首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uranyl adsorption was measured from aqueous electrolyte solutions onto well-characterized goethite, amorphous ferric oxyhydroxide, and hematite sols at 25°C. Adsorption was studied at a total uranyl concentration of 10?5 M, (dissolved uranyl 10?5 to 10?8 M) as a function of solution pH, ionic strength and electrolyte concentrations, and of competing cations and carbonate complexing. Solution pHs ranged from 3 to 10 in 0.1 M NaNO3 solutions containing up to 0.01 M NaHCO3. All the iron oxide materials strongly adsorbed dissolved uranyl species at pHs above 5 to 6 with adsorption greatest onto amorphous ferric oxyhydroxide and least onto well crystallized specular hematite. The presence of Ca or Mg at the 10?3 M level did not significantly affect uranyl adsorption. However, uranyl carbonate and hydroxy-carbonate complexing severely inhibited adsorption. The uranyl adsorption data measured in carbonate-free solutions was accurately modeled with the surface complexation-site binding model of Davis et al. (1978), assuming adsorption was chiefly of the UO2OH+ and (UO2)3(OH)+5, aqueous complexes. In modeling it was assumed that these complexes formed a monodentate UO2OH+ surface complex, and a monodentate, bidentate or tridentate (UO2)3(OH)+5surface complex. Of the latter, the bidentate surface complex is the most likely, based on crystallographic arguments. Modeling was less successful predicting uranyl adsorption in the presence of significant uranyl carbonate and hydroxy-carbonate complexing. It was necessary to slightly vary the intrinsic constants for adsorption of the di- and tricarbonate complexes in order to fit the uranyl adsorption data at total carbonate concentrations of 10?2 and 10?3 M.  相似文献   

2.
《Geochimica et cosmochimica acta》1999,63(11-12):1751-1765
Solubility methods were employed to determine conditional equilibrium constants for the formation of hydroxide and mixed hydroxy–chloride complexes of Pd(II). Measurements were made over a temperature range of 25–85°C, a pH range from 0 to 12, and ionic strengths of 0.1, 0.2, 0.5 and 1.0 molal in both KCl and NaClO4 media. Several speciation models were fit to the data using nonlinear regression, and the model yielding the best fit with the fewest number of species was accepted for each temperature and ionic strength. The conditional equilibrium constants were then fit to a function of ionic strength and temperature (including a Debye–Hückel term) to facilitate interpolation and extrapolation to infinite dilution. The following species were found to be important in KCl solutions: PdCl42−, PdCl3(OH)2−, and Pd(OH)20. The relative proportions of the species are dependent on pH and ionic strength (chloride concentration). In perchlorate media the predominant species were Pd(OH)3, Pd(OH)20, PdOH+ and Pd2+, depending on pH. Conditional stability constants determined in this study agree well with those reported in previous work for the simple chloride and hydroxide complexes, but our results suggest that mixed complexes may be more important than previously thought, and that PdCl3(OH)2− may be the dominant species in seawater, followed by Pd(OH)20.  相似文献   

3.
Experimental and predicted thermochemical constants are used to assess the formation and stability of lead phosphates in soil and sedimentary environments. For the chemical conditions likely to be encountered in oxidizing environments, the stability fields of pyromorphites [Pb5(PO4)3X, X = OH?, Cl?, Br? and F?] and plumbogummite [PbAl3(PO4)2(OH)5-H2O] predominate strongly over those of the other secondary lead minerals. The theoretical phase relationships together with several field observations are used as the basis for suggesting that the interaction of lead and phosphorus (to form pyromorphites and plumbogummite in particular) is an important buffer mechanism controlling the migration and fixation of lead in the environment. Calculations using the concentrations of lead and phosphate ions in serum indicate that the solubility of lead phosphates may be the limiting factor with regard to lead ion concentration in human body. The removal of lead from wastewater by precipitation as lead chloropyromorphite is considered a spin-off of possible industrial interest.  相似文献   

4.
Cupric carbonate and cupric bicarbonate complexation constants were determined in natural seawater and in a variety of synthetic media. The formation constants of CuHCO3+, CuCO30 and Cu(CO3)22? at 25°C and zero ionic strength are: log βH0 = 1.8, log β10 = 6.82 and log β02 = 10.6. Formation constants of these species appropriate to 0.7 molar ionic strength and 25°C are log βH ~- 1, log β1 = 5.73, log β2 = 9.3. Our results indicate that the inorganic speciation scheme of Cu(II) in seawater is dominated by CuCO30 and that the ternary species, CuCO3OH?, is of substantial importance.  相似文献   

