首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
巢湖富营养化过程的沉积记录   总被引:33,自引:3,他引:30  
姚书春  李世杰 《沉积学报》2004,22(2):343-347
土地利用和人类活动加剧所导致的营养元素输入的增加是引起湖泊富营养化趋势增强的重要原因。巢湖沉积钻孔柱状样中总有机碳和总氮自20世纪70年代以来呈明显升高趋势,分别增加了2.5、2.9倍。由柱状样中的TOC/TN比值、TARHC、OEP判断得出,19世纪末到20世纪40年代中期TOC是陆源和内源两种来源并重;20世纪40年代中期到20世纪70年代初期以陆源为主,并可能存在石油污染;20世纪70年代以来沉积物有机质中藻类来源的有机质占主要地位。巢湖沉积柱状样的研究表明20世纪70年代以来巢湖富营养化开始恶化。  相似文献   

2.
Analyses for dissolved oxygen, nitrate and total CO2 in the interstitial water have been combined with solid phase sediment analyses of carbon and nitrogen to calculate the rates of reaction and stoichiometry of decomposing organic matter in central Equatorial Pacific pelagic sediments. The diagenesis is dominated by aerobic respiration and nitrification.Organic carbon and total nitrogen decrease exponentially with depth in both red clay and carbonate ooze sediments. In addition, there is a correlation between surface organic carbon and total nitrogen with distance from the equator. Fixed NH4 is relatively constant with depth and constitutes 12 to 64% of the total nitrogen. The remainder is considered to be organic nitrogen.The CN ratio of the decomposing organic matter was obtained using three approaches. Using the correlations of organic carbon with total nitrogen or organic nitrogen the molar ratios varied from 3.4 to 18.1. The average of all stations was 12.6 using total nitrogen and 13.7 using organic nitrogen. The Redfield ratio is 6.6. Approaches using interstitial water chemistry gave lower ratios. The average value using correlations between dissolved oxygen and nitrate was 8.1. The same approach using total CO2 and nitrate gave an average of 9.1. Due to difficulties in unambiguously interpreting the solid phase data we favor the ratios obtained from the pore water analyses.The rate of organic matter decomposition can be obtained from model calculations using the dissolved oxygen and solid organic carbon data. Most gradients occur in the upper 10 to 20 cm of the sediments. Assuming that bioturbation is more important than sedimentation we have calculated first order rate constants. The average values using organic carbon and dissolved oxygen was 3.9 kyr? and 4.2 kyr? respectively using a biological mixing coefficient of 100 cm2 kyr?1. These rate constants decrease in direct proportions to the mixing coefficient.  相似文献   

3.
哈素海沉积物中氮和有机质的分布特征   总被引:5,自引:0,他引:5  
沈丽丽  何江  吕昌伟  孙英 《沉积学报》2010,28(1):158-165
针对哈素海富营养化日趋严重的现实,系统开展了湖泊沉积物中不同形态氮及有机质的空间分布和污染特征研究。结果表明,表层沉积物中TN、Org N、NH+4 N及有机质的水平分布均表现经向分异特征,Org N的分布特征主导了TN的水平分布格局,有机质与TN具有强相关性。沉积柱芯中TN随深度增加而递减,有机质和Org N与TN的垂向分布相似,尽管 NH+4 N的垂直变化分异较大,但仍表现于表层富集的特点。Org N为表层沉积物和沉积柱芯中氮的主导形态,NH+4 N为无机氮的主导形态,成岩过程中,沉积物中TN只有极少部分在发生矿化。沉积物中有机质主要来源于湖中芦苇等大型挺水植物及陆源输入。哈素海表层沉积物的氮污染对底栖生物已经产生了严重的生态毒性效应,对底栖生物群落及整个水生生态系统构成了严重威胁。  相似文献   

