首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用Milkov和Sassen的模型计算了目前及末次盛冰期时西沙海槽天然气水合物的稳定带(GHSZ) 厚度及资源量, 讨论了末次盛冰期以来海洋底水温度增加和海平面升高对西沙海槽天然气水合物储库变化的影响.计算结果表明, 底水温度增加使GHSZ厚度减薄, 资源量减少; 而海平面上升使GHSZ厚度增加, 资源量增加, 但底水温度变化对GHSZ厚度和资源量的影响比海平面变化的影响更大.西沙海槽末次盛冰期时GHSZ平均厚度约为299m, 天然气水合物资源量约为2.87×1010m3, 甲烷数量约为4.71×1012m3; 目前的GHSZ平均厚度约为287m, 天然气水合物资源量约为2.76×1010m3, 甲烷数量约为4.52×1012m3.由此可见, 自末次盛冰期以来西沙海槽的GHSZ平均厚度减薄了~12m, 大约1.1×109m3的天然气水合物分解释放了1.9×1011m3的甲烷, 这些甲烷可能对环境产生了重要影响.   相似文献   

2.
西藏羌塘盆地鸭湖地区天然气水合物成藏条件   总被引:1,自引:0,他引:1  
近年来中国陆域冻土区天然气水合物调查研究结果表明,气源条件是制约羌塘盆地天然气水合物找矿突破的关键因素。为明确鸭湖地区天然气水合物成藏潜力,基于近年来的钻探调查成果,从陆域冻土区天然气水合物成藏系统理论出发,系统分析了影响天然气水合物成藏的冻土、气源、储集、构造等地质因素。分析结果显示,鸭湖地区局部具有较好的冻土、地温、气源、储集、构造及水源条件,具备一定的天然气水合物成藏潜力,继续寻找充足的烃类气源是下一步天然气水合物调查的主要方向。同时,选取钻探调查获取的地温梯度、气体组分等参数,结合音频大地电磁测深(AMT)冻土厚度调查成果,对鸭湖地区天然气水合物稳定带的厚度和底界深度进行了预测。结果显示,当甲烷为85%、乙烷为9%、丙烷为6%时,天然气水合物稳定带厚度与冻土厚度分布变化基本一致,稳定带厚度400~630m,底界深度400~680m。当甲烷为98%、乙烷为2%时,天然气水合物稳定带厚度急剧减薄,大部分地区仅有0~30m,最厚仅有150m,局部地区稳定带底界最深仅为240m。结合气测录井结果,认为渐新世唢呐湖组比上三叠统土门格拉组更具备天然气水合物成藏潜力,土门格拉组自身具备较强的生排烃能力,可作为寻找常规油气或页岩气的一个重要层位。  相似文献   

3.
南海西沙海槽S14站位的地球化学异常特征及其意义   总被引:22,自引:6,他引:16  
西沙海槽具备良好的天然气水合物的形成条件,并已发现与其有关的地球物理标志--模拟海底反射层(BSR)。通过对西沙海槽S14大型活塞站位的孔隙水和沉积物样品进行化学组分、酸解烃和热释光等方面的分析测试,结果发现在海底之下4~5 m区间存在着较明显的高盐高烃异常,其中酸解烃中的甲烷、乙烷、丙烷含量及其热释光值均有所增高,孔隙水中的绝大部分离子及其盐度也存在着明显的升高,这一高盐高烃异常可能是下部与天然气水合物有关的孔隙流体沿着断层向上迁移所致。这些地球化学异常以及模拟海底反射层等地球物理标志显示该站位之下可能存在天然气水合物。  相似文献   

4.
依据地热资料研究天然气水合物稳定带厚度在东海海域的分布情况。东海在地质构造上位于新生代环太平洋构造带西部边缘岛弧的内侧,又是欧亚板块、太平洋板块和菲律宾海板块的相互作用带。依据国际热流委员会(IHFC)提供的东海地热数据,经过统计确定出该区域的热流分布,热流平均值为121·0mW/m2,最小值为73·0mW/m2,最大值为168·0mW/m2。同时利用天然气水合物温压模型计算了稳定带厚度,数据显示稳定带厚度平均值为92·2m,最小值为1·4m,最大值为190·6m,薄于其他已经发现的海洋天然气水合物稳定带厚度(约400m)。天然气水合物大部分分布在条件适宜的陆坡和岛坡上,冲绳海槽底部水合物稳定带厚度相对较薄。统计分析表明本区热流值与水合物稳定带厚度相关性很差,相关系数仅有0·12。这是由于天然气水合物所在海域水深较浅时,海底温度的变化迫使运算所应用的非线性方程影响因子迅速积累,从而导致相关系数降低。最后结合东海陆坡的地质条件,探讨了在天然气水合物存在的情况下,陆坡失稳的可能性及其造成的环境影响。  相似文献   