5.
Co sorption was measured as a function of pH, ionic strength (0.001-0.1 M NaNO3) and sorbate/sorbent ratio on pure quartz, HFO and kaolinite and on binary and ternary mixtures of the three solids. Sorption data measured for the pure solids were used to derive internally-consistent diffuse layer surface complexation model (DLM) stability constants for Co sorption. Co sorption on HFO could be adequately modeled over a broad range of ionic strengths and sorbate/sorbent ratios with a two variable-charge site model. Fits based on a single variable-charge site model were reasonable, but were improved by using ionic-strength dependent stability constants. A single variable-charge site model with an additional permanent ion exchange site produced the best fit to Co edges measured on kaolinite over a range of ionic strength and sorbate/sorbent ratios. These DLM fits were also improved by using ionic-strength dependent stability constants. The DLM approach could not adequately describe the slope of Co sorption edges on quartz. This study demonstrates that for accurate prediction of Co sorption over wide ranges of ionic strength and sorbate/sorbent ratio, the DLM may require ionic-strength dependent stability constants. DLM stability constants for Co sorption derived for the pure solids were used to predict sorption as a function of pH and solid concentration on binary and ternary mixtures of the three solids. Discrepancies between predictions and measurements were quantitatively similar to those observed for the pure mineral systems. Thus, a simple component additivity approach provides useful predictions of metal sorption in the mixed solid systems.  相似文献   

6.
The subsurface mobility of Np is difficult to predict in part due to uncertainties associated with its sorption behavior in geologic systems. In this study, we measured Np adsorption onto a common gram-positive soil bacterium, Bacillus subtilis. We performed batch adsorption experiments with Np(V) solutions as a function of pH, from 2.5 to 8, as a function of total Np concentration from 1.29 × 10−5 M to 2.57 × 10−4 M, and as a function of ionic strength from 0.001 to 0.5 M NaClO4. Under most pH conditions, Np adsorption is reversible and exhibits an inverse relationship with ionic strength, with adsorption increasing with increasing pH. At low pH in the 0.1 M ionic strength systems, we observed irreversible adsorption, which is consistent with reduction of Np(V) to Np(IV). We model the adsorption reaction using a nonelectrostatic surface complexation approach to yield ionic strength dependent NpO2+-bacterial surface stability constants. The data require two bacterial surface complexation reactions to account for the observed adsorption behavior: R-L1 + NpO2+ ↔ R-L1-NpO2° and R-L2 + NpO2+ ↔ R-L2-NpO2°, where R represents the bacterium to which each functional group is attached, and L1 and L2 represent the first and second of four discrete site types on the bacterial surface. Stability constants (log K values) for the L1 and L2 reactions in the 0.001 M system are 2.3 ± 0.3 and 2.3 ± 0.2, and in the 0.1 M system the values are 1.7 ± 0.2 and 1.6 ± 0.2, respectively. The calculated neptunyl-bacterial surface stability constants are not consistent with values predicted using the linear free energy correlation approach from Fein et al. (2001), suggesting that possible unfavorable steric interactions and the low charge of NpO2+ affects Np-bacterial adsorption.  相似文献   

7.
The increasing emission of primary and gaseous precursors of secondarily formed atmospheric particulate matter due to continuing industrial development and urbanization are leading to an increased public awareness of environmental issues and human health risks in China. As part of a pilot study, 12-h integrated fine fraction particulate matter (PM2.5) filter samples were collected to chemically characterize and investigate the sources of ambient particulate matter in Guiyang City, Guizhou Province, southwestern China. Results showed that the 12-h integrated PM2.5 concentrations exhibited a daytime average of 51 ± 22 µg m?3 (mean ± standard deviation) with a range of 17–128 µg m?3 and a nighttime average of 55 ± 32 µg m?3 with a range of 4–186 µg m?3. The 24-h integrated PM2.5 concentrations varied from 15 to 157 µg m?3, with a mean value of 53 ± 25 µg m?3, which exceeded the 24-h PM2.5 standard of 35 µg m?3 set by USEPA, but was below the standard of 75 µg m?3, set by China Ministry of Environmental Protection. Energy-dispersive X-ray fluorescence spectrometry (XRF) was applied to determine PM2.5 chemical element concentrations. The order of concentrations of heavy metals in PM2.5 were iron (Fe) > zinc (Zn) > manganese (Mn) > lead (Pb) > arsenic (As) > chromium (Cr). The total concentration of 18 chemical elements was 13 ± 2 µg m?3, accounting for 25% in PM2.5, which is comparable to other major cities in China, but much higher than cities outside of China.  相似文献   