4.
We investigated the influence of biological and physical seabed disturbance on the degradation of bulk organic matter and source specific lipid biomarker compounds by measuring downcore changes in bulk elemental composition, bulk stable isotopic (δ13C and δ15N) signatures, and lipid biomarker compounds in sediment cores collected from two sites in the York River, a subestuary of the Chesapeake Bay, USA. One site (LY) is influenced by biological mixing (bioturbation), restricted to the upper 15-20 cm, while the other site (POD) experiences intense, episodic physical mixing events that penetrate 50-100 cm into the sediment. We utilized a suite of auxiliary measurements to constrain the sources of organic matter, depositional environments, and general ages of the cores. Diagenetic modeling of total organic carbon and total nitrogen in sediments yielded higher apparent rate constants for POD than LY suggesting that the physical mixing regime promotes enhanced degradation of bulk organic matter. Apparent rate constants for select lipids representing distinct sources of organic matter were also higher at POD than LY for all but the most labile (i.e., diatom-derived fatty acids) biomarkers. Differences in stanol/stenol ratios also supported enhanced diagenesis of stenols at POD. The source-specific biomarkers, while useful in qualitatively identifying the sources of sedimentary organic matter, likely do not represent the full spectrum of its reactivity. However, based on our results, we hypothesize that the intense sediment disturbance at POD promotes degradation of more recalcitrant organic material, due to prolonged exposure to oxygen and other electron acceptors (e.g., NO3, Mn and Fe oxides). In contrast, the degradation of more labile constituents is equally facilitated by biological and physical disturbance.  相似文献   

5.
Dissolved organic matter (DOM) in sediment pore water is a complex molecular mixture reflecting various sources and biogeochemical processes. In order to constrain those sources and processes, molecular variations of pore water DOM in surface sediments from the NW Iberian shelf were analyzed by ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and compared to river and marine water column DOM. Weighted average molecular element ratios of oxygen to carbon ((O/C)wa) and hydrogen to carbon ((H/C)wa) provided general information about DOM sources. DOM in local rivers was more oxygenated ((O/C)wa 0.52) and contained less hydrogen ((H/C)wa 1.15) than marine pore water DOM (mean (O/C)wa 0.50, mean (H/C)wa 1.26). The relative abundance of specific compound groups, such as highly oxygenated aromatic compounds or nitrogen-bearing compounds with low H/C ratios, correspond to a high concentration of lignin phenols (160 μg/g sediment dry weight) and a high TOC/TN ratio (13.3) in the sedimentary organic matter and were therefore assigned to terrestrial sources. The lower degree of unsaturation and a higher relative abundance of nitrogen-bearing compounds in the pore water DOM reflected microbial activity within the sediment. One sampling site on the shelf with a high sediment accumulation, and a humic-rich river sample showed a wide range of sulfur compounds in the DOM, accompanied by a higher abundance of lipid biomarkers for sulfate-reducing bacteria, probably indicating early diagenetic sulfurization of organic matter.  相似文献   

6.
苏北潮滩湿地不同生态带碳、氮、磷分布特征*   总被引:1,自引:0,他引:1  
通过对比苏北潮滩湿地不同生态带的表层以及柱状沉积物中总有机碳、总氮、总磷和有机磷含量,并结合不同植被不同植株部位中碳、氮、磷的含量变化,分析了潮滩沉积物中碳、氮、磷的垂向和水平分布特征与规律,探讨了不同生态带以及潮滩植被对碳、氮、磷等生源要素的富集作用。对比分析结果表明:苏北潮滩湿地各生态带对不同的测量指标有着不同的富集作用,互花米草滩的总有机碳、总氮和有机磷含量要远大于其他几个生态带,光滩沉积物中总磷的含量最高; 粒度效应是控制互花米草前缘地带以及互花米草滩沉积物中有机碳和氮分布的一个重要因素,盐蒿和芦苇滩中有机碳和氮的分布更多的是受粒度之外的其他因素影响; 不同生态带表层沉积物中的C/N比值分布,大致可反映其有机物来源的差异,而不同生态带中柱状沉积物中的C/N比值相对接近,很难根据C/N比值大小来对不同生态带中的有机物来源进行判断,这可能是埋藏在柱状沉积物中的有机物更多的受到了早期成岩作用造成的。植被对潮滩湿地中碳、氮、磷的分布有着重要影响,3种物质在互花米草、盐蒿和芦苇中的含量差别不是很大,因此潮滩植被对沉积物中上述3种物质的贡献差别主要是由不同植被的生物量和其所处环境的沉积动力差异造成的。  相似文献   