5.
现代暖期(Current Warm Period,CWP,1850—至今)以来全球气温升高,南海北部陆坡底层海水温度升高、海平面上升影响海底天然气水合物稳定性。为探究现代暖期气候变暖对南海北部陆坡水合物分解影响,本文模拟计算了东沙海域、神狐海域、西沙海域、琼东南海域水合物赋存水深最浅处水合物的饱和度在1 000年内变化情况,评估了受现代暖期气候变暖影响水合物赋存水深范围,讨论了水合物分解量及其对环境影响。结果发现:(1)受现代暖期气候变暖影响,东沙海域、西沙海域、琼东南海域水合物分解,神狐海域水合物不分解;当东沙海域、西沙海域、琼东南海域水深分别超过665、770、725 m,水合物不分解;(2)现代暖期自始以来,南海北部陆坡水合物分解量为9.36×107~3.83×108 m3,产生的甲烷量为1.54×1010~6.28×1010 m3;(3)受现代暖期气候变暖影响,南海北部陆坡每年水合物分解量为5.5×105~2.25×106 m3,产生的甲烷量为9.02×107~3.69×108 m3,这些甲烷中3.61×105~1.48×106 m3能够进入大气,对温室效应贡献度为每年我国人类生活的0.01%~0.06%;与此同时,1.77×107~7.23×107 m3甲烷可能会在海水中被氧化形成弱酸,加重南海北部陆坡海水酸化。  相似文献   

6.
海上气态烃快速测试与西沙海槽天然气水合物资源勘查   总被引:15,自引:6,他引:15  
西沙海槽具有适合天然气水合物形成和赋存的地形地貌及地质条件 ,是中国海洋天然气水合物资源勘查的远景区。为配合中国首次天然气水合物资源的调查研究 ,在该区进行了海底表层沉积物甲烷、乙烷等气态烃快速现场测试。研究发现 ,海底沉积物随着埋深的增加气态烃含量具有增高的趋势 ;最佳取样深度应在埋深 1~ 4m处 ;海底沉积物甲烷高含量异常区域主要分布在B33周围、A0 9—A11周围、B17—A0 2周围和B0 1—B0 3周围等区域。西沙海槽北部陆坡比槽底及南部斜坡具有更好的甲烷异常显示。该研究成果为以后该区天然气水合物资源的重点勘查提供了科学依据  相似文献   

7.
After the Last Glacial Maximum, the semi-land-locked Black Sea basin was flooded by warm water from the Mediterranean Sea. This major sea level rise and change of physical water properties had a large impact on the gas hydrate reservoir in the sediments below. Modelling of the regional response of the gas hydrate stability zone (GHSZ) to the Black Sea flooding 7100 years ago shows that a strong effect of near-bottom temperature increase pushes the gas hydrate reservoir to a large shrinking of 15–62% that may release up to 1.1–4.6 Gt of methane. This catastrophic scenario is, however, delayed because of the transient nature of the heat wave propagation. The large-scale reduction of the GHSZ is only to take place within the next thousand years. At present, widespread hydrate dissociation is only expected to occur where there is a minimum water depth for hydrate stability.  相似文献   

8.
海洋天然气水合物的类型及特征   总被引:12,自引:0,他引:12  
根据天然气水合物的产出条件,海洋环境水合物可以分为二类扩散系统水合物和渗漏系统水合物。扩散系统水合物分布广泛,在水合物稳定带内是水-水合物两相共存的热力学平衡体系,游离气仅发育于稳定带之下,在地震剖面上发育有指示水合物底界的强反射面(BSR)。该类水合物含量低,埋藏深。除温度和压力外,水合物的沉淀受甲烷溶解度和扩散速度的控制,并与气体组分、孔隙水盐度、天然气供应和有机碳转化等有关。渗漏系统与断层等通道相伴生,水合物发育于渗漏系统整个水合物稳定带,是水-水合物-游离气三相共存的热力学非平衡体系,水合物的沉淀受动力学控制。该类水合物含量高,埋藏浅,但一般不发育BSR。而且,天然气渗漏活动在海底沉积物和上覆水体中形成了一系列特殊的地质、地球物理、地球化学和特异生物群异常。  相似文献   