8.
The reactions of secondary lead orthophosphate with approximately 10?1 M sodium fluoride and sodium bromide solutions have been investigated at 25°C. Interpretation of the solubility data resulted in solubility product constants for fluoropyromorphite and bromopyromorphite of 10?71.6 and 10?78.1, respectively. According to these constants, the stability sequence for lead pyromorphites is Pb5(PO4)3Cl > Pb5(PO4)3Br > Pb5(PO4)3OH > Pb5(PO4)3F. The derived free energy data have been used to evaluate the respective stabilities of fluoro-pyromorphite and bromopyromorphite within the systems PbF2-PbO-P2O5-H2O and PbBr2-PbO-P2O5-H2O and to predict the equilibrium behavior of the Pb5(PO4)3F-Pb5(PO4)3OH solid solution under aqueous conditions.  相似文献   

9.
The spectra of chlorolead(II) complexes in the ultraviolet region have been measured in acid chloride solutions from 0.0012 to 3.223 m and at temperatures from 25 to 300°C. The thermodynamic cumulative and stepwise formation constants as well as the spectra of the individual chlorolead(II) species have been calculated from the spectrophotometric data. At 25°C, the five species PbCl2?nn (0 ≤ n ≤ 4) occur, however, at 300°C the predominant species were PbCl+, PbCl02 and PbCl?3. Pb2+ occurs as a minor species in dilute solutions where total chloride is <0.003 m at 300°C and the presence of PbCl2?4 in concentrated solutions was not detected above 150°C. With increasing temperature, chlorolead(II) complex stability is characterised by large endothermic enthalpies and large positive entropies of formation. Lead(II) chloride complexes are important in the transport and deposition of lead by hydrothermal ore solutions of moderate to high salinity.  相似文献   

10.
The compositional characteristics of many geochemical systems which involve the interaction of natural aqueous solutions with minerals and gases are conveniently described using the following thermodynamic components: Cl?, SO4=, HS?, CO3=, H+, Na+, K+, Ca++, Mg++, Fe++, Zn++, Cu+, Al+++, SiO2 and H2O. A set of mass balance and mass action equations equal in number to the number of components plus the number of saturated minerals (and gases) is defined for a specified temperature, pressure and bulk composition. The mass balance equations include terms for minerals, gases and the molalities of aqueous complexes and dissociated species. This set of non-linear equations can be solved with the aid of a computer using'a Newton-Raphson technique. The calculation takes account of aqueous ion complexing, oxidation-reduction equilibria, activity coefficients, non-unit water activity and solid solutions. The use of H+, SO4=, HS? and H2O as components allows straightforward treatment of processes involving oxidation-reduction, evaporation, boiling and changes of total aqueous H+ due to hydrolysis, mineral reaction or temperature change. One product of this approach is a technique for calculating pH at high temperature from measurement of pH at room temperature.By linking a series of discrete overall heterogeneous equilibrium calculations in which incremental changes of bulk composition, temperature or pressure are made, dynamic geochemical processes can be modeled. Example calculations for two such processes are given. These are the heating of seawater from 25° to 300°C and the isothermal irreversible reaction of rhyolite with an aqueous solution at 250°C.  相似文献   

11.
12.
A Chemical Equilibrium Model for Natural Waters   总被引:7,自引:0,他引:7  
This paper reviews the present status of the Pitzer chemical equilibrium model, which can be used to characterize the one-atmosphere activity coefficients of ionic and non-ionic solutes in natural waters as a function of temperature and ionic strength. The model considers the ionic interactions of the major seasalt ions (H, Na, K, Mg, Ca, Sr, Cl, Br, OH, HCO3, B(OH)4, HSO4, SO4, CO3, CO2, B(OH)3, H2O) and is based on the 25 °C model of Weare and co-workers. The model has been extended by a number of workers so that reasonable estimates can be made of the activity coefficients of most of the major seasalt ions from 0 to 250 °C. Recently coefficients for a number of solutes that are needed to determine the dissociation constants of the acids from 0 to 50 °C (H3CO3, B(OH)3, H2O, HF, HSO 4 - , H3PO4, H2S, NH 4 + etc.) have been added to the model. These results have been used to examine the carbonate system in natural waters and determine the activity of inorganic anions that can complex trace metals. The activity and osmotic coefficients determined from the model are shown to be in good agreement with measured values in seawater. This model can serve as the foundation for future expansions that can examine the activity coefficient and speciation of trace metals in natural waters. At present this is only possible from 0 to 50 °C over a limited range of ionic strengths (<1.0) due to the limited stability constants for the formation of the metal complexes. The future work needed to extend the Pitzer model to trace metals is discussed.  相似文献   