7.
Seven sediment cores were taken in the Sea of Okhotsk in a south-north transect along the slope of Sakhalin Island. The retrieved anoxic sediments and pore fluids were analyzed for particulate organic carbon (POC), total nitrogen, total sulfur, dissolved sulfate, sulfide, methane, ammonium, iodide, bromide, calcium, and total alkalinity. A novel method was developed to derive sedimentation rates from a steady-state nitrogen mass balance. Rates of organic matter degradation, sulfate reduction, methane turnover, and carbonate precipitation were derived from the data applying a steady-state transport-reaction model. A good fit to the data set was obtained using the following new rate law for organic matter degradation in anoxic sediments:
  相似文献   

8.
高超  于晓果  杨义  杨欢  吕晓霞  阮小燕 《地球科学》2018,43(11):4008-4017
为探究全球变暖对于高纬度海洋生态环境的影响,对中国第5次北极科学考察在白令海陆架区采集的BL16柱样沉积物中的脂类进行了研究.沉积物中检测到丰富的饱和烃和脂肪酸等化合物,其组成和分布显示,该沉积柱中有机质为陆源和海源混合输入.其中长链正构烷烃和长链饱和正构脂肪酸主要来源于陆源高等植物,饱和异构和反异构脂肪酸主要来源于海洋自生细菌,短碳链正构烷烃、反异构烷烃和烷基环戊烷烃的浓度相互间有较好的相关性,表明其来源较为一致,主要来源于海洋浮游藻类和细菌.海源短链正构烷烃与陆源长链正构烷烃的比值∑C15-21/∑C23-33在0.14~0.90之间,表明该沉积柱中正构烷烃主要以陆源输入为主.沉积柱中短链正构烷烃、反异构烷烃和烷基环戊烷浓度,以及脂肪酸中异构、反异构脂肪酸组分与长链饱和正构脂肪酸组分的相对变化与总有机碳含量(TOC)、总氮含量(TN)变化一致,尤其在20世纪70年代以来明显升高,可能反映了海洋初级生产力持续增加的趋势,并且对全球变暖做出了灵敏的响应.   相似文献   

9.
Suspended particulate matter (SPM) of surface seawaters was collected during December 2003 to October 2004 at 10 stations in the Bay of Bengal, and analyzed for particulate organic carbon (POC), total particulate nitrogen (TPN), total particulate carbohydrate (TPCHO) and total particulate uronic acids (TPURA). The concentrations of POC, TPCHO and TPURA varied from 4.80 to 29.12, 0.85 to 4.24, 0.09 to 0.91 μM C, respectively. The TPCHO-C and TPURA-C accounted for 6.6–32.5% and 0.87–3.65% of POC. The trends observed for the distribution of these compounds were generally similar to those recorded for the distribution of chlorophyll a (Chl a). The C/N ratios varied from 3.2 to 22.3 with most of the values being < 10. This suggests that the organic matter was mostly derived from phytoplankton and bacteria. Relatively low C/N ratios and high TPCHO yield imply that freshly derived organic matter was present during SWM and FIM. Our data suggest that the quality and quantity of organic matter varied spatially and seasonally.  相似文献   

10.
赛里木湖沉积物有机质变化特征及其环境信息   总被引:3,自引:0,他引:3  
在分析赛里木湖湖泊沉积物中氮含量(TN)、有机碳含量(TOC)及其碳同位素(δ~(13)C_(org))以及色素等指标的变化特征的基础上,结合沉积物中有机指标的环境意义的探讨,揭示了新疆赛里木湖湖泊沉积物中有机质所蕴含的环境信息.赛里木湖沉积物中总有机碳含量、总氮含量的变化反映了流域初级生产力的变化,沉积物色素变化是有机质保存条件的指标,间接指示了湖泊-流域水热配置环境.有机碳同位素(δ~(13)C_(org))反映了湖泊内外源的混合信息.结合有序样品聚类分析方法,可以将赛里木湖近代环境划分为四大发展阶段:1、各有机指标相对稳定;2、各有机指标明显波动;3、各有机指标显著增加;4、各有机指标快速增加.  相似文献   