9.
We calculate the heat flow from the depth of bottom-simulating seismic reflectors (BSRs) on a seismic profile in the Xisha Trough of the South China Sea, and compare them with the probe heat flow measurements. The BSR heat flow turn out to be 32–80 mW/m2, significantly lower than the measurements of 83–112 mW/m2. Such big disparity cannot be ascribed only to the errors from parameters (parameter errors) that traditionally believed to influence the BSR heat flow. Besides the parameter errors, we discuss emphatically the errors coming from the theoretical assumption for the BSR heat flow determination (theoretical errors), which occur when the BSR depth does not coincide with the base of the methane hydrate stability zone (MHSZ). If BSR stays bellow the base of MHSZ, lying at the top of free gas zone, the derived heat flow would be underestimated. Compared with the parameter errors, the theoretical errors would be relatively larger in some geological settings. The disparity between measured and BSR heat flow in the Xisha Trough might be mainly due to the theoretical error. Based on the theoretical model, assuming that the BSR lying at the top of the free gas zone, the methane flux along the Xisha seismic profile is estimated, and the thickness of the methane hydrate occurrence zone is predicted.  相似文献   

10.
南海天然气水合物稳定带厚度分布特征   总被引:1,自引:0,他引:1  
天然气水合物在未来能源、自然环境和灾害等方面具有重要的研究意义,其形成除需要充足的气源外,还与温度、压力密切相关。天然气水合物稳定带表明该地区水合物发育与分布的可能范围。以Dickens和Quinby Hunt的甲烷水合物相平衡公式为基础,从地热学角度分析南海甲烷水合物稳定带厚度及其分布特征。研究表明,南海大部分海域均具备形成天然气水合物的条件。由于受海底深度、海底温度、热流等参数的影响,在不同位置发育的水合物稳定带厚度变化较大,最大厚度可达1 100 m,位于吕宋海槽内。水合物稳定带厚度较大的区域主要呈条带状分布在南海中部和东部,大陆边缘水深500 m左右即可形成水合物,说明南海地区具有广泛的天然气水合物形成环境。天然气水合物稳定带厚度仅是水合物厚度的理论值,地层中实际的水合物发育厚度和分布特征还受到气源、构造、沉积等因素的影响。此外,岩石热导率、海底温度、热流和水深等对南海水合物稳定带厚度及其分布有影响。  相似文献   

11.
天然气水合物是近年来国际上发现的一种新型能源,大量赋存在海底沉积物中。西沙海槽位于南海北部陆坡区,周边有多个大型深水油气田区。对该区地形地貌、地质构造和沉积条件分析以及地球物理BSR分布表明,西沙海槽是我国海洋天然气水合物资源勘查的一个有利远景区。文章主要研究了位于西沙海槽最大BSR区内的XS-01站位沉积物孔隙水的地球化学特征,发现该站位孔隙水阴阳离子浓度和微量元素组成特征变化显示出可能与天然气水合物有关的明显地球化学异常,与国际上己发现有天然气水合物地区的异常相类似。因此,认为该站位是西沙海槽区最有利的天然气水合物赋存区,值得进一步的勘查工作。  相似文献   

12.
A Preliminary Study of the Gas Hydrate Stability Zone in the South China Sea   总被引:10,自引:0,他引:10  
Based on the analysis of sea-bottom temperature and geothermal gradient, and by means of the phase boundary curve of gas hydrate and the sea-bottom temperature versus water depth curve in the South China Sea, this paper studies the temperature and pressure conditions for gas hydrate to keep stable. In a marine environment, methane hydrate keeps stable at water depths greater than 550 m in the South China Sea. Further, the thickness of the gas hydrate stability zone in the South China Sea was calculated by using the phase boundary curve and temperature-depth equations. The result shows that gas hydrate have a better perspective in the southeast of the Dongsha Islands, the northeast of the Xisha Islands and the north of the Nansha Islands for thicker stability zones.  相似文献   

