首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
 The reflectance of sediments (gray level) were measured on 11 sediment cores from the Norwegian–Greenland–Iceland Sea (Nordic seas). The analyzed time interval covers the past five glacial–interglacial cycles. Although the results demonstrate that the gray-level method has a potential for stratigraphic purposes, it is indicated that gray-level changes in the Nordic seas are not necessarily driven by variations in the content of biogenic calcite. A detailed comparison of gray-level values with contents of total CaCO3 (carbonate) and total organic carbon (TOC) reveals no overall causal link between these proxies. However, specific glacial core sections with layers containing organic-rich sediment clasts as a consequence of iceberg-rafting seem to correlate well with law gray-level values. Of those cores which show relatively high and comparable carbonate values in the last three main interglacial intervals (stages 11, 5.5, and 1), stage 11 is always marked by the highest gray-level values. A close inspection of the surface structure of the foraminiferal tests as well as the conduction of reflectance measurements on these tests leads to the conclusion that enhanced carbonate corrosion occurred during stage 11. The test corrosion not only affected the reflectance of the tests by making them appear whiter, it also seems responsible for the comparatively high gray-level values of the total sediment in stage 11. In contrast, the relatively low gray-level values found in stages 5.5, and 1 are not associated with enhanced test corrosion. This observation implies that variable degrees of carbonate corrosion can have a profound effect on total sediment reflectance. Received: 6 September 1998 / Accepted: 4 April 1999  相似文献   

2.
In this paper we present new zircon U–Pb ages, whole-rock major and trace element analyses, and zircon Hf isotopic data for magmatic rocks in the Tuotuohe region of the western segment of the Jinshajiang suture. Our aim is to constrain the Early Permian–Late Triassic tectonic evolution of the region. Zircons from the magmatic rocks of the Tuotuohe region are euhedral–subhedral in shape and display fine-scale oscillatory zoning as well as high Th/U ratios(0.4–4.6), indicating a magmatic origin. The zircon U–Pb ages obtained using LA–ICP–MS are 281 ± 1 Ma, 258 ± 1 Ma, 244 ± 1 Ma, and 216 ± 1 Ma, which indicate magmatism in the Early Permian–Late Triassic. A diorite from Bashihubei(BSHN) has SiO2 = 57.18–59.97 wt%, Al2O3 = 15.70–16.53 wt%, and total alkalis(Na2O + K2O) = 4.46–6.34 wt%, typical of calc-alkaline and metaluminous series. A gabbro from Bashibadaoban(BSBDB) belongs to the alkaline series, and is poor in SiO2(45.46–54.03 wt%) but rich in Al2O3(16.19–17.39 wt%) and total alkalis(Na2O + K2O = 5.48–6.26 wt%). The BSHN diorite and the BSBDB gabbro both display an enrichment of LREEs and LILEs and depletion of HFSEs, and they have no obvious Eu anomaly; they have relatively low MgO contents(2.54–4.93 wt%), Mg# values of 43 to 52, and low Cr and Ni contents(8.07–33.6 ppm and 4.41–14.2 ppm, respectively), indicating they differentiated from primitive mantle magmas. They have low Nb/U, Ta/U, and Ce/Pb ratios(1.3–9.6, 0.2–0.8, and 0.1–18.1, respectively), and their initial Hf isotopic ratios range from +9.6 to +16.9(BSHN diorite) and +6.5 to +12.6(BSBDB gabbro), suggesting their primary magmas were derived mainly from the partial melting of a mantle wedge that had been metasomatized by subduction fluids. Taking all the new data together, we conclude that the western and eastern segment of the Jinshajiang suture regions underwent identical processes of evolution in the Early Permian–Late Triassic: oceanic crust subduction before the Early Permian, continental collision during the Early–Middle Triassic, and post-collisional extension from the Late Triassic.  相似文献   