13.
Potentiometric measurements of Yttrium and Rare Earth Element (YREE) complexation by carbonate and bicarbonate indicate that the quality of carbonate complexation constants previously obtained via solvent exchange analyses are superior to characterizations obtained using solubility and adsorptive exchange analyses. The results of our analyses at 25°C are combined with the results of previous solvent exchange analyses to obtain YREE carbonate complexation constants over a wide range of ionic strength (0 ≤ I ≤3 molal). YREE carbonate complexation constants are reported for the following equilibria, M3++nHCO3?M(CO3)n3−2n+nH+, where n = 1 or 2. Formation constants written in terms of HCO3 concentrations require only minor corrections for ion pairing relative to the corrections required for constants expressed in terms of CO32− concentrations. Formation constants for the above complexation equilibria, CO3Hβ1=[MCO3+][H+][M3+]−1[HCO3]−1 and CO3Hβ2=[M(CO3)2][H+]2[M3+]−1[HCO3]−2, have very similar dependencies on ionic strength because the reaction MCO3++HCO3?M(CO3)2+H+ is isocoulombic. Potentiometric analyses indicate that the dependence of logCO3Hβ1 and logCO3Hβ2 on ionic strength at 25°C is given as
(A)  相似文献   

14.
《Applied Geochemistry》2000,15(7):953-973
The enhancement of mobility of radionuclides in the geosphere through complexation by humic substances is a source of uncertainty in performance assessment of radioactive waste repositories. Only very few data sets are available which are relevant for performance assessment of an underground repository for radioactive waste. Using the equilibrium dialysis-ligand exchange method developed at the Paul Scherrer Institut, conditional stability constants for the formation of complexes of Aldrich humic acid with Ca2+, NpO2+, Co2+, Ni2+, UO22+ and Eu3+ and complexes of Laurentian soil- and Suwannee River fulvic acid with Co2+, UO22+ and Eu3+ were measured. pH was varied between 5 and 10 and ionic strength between 0.02 and 0.2 M. The data are presented as equilibrium coefficients that are free from any model assumptions. The equilibrium coefficients increased in the order Ca2+≅NpO2+<Co2+< Ni2+<UO22+< Eu3+. The quality of the data is assessed in an extended discussion of statistical and systematical errors, and by a critical ‘rereview’ of the auxiliary stability constants used for the calculation of the equilibrium coefficients. An approximate overall uncertainty of 0.5 log-units is estimated for the stability data reported. The conditional stability constants were found to increase markedly with increasing pH in the case of Co2+, UO22+ and Eu3+. For Ni2+, Ca2+ and NpO2+ this effect was less pronounced. For all metal ions tested, the influence of ionic strength was of less importance, and the conditional stability constants did not show a significant dependence on the type of humic substances investigated.  相似文献   