11.
Lakes and wetlands are dynamic geomorphic units of a landscape that hold geochemical signatures of sediment provenance and paleo-environmental shifts and are major sinks for organic matter accumulation. The source of organic matter is diverse in lake sediments and varies widely with the type and size of the lake and hence it is important to understand the source of organic carbon (terrestrial or in situ) in lake systems in order to monitor the health of the lake. Wular lake, located in north Kashmir, is one of the largest fresh water lake in India, situated at an average elevation of 1580m ASL. The lake is fed by a number of watersheds that bring a diverse type of sediments and organic matter and thus deposit them into the Wular lake basin. In order to understand sediment distribution pattern, content and source of organic matter, sediment provenance and the persisting environment in the Wular lake, 32 lake floor sediment samples covering the entire lake were collected and analyzed for organic element analysis, CaCO3, organic matter, sediment texture and diatom analysis. The results indicated that sediments in the lake are dominated by silt and silty clay. The organic carbon in the lake ranged from 0.83%-4.52% and nitrogen varied from 0.06%-0.5%. The Carbon to Nitrogen (C/N) ratios (9.04 to 22.03) indicate a mixed source of organic carbon but dominated by in situ lake sources from the vascular and lake biota accumulation. The diatom analysis revealed the occurrence of a diverse type of species along the sampling sites present within the lake. The wide distribution of the diatom species such as Cymbella, Cyclotella and Tabularia etc. in the lake indicate high organic pollution and alkaline fresh water environment prevailing in the lake.  相似文献   

12.
南海北部时间系列沉降颗粒的有机地球化学特征及意义   总被引:3,自引:1,他引:3  
陈建芳 Wong  HK 《地球化学》1997,26(6):47-56
通过对南海北部用大孔径沉积物捕获器采集的时间系列沉降颗粒样品中总有机碳,总氮,氨基酸与单糖组分以及叶绿素等有机组分的分析,揭示了南海颗粒物质中有机组分的主要特征,表明沉降颗粒物质中有机质主要来自近期生长的海洋浮游生物,并进一步推断季风对南海北部沉降颗粒物质通量及有机组分具有重要的控制作用。  相似文献   

13.
Organic carbon, total nitrogen, amino acids, sugars, and chlorophyll were determined in < 1 mm fractions of the samples collected by successive large aperture time-series sediment traps (Honjo-Mark M) in northern South China Sea during September 1987 to October 1988. The ratio of C/N and the relative abundance of amino acids and sugars show that organic matter in the settling particles from northern South China Sea is derived mainly from marine plantkon (especially phytoplankton). The organic carbon fluxes in our sediment traps are lower than those in other sediment traps. But the relative contents of Corg/total particulate matter are generally similar to those in the Panama Basin, Arabian Sea and Subarctic Pacific. It is suggested that monsoon-caused changes of physical and chemical conditions in the upper euphotic layer would control the fluxes of organic matter as well as its composition and transport in northern South China Sea. This project was financially supported by both Sino-German Scientific Cooperation Program and National Natural Science Foundation of China (No. 49070269, 49776297).  相似文献   

14.
As a kind of marine organic matter with important geochemical characteristics, amino sugars can effectively reflect the source, diagenetic state and mineralization process of organic matter by their concentration and composition in marine environment. This article systematically concluded the research progresses of amino sugars from the aspects of their source, composition and distribution characteristics in marine environment, and the role as a biomarker indicating source and diagenetic state of marine organic matter. The result showed that the macromolecular morphology, the oxygen and nutrient level and the sedimentary environment could affect the reactivity of amino sugars. The higher ratios of glucosamine to galactosamine (GlcN/GalN) and the Total Hydrolysable Amino Acids to Total Hydrolysable Amino Sugars (THAA/THAS) can reflect the fresh planktonic organic matter source and the lower ratios can reflect the conversion from planktonic to bacterial organic matter. The carbon and nitrogen normalized yield of total hydrolysable amino sugars, however, could give contradictory results depending on the relative contribution of the source and degradation degree of organic matter. Muramic acid is suitable to estimate the contribution of relatively fresh bacteria organic matter to particulate and sediment organic matter, but it is not suitable for applying in the dissolved organic matter because of its very low concentration leading from its rapid recycle. It is critical to enhance the research on the contribution of different microorganisms to amino sugars and differentiate the influence of organic matter source and degradation on amino sugars in marine environment. The research on the conversion and fate of amino sugars in marine environment is also needed.  相似文献   