13.
油气资源是油气工业的基础,随着油气勘探工作的不断深入,油气勘探形势发生了明显变化,亟需评价落实国内常规与非常规油气资源潜力,明确剩余油气资源的重点勘探领域与有利勘探方向,夯实油气资源家底.中国石油天然气集团公司以近十几年来油气勘探成果、地质认识成果与资料积累成果为基础,攻关形成常规与非常规油气资源评价方法技术体系,系统开展了第四次油气资源评价,评价结果显示我国常规石油地质资源量1 080.31×108 t,技术可采资源量272.50×108 t;常规天然气地质资源量78×1012 m3,技术可采资源量48.45×1012 m3.我国非常规油气资源非常丰富,非常规石油地质资源量672.08×108 t,技术可采资源量151.81×108 t;非常规天然气地质资源量284.95×1012 m3,技术可采资源量89.3×1012 m3.其中,致密油地质资源量125.80×108 t,油砂油地质资源量12.55×108 t,油页岩油地质资源量533.73×108 t;致密砂岩气地质资源量21.86×1012 m3,页岩气地质资源量80.21×1012 m3,煤层气地质资源量29.82×1012 m3,天然气水合物153.06×1012 m3.我国陆上常规剩余油气资源主要分布在岩性-地层(碎屑岩)、复杂构造(碎屑岩)、海相碳酸盐岩、前陆冲断带四大重点领域.其中,陆上剩余石油资源主要分布在岩性-地层(碎屑岩)、复杂构造(碎屑岩)两大领域,陆上剩余天然气资源主要分布在海相碳酸盐岩、前陆冲断带两大领域.海域油气资源主要分布在构造、生物礁、深水岩性3个领域.   相似文献   

14.
南沙海槽的构造和沉积受控于南海的构造运动和加里曼丹西北大陆边缘的演化,具有适于天然气水合物形成的物源基础、温压条件、输导系统和储藏场所。似海底反射层(BSR)出现在水深650~2 800 m、海底下65~350 m深的晚中新世沉积物中,与褶皱、逆冲推覆构造及穹窿构造有关;沉积物中的甲烷含量和孔隙水的SO24-含量表现出异常变化特征,硫酸盐-甲烷界面(SMI)深度仅为8~11 m;表层沉积的自生石膏和黄铁矿的成岩环境与甲烷流体排溢引起的厌氧甲烷氧化(AOM)有关,这些地球物理和地球化学指标均指示南沙海槽发育天然气水合物。研究表明,南沙海槽沉积物的甲烷以二氧化碳还原型微生物成因为主,少量为混合气,海槽东南部可能是最有潜力的天然气水合物远景区。  相似文献   

15.
南海西沙海槽6 Ma以来天然气水合物稳定带演化初探   总被引:2,自引:0,他引:2  
水深、海底温度、地温梯度是影响天然气水合物稳定带的重要因素。文章通过海平面变化、底栖有孔虫氧同位素、构造热演化资料分析了水深、海底温度、地温梯度的变化,进而探讨了南海西沙海槽地区6 Ma以来天然气水合物稳定带的演化。结果表明:南海西沙海槽地区6 Ma以来天然气水合物稳定带经历了稳定、缓慢减薄、快速增厚、小幅度变化和减薄的一个过程。海底温度的变化对天然气水合物稳定带厚度影响最大,热历史的影响次之,海平面变化的影响最小。  相似文献   

16.
南海沉积物中烃类气体(酸解烃)特征及其成因与来源   总被引:6,自引:3,他引:3  
烃类气体是形成天然气和天然气水合物的物质基础,可通过顶空气、吸附烃和酸解烃等方法来探测。南海473个站位767件沉积物样品的酸解烃分析结果表明,甲烷含量为0.8~22153.6μl/kg,平均为335.8μl/kg,并可分成台西南—东沙、笔架南、琼东南—西沙海槽、中建南—中业北、万安—南薇西和南沙海槽等6大异常区,其中南沙海槽是异常最强烈的地区,台西南盆地次之。154件甲烷样品的碳同位素分析结果表明,其δ13C1值为-101.7‰~-24.4‰(PDB标准,下同),平均为-44.5‰,其中南沙海槽的δ13C1值明显偏低,为-101.7‰~-71.4‰,应是微生物气或是以微生物气为主的混合气,而南海其他地区的δ13C1值相对较高,为-51.0‰~-24.4‰,明显属于热解气。  相似文献   

