要考察Fe对Zn同位素比值测定的影响.结果表明,当溶液中Fe/Zn(质量比)不大于0.2时,Fe对Zn同位素比值测定无影响.重复性测定中,δ66ZnGSB-Romil=6.96‰±0.11‰(2sd),δ67ZnGSB-Romil=10.4‰±0.20‰(2sd),δ68ZnGSB-Romil=13.8‰±0.22‰(2sd),达到国际同类实验室先进水准.运用所建立的方法,对地质岩石成分分析国家标准物质GBW 07270(闪锌矿)进行了Zn同位素平均成分测定为:δ66Zn=6.71‰±0.03‰(20),δ67Zn=10.08‰±0.05‰(20),δ68Zn=13.37‰±0.07‰(2σ).  相似文献   

8.
使用Nu Plasma 1700型MC-ICP-MS的高分辨模式并采用标准-样品交叉法(SSB)测定Si同位素比值,以减少质谱干扰和仪器质量歧视对测定结果的影响。结果表明样品与标准样之间的Si浓度差异程度与Si同位素测量值呈正相关关系,样品与标准样的Si浓度差异低于20%时,Si同位素测量值差异小于0.04‰。测试部分国际常用标准样品的Si同位素组成,结果与文献报道值在误差范围内一致,δ~(30)Si测量精度优于0.07‰/amu。  相似文献   

9.
近年来,铜同位素在表生环境和生物地球化学中的应用越来越广泛,尤其是土壤的铜同位素组成可以示踪环境污染物来源及生物地球化学过程。目前,对土壤铜同位素进行研究时,主要以硅酸岩标准物质为标样来衡量土壤样品铜同位素测定的准确性和精确性。但土壤与硅酸岩中铜、基质离子及有机质的含量等存在很大差异(如:硅酸岩中的铜含量80μg/g,一些土壤中的铜含量很低,20μg/g),将硅酸岩标准物质作为标样来监测土壤样品的数据质量缺乏代表性。为了弥补这一缺陷,本文精确测定4个国家土壤标准物质(GBW07443、GBW07425、GBW07427、GBW07389)的铜同位素组成,并将其作为检验土壤样品铜同位素测定过程中的标准。实验中采用高温高压反应釜消解样品,利用AG MP-1M树脂进行纯化,全流程空白2ng,回收率≥98%,通过多接收器电感耦合等离子体质谱仪(MC-ICP-MS)采用标样-样品-标样间插法进行仪器分馏校正,δ~(65)Cu的长期测试外精度优于0.05‰(n=306, 2SD)。GBW07443、GBW07425、GBW07427和GBW07389的铜同位素组成分别为-0.04‰±0.04‰(n=9, 2SD)、-0.07‰±0.05‰(n=12, 2SD)、-0.06‰±0.04‰(n=12, 2SD)、-0.02‰±0.06‰(n=12, 2SD)。这些土壤标准物质的铜同位素组成均位于0附近,大致为自然界土壤铜同位素比值变化范围(-0.5‰~+0.5‰)的中间值,且样品容易获得,其化学和铜同位素组成均一,适合作为监控土壤铜同位素化学及质谱分析数据可靠性的标准物质。  相似文献   

10.
为了高效地从地质/环境样品中分离纯化Li元素并进行Li同位素测定,经反复实验和改良发现:采用8 m L容积(树脂体积)离子交换柱,选取AG 50W-X12阳离子交换树脂,以0.5 mol/L HNO3为淋洗液,过柱一次,并收集20~48 m L区间的淋洗液,即可一步实现Li的完全纯化分离。对于高盐样品,建议过柱两次确保Na/Li1,以达到上机测试的要求。由多种单元素标准混合的工作溶液(IEECAS-Li)经此流程分离后,采用Neptune Plus MC-ICP-MS测量得到的δ7Li值为8.31‰±0.12‰,与未混合的标准值(8.33‰±0.20‰)在误差范围内一致。采用此流程,获得的岩石标准物质AGV-2、BHVO-2和海水标准物质NASS-6的δ7Li值(2 s.d.,n=5)也与推荐值一致,分别为6.83‰±0.75‰、4.32‰±0.33‰和31.10‰±0.60‰。由此,我们建立了一套高效分离纯化Li及其同位素的MC-ICP-MS测试程序。将该程序用到Li含量在15 ng/g~90μg/g之间的实际样品中,δ7Li的长期内精度均好于0.30‰,且重现性高,表明该方法的分析精度和准确度都达到了国际标准水平。尤为重要的是,本方法可用于精确测量含痕量Li的环境样品的Li同位素组成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号