15.
The detailed hydro-chemical study of meltwater draining from Khangri glacier Arunachal Pradesh has been carried out to evaluate the major ion chemistry and weathering processes in the drainage basin. The investigative results shows that the meltwater is almost neutral to slightly acidic in nature with Mg–HCO3-dominated hydro-chemical facies. In glacial meltwater, Ca+?2 is the most dominated cation followed by Mg+2, Na+, and K+, while HCO3? is the most dominant anion followed by SO42?, NO3?, and Cl?. The dominant cations such as Ca+2 and Mg+2 show a good relation with the minerals abundance of the rocks. Calcite (CaCO3) and biotite [K(Mg,Fe)3AlSi3O10(F,OH)2] are the most abundant minerals in the deformed carbonate-rich metasedimentary rocks near to the snout with some K feldspar (KAlSi3O8) and quartz (SiO2). This suggests Ca+2 have definitely entered into the water due to the dissolution of calcite and Ca feldspar (CaAl2Si2O8), while one of the source of Mg+2 is biotite. Na feldspar (NaAlSi3O8) has contributed towards the availability of sodium ion, while potassium ion is derived from the chemical weathering of K feldspar and biotite. The chemical weathering is the foremost mechanism controlling the hydro-chemistry of the Khangri glacier because of the least anthropogenic interferences. The mineralogy of surrounding rocks is studied to understand better, the rock–water interaction processes, and their contribution towards ionic concentration of meltwater. The meltwater discharge and individual ion flux of the catchment area have also been calculated, to determine the ionic denudation rate for the ablation season. The high elemental ratio of (Ca?+?Mg)/(Na?+?K) (7.91?±?0.39 mg/l) and low elemental ratio of (Na?+?K)/total cations (0.11?±?0.004) indicate that the chemical composition of meltwater is mainly controlled by carbonate weathering and moderately by silicate weathering. The scatter plot result between (Ca?+?Mg) and total cations confirms that carbonate weathering is a major source of dissolved ions in Khangri glacier meltwater. In addition, the statistical analysis was also used to determine the correlation between physical parameters of glacier meltwater which controlled the solute dynamics.  相似文献   

16.
Lead chloride formation constants at 25°C were derived from analysis of previous spectrophotometrically generated observations of lead speciation in a variety of aqueous solutions (HClO4–HCl and NaCl–NaClO4 mixtures, and solutions of MgCl2 and CaCl2). Specific interaction theory analysis of these formation constants produced coherent estimates of (a) PbCl+, \textPbCl20 {\text{PbCl}}_{2}^{0} , and PbCl3 formation constants at zero ionic strength, and (b) well-defined depictions of the dependence of these formation constants on ionic strength. Accompanying examination of a recent IUPAC critical assessment of lead formation constants, in conjunction with the spectrophotometrically generated formation constants presented in this study, revealed significant differences among various subsets of the IUPAC critically selected data. It was found that these differences could be substantially reduced through reanalysis of the formation constant data of one of the subsets. The resulting revised lead chloride formation constants are in good agreement with the formation constants derived from the earlier spectrophotometrically generated data. Combining these data sets provides an improved characterization of lead chloride complexation over a wide range of ionic strengths:
log \text Cl b 1 = 1. 4 9 1- 2.0 4 I 1/ 2 ( 1+ 1. 5 I 1/ 2 ) - 1 + 0. 2 3 8 I log \text Cl b 2 = 2.0 6 2- 3.0 6 I 1/ 2 ( 1+ 1. 5 I 1/ 2 ) - 1 + 0. 3 6 9 I log \text Cl b 3 = 1. 8 9 9- 3.0 6 I 1/ 2 ( 1+ 1. 5 I 1/ 2 ) - 1 + 0. 4 3 9 I. \begin{gathered} {\log}\,{}_{\text{ Cl}} \beta_{ 1} = 1. 4 9 1- 2.0 4\,I^{ 1/ 2} \left( { 1+ 1. 5\,I^{ 1/ 2} } \right)^{ - 1} +\,0. 2 3 8\,I \hfill \\ {\log}\,{}_{\text{ Cl}} \beta_{ 2} = 2.0 6 2- 3.0 6\,I^{ 1/ 2} \left( { 1+ 1. 5\,I^{ 1/ 2} } \right)^{ - 1} +\,0. 3 6 9\,I \hfill \\ {\log}\,{}_{\text{ Cl}} \beta_{ 3} = 1. 8 9 9- 3.0 6\,I^{ 1/ 2} \left( { 1+ 1. 5\,I^{ 1/ 2} } \right)^{ - 1} +\,0. 4 3 9\,I. \hfill \\ \end{gathered}  相似文献   