15.
The Triassic–Jurassic boundary is characterized by strong perturbations of the global carbon cycle, triggered by massive volcanic eruptions related to the onset of the Central Atlantic Magmatic Province. These perturbations are recorded by negative carbon isotope excursions (CIEs) which have been reported worldwide. In this study, Triassic–Jurassic boundary sections from the southern margin of the Central European Basin (CEB) located in northern Switzerland are analyzed for organic carbon and nitrogen isotopes in combination with particulate organic matter (POM) analyses. We reconstruct the evolution of the depositional environment from Late Triassic to Early Jurassic in northern Switzerland and show that observed negative shifts in δ13C of the total organic carbon (δ13CTOC) in the sediment are only subordinately influenced by varying organic matter (OM) composition and primarily reflect global changes in the carbon cycle. Based on palynology and the stratigraphic positions of isotopic shifts, the δ13CTOC record of the studied sections is correlated with the GSSP section at Kuhjoch (Tethyan realm) in Austria and with the St. Audrie’s Bay section (CEB realm) in southwest England. We also show that in contrast to POM analyses the applicability of organic carbon/total nitrogen (OC/TN) atomic ratios and stable isotopes of total nitrogen (δ15NTN) for detecting changes in source of OM is limited in marginal depositional environments with frequent changes in lithology and OM contents.  相似文献   

16.
Fifteen sediment samples were studied from five drill sites recovered by the ‘Glomar Challenger’ on Legs I and IV in the Gulf of Mexico and western Atlantic. This study concentrated on compounds derived from biogenic precursors, namely: (1) hydrocarbons, (2) fatty acids, (3) pigments and (4) amino acids.Carbon isotope (δC13) data (values < ? 26%, relative to PDB), long-chain n-alkyl hydrocarbons ( ?C277) with odd carbon numbered molecules dominating even carbon numbered species, and presence of perylene proved useful as possible indicators for terrigenous contributions to the organic matter in some samples. Apparently land-derived organic matter can be transported for distances over 1000 km into the ocean and their source still recognized.The study was primarily designed to investigate: (i) the sources of the organic matter present in the sediment, (ii) their stability with time of accumulation and (iii) the conditions necessary for in situ formation of new compounds.  相似文献   

17.
To assess settling particulate organic matter (POM) seasonality and its availability to the benthic community, settling particulate matter was studied in terms of mass fluxes and main biogeochemical characteristics (including organic carbon (OC), nitrogen, and stable carbon and nitrogen isotopic values) at two Lake Superior offshore sites over the course of a year. Fourier transform infrared spectroscopy (FTIR) and hydrolysis, extraction, and derivatization were used to provide further compositional information. Carbon and nitrogen content, isotopic and wet chemical data, and FTIR spectra show that summer particulate material is mainly autochthonous, with higher proportions of amide and carbohydrate. FTIR shows that spring particulate material contains relatively high proportions of clay minerals, indicating major sources from sediment resuspension and/or spring runoff. Distinct amino acid distributions at the two sites, revealed by principal component analysis (PCA) based on amino acid mol% composition, possibly result from differences in OM sources and the degree of degradation occurring at the two sites. Carbohydrate (PCHO), total hydrolyzable amino acid (THAA) and FTIR data suggest that the nutritional value of bulk POM to benthic heterotrophs should be lower in spring than summer-fall, although both periods exhibited high sinking fluxes of total mass and OC. Due to sediment resuspension events and an oxic water column, organic matter eventually buried in Lake Superior’s sediments has probably experienced extensive alteration due to several cycles through the water column and the bacterially-active sediment-water interface.  相似文献   