17.
南海天然气水合物稳定带厚度及资源量估算   总被引:8,自引:2,他引:6  
葛倩  王家生  向华  胡高伟 《地球科学》2006,31(2):245-249
中国的南海一直被人们认为蕴藏着丰富的天然气水合物资源,综合中国南海的水深、地热梯度及底部水温等地质资料,运用VisualBasic.Net编程分析在该海域范围内天然气水合物稳定带厚度,讨论其分布特征,并以此来评估该区域的水合物资源量.结果表明当地热梯度为0.06℃/m,在区域1中可能存在天然气水合物,其稳定带的最大厚度可达400 m,天然气水合物分布较为规则,从外向内逐渐增厚.但在区域2中由于受到水深和地热等因素的影响不存在天然气水合物,此时天然气水合物的资源量约为0.55×104 km3;当地热梯度随机取值时,该区的天然气水合物资源量约为0.57×104 km3.通过对地热梯度取不同的值,估算得到在该研究区天然气水合物的资源量约为0.6×104 km3.   相似文献   

18.
陈芳  陆红锋  刘坚  庄畅  吴聪  曹珺  周洋  刘广虎 《地球科学》2016,41(10):1619-1629
南海地区天然气水合物资源丰富,针对其分解方式的研究有助于资源的开采.对南海东北部天然气水合物钻探区GMGS08站位岩心沉积物开展沉积学、地球化学分析研究.结果表明:该站位自上而下分布11层含自生碳酸盐岩和双壳碎屑层(其中6层呈粥状沉积)以及2层自生碳酸盐岩灰岩层;各层自生碳酸盐岩除一个样品δ13C值稍高(-38.85×10-3)外,其他的δ13C值介于-41.36×10-3~-56.74×10-3,均低于-40.00×10-3,δ18O值介于2.94×10-3~5.37×10-3,明显偏重,表明其为天然气水合物分解的产物,形成于微生物对甲烷的缺氧氧化作用,甲烷主要源自生物成因;各层自生碳酸盐岩层中的有机质碳同位素负偏明显,最低达-82.44×10-3,可能与微生物活动有关;根据自生碳酸盐岩的分布推断该站位至少发生过6次天然气水合物分解释放,每期次自生碳酸盐岩的差异说明其甲烷通量强弱不同.   相似文献   

19.
叶黎明  初凤友  葛倩  许冬 《地球科学》2013,38(6):1299-1308
深海天然气水合物分解与全球变暖密切相关.南海北部是重要的天然气水合物蕴藏区,ZHS-176、ZHS-174、17940和MD2905孔CaCO3含量记录均表明,11.3~8.0 ka B.P.神狐海域存在一次典型的“低钙事件”(CM),该事件具有“快速降低、缓慢升高”不对称的变化结构,CaCO3含量降幅高达9%.“低钙事件”期间,底栖有孔虫Cibicidoides wuellerstorfi和Cibicidoides kullenbergi壳体δ13C分别负偏了1.4 ‰和0.7 ‰,海底有机碳的堆积速率(MAR)也突然升高了1倍.综合分析表明,新仙女木末期南海北部天然气水合物很可能发生了一次较大规模的快速分解,大量甲烷气体从天然气水合物中逸散,氧化后使底层海水快速酸化,从而导致了神狐海域碳酸盐的溶解.底层水团温度上升很可能是神狐海域天然气水合物分解的主要触发因素.   相似文献   

20.
Abstract. Bottom-simulating reflectors suggestive of the presence of methane hydrates are widely distributed below the ocean floor around Japan. In late 1999, drilling of the MITI Nankai Trough wells was conducted to explore this potential methane hydrate resource and a Tertiary conventional structure. The wells are located in the Northwest Pacific Ocean off Central Japan at a water depth of 945 m. A total of six wells were drilled, including the main well, two pilot wells, and three post survey wells at intervals of 10–100 m. All wells except the first confirmed the occurrence of hydrates based on logging-while-drilling, wire-line logging and/or coring using a pressure and temperature coring system in addition to conventional methods. Based on the various well profiles, four methane hydrate-bearing sand-rich intervals in turbidite fan deposits were recognized. Methane hydrates fill the pore spaces in these deposits, reaching saturation of up to 80 % in some layers. The methane hydrate-bearing turbiditic sand layers are less than 1 m thick, with a total thickness of 12–14 m. The bottom depth of high hydrate concentration correlates well with the depth of the bottom-simulating reflector. Based on these exploration results, the Japanese government inaugurated a 16-year methane hydrate exploitation program in 2001.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号