3.
The current location of the border between Lebanon and Palestine, today's Israel, is a product of various competing forces. The Zionist Organization aspired to include the entire Galilee region up to the lower reaches of the Litani River (also known as the Kassimiyah River) within Palestine. The river itself was the desired northern border of the country. The Zionists supported their position by employing instrumental arguments that were largely related to the availability of water resources. On the other hand, residents of the upper Galilee, today's southern Lebanon, demanded that they be included with Lebanon. They used their trade links with Beirut, and cultural and familial ties with other parts of Lebanon to support their position. These instrumental and expressive arguments appear to have assisted in the demarcation of the border between Lebanon and Palestine. Currently, access to the water resources, not necessarily control over them, is likely to influence negotiations between Israel and Lebanon over the future of the Israeli-occupied security zone in southern Lebanon.  相似文献   

4.
Due to the political boundaries between the Central European countries, on one hand, and the thick Tertiary cover in the Pannonian Basin, on the other, the eastward continuation of the Alpine and Dinaridic units has been ambiguous and poorly documented. Based on comparative analyses, the aim of the present paper is to define the pre-Tertiary structural units in the junction area of the Alpine, Dinaridic, and Pannonian regions, in the SW part of the Pannonian Basin, and to draw conclusions on the continuation of the Alpine and Dinaridic units. According to diagnostic characteristics of the Periadriatic Lineament system, the Balaton Lineament system may be considered as its direct eastern continuation. North of the Periadriatic–Balaton Lineament system, the Transdanubian Range Unit, due to its pre-Tertiary paleogeographic setting, shows mainly South Alpine facies relations; however, its present structural position is identical to that of the Upper Austroalpine nappes. Between the Periadriatic–Balaton and Zagreb–Zemplin Lineament systems heterogeneous structural units are juxtaposed, forming the Sava Composite Unit. In the northern part of this composite unit non-metamorphosed nappes occur which can be considered the eastern continuation of the South Alpine units. These nappes are overthrust onto Internal Dinaridic units in the Tertiary. The Zagreb–Zemplin (Mid-Hungarian) Lineament separates the Sava Unit from the Tisza Unit showing close affinity to the Tethyan margin of the Eurasian plate during the early stage of the Alpine evolution. Received: 1 June 1999 / Accepted: 14 March 2000  相似文献   

5.
6.
7.
The Zhuxi deposit is a recently discovered W–Cu deposit located in the Jiangnan porphyry–skarn W belt in South China. The deposit has a resource of 3.44 million tonnes of WO3, making it the largest on Earth,however its origin and the evolution of its magmatic–hydrothermal system remain unclear, largely because alteration–mineralization types in this giant deposit have been less well-studied, apart from a study of the calcic skarn orebodies. The different types of mineralization can be classified into magnesian skarn, calcic skarn, and scheelite–quartz–muscovite(SQM) vein types. Field investigations and mineralogical analyses show that the magnesian skarn hosted by dolomitic limestone is characterized by garnet of the grossular–pyralspite(pyrope, almandine, and spessartine) series, diopside, serpentine,and Mg-rich chlorite. The calcic skarn hosted by limestone is characterized by garnet of the grossular–andradite series, hedenbergite, wollastonite, epidote, and Fe-rich chlorite. The SQM veins host highgrade W–Cu mineralization and have overprinted the magnesian and calcic skarn orebodies. Scheelite is intergrown with hydrous silicates in the retrograde skarn, or occurs with quartz, chalcopyrite, sulfide minerals, fluorite, and muscovite in the SQM veins.Fluid inclusion investigations of the gangue and ore minerals revealed the evolution of the ore-forming fluids, which involved:(1) melt and coexisting high–moderate-salinity, high-temperature, high-pressure(>450 ℃and >1.68 kbar), methane-bearing aqueous fluids that were trapped in prograde skarn minerals;(2) moderate–low-salinity, moderate-temperature, moderate-pressure(~210–300 ℃and ~0.64 kbar),methane-rich aqueous fluids that formed the retrograde skarn-type W orebodies;(3) low-salinity,moderate–low-temperature, moderate-pressure(~150–240 ℃and ~0.56 kbar), methane-rich aqueous fluids that formed the quartz–sulfide Cu(–W) orebodies in skarn;(4) moderate–low-salinity,moderate-temperature, low-pressure(~150–250 ℃and ~0.34 kbar) alkanes-dominated aqueous fluids in the SQM vein stage, which led to the formation of high-grade W–Cu orebodies. The S–Pb isotopic compositions of the sulfides suggest that the ore-forming materials were mainly derived from magma generated by crustal anatexis, with minor addition of a mantle component. The H–O isotopic compositions of quartz and scheelite indicate that the ore-forming fluids originated mainly from magmatic water with later addition of meteoric water. The C–O isotopic compositions of calcite indicate that the ore-forming fluid was originally derived from granitic magma, and then mixed with reduced fluid exsolved from local carbonate strata. Depressurization and resultant fluid boiling were key to precipitation of W in the retrograde skarn stage. Mixing of residual fluid with meteoric water led to a decrease in fluid salinity and Cu(–W) mineralization in the quartz–sulfide stage in skarn. The high-grade W–Cu mineralization in the SQM veins formed by multiple mechanisms, including fracturing, and fluid immiscibility, boiling, and mixing.  相似文献   