18.
Thick sequences of dark colored, organic carbon rich, finely laminated Santonian–Cenomanian claystones and homogeneous Albian siltstones were recovered from Ocean Drilling Program Sites 1257, 1258 and 1260 on the Demerara Rise in the western equatorial Atlantic Ocean. Total organic carbon (TOC) concentrations vary from 2 to over 20 wt% in the sequences of “black shales” that were deposited over a period of ~20 million years. Similarly long periods of elevated marine productivity implied by the high TOC concentrations are uncommon in the geological record and must have required unusual paleoceanographic conditions. The importance of nitrogen fixing bacteria to sustaining the amplified export production of organic matter is indicated by δ15N values that remain between ?4‰ and 0‰, a range that is notably less positive than the average of +5‰ for modern ocean sediments. Although containing mostly marine organic matter, the black shales have TOC/TN molar ratios between 20 and 40 that mimic those of land plant organic matter. The anomalously large TOC/TN ratios suggest selective organic matter degradation, probably associated with low oxygen conditions in the water column, that favored preservation of nitrogen poor forms of organic matter relative to nitrogen rich components. Deposition of black shales on the Demerara Rise was likely a consequence of the mid-Cretaceous warm and wet greenhouse climate that strengthened thermohaline stratification of this part of the Atlantic Ocean, which in turn encouraged bacterial nitrogen fixation, enhanced primary production, magnified organic matter export, and ultimately established anoxic conditions at the seafloor that improved preservation of organic matter for much of the 20 My period represented by these thick sequences.  相似文献   

19.
Three sediment cores were taken from the Pearl River estuary and adjacent northern South China Sea (SCS). These sediment cores span the time interval 1900–2000 AD. The stratigraphy of the concentration, the ratio of total organic carbon (TOC) to total nitrogen (TN) and stable isotope (δ13Corg) of organic carbon (OC) from three high-resolution sediment cores were analyzed. The stratigraphic profiles of OC concentration, TOC/TN ratios and δ13Corg for the near past 100 yrs indicate that terrestrial organic matter decreases from 68.3% to 27.4% of the TOC in the Pearl River estuary, while Dapeng Bay (offshore east of Hong Kong) apparently had throughout little terrestrial organic matter input. The highest deposited OC occurs at the Humen River mouth and the OC concentrations are higher in the outer estuary than in the inner shelf of the northern SCS. The deposited OC at the River mouth increased with time, which could be caused by the high precipitation of land-derived organic matter and the high input of terrestrial organic matter, which is likely related to the rapid urbanization and industrial development in the Pearl River Delta since the 1970s. The OC concentrations did not exhibit an obvious increase with time in most areas of the Pear River estuary and adjacent inner shelf of the SCS, but the algal-derived OC concentration inferred from the δ13Corg values increased with time especially from 1980 to 2000 in the outer Pearl River estuary and Dapeng Bay. This increase is presumably caused by enhanced primary marine productivity supported by higher anthropogenic nutrient inputs.  相似文献   

20.
《Applied Geochemistry》2006,21(11):1900-1912
This study addresses the physical geochemical aspects of the relationship between Hg and organic matter in recent sediment from eutrophic lakes in central Alberta, Canada. The types of organic matter in the sediment are classified based on their degree of thermal degradation and their petrographical characteristics. This study uniquely applies the methods conventionally used in petroleum geosciences (Rock-Eval® analyses and organic petrology) to investigate the relationship between various types of organic matter and the concentration of Hg in sediment.The results show that the total organic carbon (TOC) in sediment represents the sum of various organic compounds, which may play a completely different role in the distribution and accumulation of Hg. Strong correlations between TOC and the concentration of Hg in the studied sediment arise mainly from the thermally labile portion of organic matter released during pyrolysis under 300 °C. These compounds primarily consist of easily degradable algal-derived lipids and various pigments, which are petrographically described as soluble organic matter (SOM). The preserved SOM in sediment is commonly entrapped within the cell walls of phytoplankton and also appear as surface coating on sediment particles. The strong affinity between Hg and SOM is due not only to its chemical reactivity, but also to the physical characteristic of these labile compounds. The SOM may provide a substrate with enormous surface area by concentrating on the finer sediment size fractions and potentially acting as a “concentrator” for Hg and other organic-associated elements. Lastly, the quantity of the SOM has been calculated as an “elemental concentrator” portion of the TOC, which plays the most important role in the distribution of Hg in sediment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号