17.
Analysis of hydrogeochemical materials on As distribution in CO2-bearing (carbonate) waters in various regions and the thermodynamic simulation of geochemical processes in rock-CO2-bearing water systems made it possible to constrain the optimal conditions for As transfer from rocks into carbonate waters and the accumulation of this element in the waters. The problem was solved with regard for the various rates of As transitions from rocks to water: (a) high rates of As transitions from rocks in compliance with the ion exchange mechanism and (b) low rates of As transitions from rocks in compliance with the mechanism involving the decomposition of As-bearing minerals. Various mechanisms of As extraction from rocks result in the compositional diversity of the aqueous phase and various As migration species in CO2-bearing waters, which, in turn, control the equilibrium concentration levels of this element. The principally important boundary conditions of As enrichment in CO2-bearing waters are high \(P_{CO_2 } \) and R/W ratios in the geochemical systems, a preliminary increase in the Cl concentration in the CO2-bearing waters, and the origin of these waters at high-density heat fluxes. As migration species were simulated for the model solutions and real carbonate waters of various geochemical types, and it is demonstrated that the predominant As species are oxygen-bearing HAsO 2 0 , and AsO 2 ? at a subordinate role of the sulfide HAs2S 4 2? , and As2S 4 2? — species even at high Σ S2? in the system. Two models of the genesis of solid As sulfides in CO2-bearing waters are analyzed: (1) with oxygen-bearing species (HAsO 2 0 , and AsO 2 ? ), which occur most widely, and (2) with sulfide species (As2S 4 2? , HAs2S 4 ? , and As4S 7 2? ), which occur not as widely.  相似文献   

18.
Cobalt, like Mg, may cause the precipitation of aragonite rather than calcite in aqueous solutions due to the adsorption and crystal poisoning of calcite by a hydrated ion. Solutions containing NaCl and CaCl2, having the ionic strength and Ca content of seawater (35‰ salinity), were spiked with known amounts of CoCl2. Calcium carbonate was precipitated by the addition of 0.7 ml of 1 M Na2CO3. All experimental runs were made at 25°C, and all products were examined by X-ray diffraction. At low concentrations of Co (< 5·?4M) calcite and vaterite formed. At concentrations from 5·10?4 M to 2·10?3M, the products consisted of combinations of calcite and vaterite; aragonite and calcite; aragonite and vaterite; calcite, vaterite and aragonite. In solutions of 3·10?3M CoCl2, most precipitates were aragonite with only one sample containing a small amount of calcite. All precipitates from 5·10?3M CoCl2 solutions either contained aragonite or were amorphous. Solutions with concentrations of 1 · 10?2M CoCl2 produced only amorphous precipitates. All precipitates contained an amorphous violet phase, assumed to be basic cobaltous carbonate (2CoCO3·Co(OH)2·H2O).  相似文献   

19.
Calcite dissolution rates were measured as a function of saturation state in NaCl–CaCl2–MgCl2 solutions at 1 bar (0.1 MPa) pCO2 and 25 °C. Rates measured in phosphate- and sulfate-free pseudo-seawater (Ca2+:Mg2+= 0.2, I= 0.7) were compared with those in synthetic brines. The brines were prepared by co-varying calcium and magnesium (Ca2+:Mg2+= 0.9; 2.0; 2.8; 3.1; 4.8; 5.8) along with ionic strength (I= 0.9; 1.1; 1.6; 2.1; 3.0; 3.7; 4.4 m) to yield solutions approximating those of subsurface formation waters. The rate data were modeled using the equation, R = k(1 ? Omega;) n , where k is the empirical rate constant, n describes the order of the reaction and ω is saturation state. For rates measured in the pseudo-seawater, n= 1.5 and k= 4.7 × 10?2 mol m?2 hr?1. In general, rates were not significantly faster in the synthetic brines (n= 1.4 ± 0.2 and k= 5.0 ± 7 × 10?2 mol m?2 hr?1). The rate coefficients agree within experimental error indicating that they are independent of ionic strength and Ca2+:Mg2+ over a broad range of brine compositions. These findings have important application to reaction-transport modeling because carbonate bearing saline reservoirs have been identified as potential repositories for CO2 sequestration.  相似文献   

20.
This paper provides insight into the quality of groundwater used for public water supply on the territory of Kikinda municipality (Vojvodina, Serbia) and main processes which control it. The following parameters were measured: color, turbidity, pH, KMnO4 consumption, TDS, EC, NH4 +, Cl?, NO2 ?, NO3 ?, Fe, Mn, total hardness, Ca2+, Mg2+, SO4 2+, HCO3 ?, K+, Na+, As. The correlations and ratios among parameters that define the chemical composition were determined aiming to identify main processes that control the formation of the chemical composition of the analyzed waters. Groundwater from 11 analyzed sources is Na–HCO3 type. Intense color and elevated organic matter content of these waters originate from humic substances. The importance of organic matter decay is assumed by positive correlation between organic matter content and TDS, HCO3 content. There is no evidence that groundwater chemistry is determined by the depth of captured aquifer interval. The main processes that control the chemistry of all analyzed water are cation exchange and feldspar weathering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号