8.
Calibrations are presented for an independent set of four equilibria between end-members of garnet, hornblende, plagioclase and quartz. Thermodynamic data from a large internally-consistent thermodynamic dataset are used to determine the ΔG° of the equilibria. Then, with the known mixing properties of garnet and plagioclase, the non-ideal mixing in amphibole is derived from a set of 74 natural garnet–amphibole–plagioclase–quartz assemblages crystallised in the range 4–13 kbar and 500–800 °C. The advantage of using known thermodynamic data to calculate ΔG° is that correlated variations of composition with temperature and pressure are not manifested in fictive derived entropies and volumes, but are accounted for with non-ideal mixing terms. The amphibole is modelled using a set of ten independent end-members whose mixing parameters are in good agreement with the small amount of data available in the literature. The equilibria used to calibrate the amphibole non-ideal mixing reproduce pressures and temperatures with average absolute deviations of 1.1 kbar and 35 °C using an average pressure–temperature approach, and 0.8 kbar with an average pressure approach. The mixing data provide not only a basis for thermobarometry involving additional phases, but also for calculation of phase diagrams in complex amphibole-bearing systems. Received: 8 November 1999 / Accepted: 7 July 2000  相似文献   

9.
10.
We have studied the evolution of the tectonic lithofacies paleogeography of Paleocene–Eocene, Oligocene, Miocene, and Pliocene of the Qinghai–Tibet Plateau by compiling data regarding the type, tectonic setting, and lithostratigraphic sequence of 98 remnant basins in the plateau area. Our results can be summarized as follows. (1) The Paleocene to Eocene is characterized by uplift and erosion in the Songpan–Garzê and Gangdisê belts, depression (lakes and pluvial plains) in eastern Tarim, Qaidam, Qiangtang, and Hoh Xil, and the Neo-Tethys Sea in the western and southern Qinghai–Tibet Plateau. (2) The Oligocene is characterized by uplift in the Gangdisê–Himalaya and Karakorum regions (marked by the absence of sedimentation), fluvial transport (originating eastward and flowing westward) in the Brahmaputra region (marked by the deposition of Dazhuka conglomerate), uplift and erosion in western Kunlun and Songpan–Garzê, and depression (lakes) in the Tarim, Qaidam, Qiangtang, and Hoh Xil. The Oligocene is further characterized by depressional littoral and neritic basins in southwestern Tarim, with marine facies deposition ceasing at the end of the Oligocene. (3) For the Miocene, a widespread regional unconformity (ca. 23 Ma) in and adjacent to the plateau indicates comprehensive uplift of the plateau. This period is characterized by depressions (lakes) in the Tarim, Qaidam, Xining–Nanzhou, Qiangtang, and Hoh Xil. Lacustrine facies deposition expanded to peak in and adjacent to the plateau ca. 18–13 Ma, and north–south fault basins formed in southern Tibet ca. 13–10 Ma. All of these features indicate that the plateau uplifted to its peak and began to collapse. (4) Uplift and erosion occurred during the Pliocene in most parts of the plateau, except in the Hoh Xil–Qiangtang, Tarim, and Qaidam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号