首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The fluid flow history during diagenesis of sandstones in the Upper Permian Black Jack Formation of the Gunnedah Basin has been investigated through integrated petrographic observations, fluid inclusion investigations and stable isotope analyses. The early precipitation of mixed-layer illite/smectite, siderite, calcite, ankerite and kaolin proceeded at the presence of Late Permian connate meteoric waters at temperatures of up to 60℃. These evolved connate pore waters were also parental to quartz, which formed at temperatures of up to 87℃. The phase of maximum burial was characterized by development of filamentous illite and late calcite at temperatures of up to -90℃. Subsequent uplifting and cooling led to deep meteoric influx from surface, which in turn resulted in dissolution of labile grains and carbonate cements, and formation of second generation of kaolin. Dawsonite was the last diagenetic mineral precipitated and its formation is genetically related to deep-seated mamagtic sourced CO2.  相似文献   

2.
The timing and duration of quartz cementation in sandstones have been mainly inferred from diagenetic texture, relationship between pore filling minerals, fluid inclusions and isotopic data. Fluid inclusion temperatures from North Sea reservoir sandstones indicate that most of the quartz cement forms at temperature exceeding 90℃ and is continually proceeding after oil emplacement, based on the fluid inclusion temperatures in quartz overgrowth which is approaching the bottom-hole temperatures. The duration of quartz cement after oil emplacement depends upon the saturation of porewater and the distribution of pore water film and the property of water-wet or oil-wet of the reactants. The leaching of K-feldspar by meteoric water requires pore water flow to move the released potassium and sodium and silica out the solution, which suggests the mechanism does not appear to be a major source of silica for quartz cementation. The quartz cementation coincidence with the compaction and pressure solution suggests the major source of silica. The alteration of feldspar by illitization of kaolinite may serve as another important source of silica at deep burial depth. External sources are not need to call on for illustrating the quartz cementation, because there is no evidences for large scale convection of pore water flow occurred in the burial history of reservoir sandstones of middle Jurassic in the North Sea.  相似文献   

3.
The mineralogy and geochemistry data are presented for thirty-seven shales,four concretions,two carbonate sediments and seven lignites from the Marathousa coal field of the Megalopolis Basin in Greece.The argillaceous rocks consist of chlorite,illite,kaolinte,albite,quartz.opal-A,calcite and dolomite;the concretions of aragonite,gypsum and pyrite;and the carbonate rocks of calcite,quartz and illite.The mineral matter in the lignites consists of gypsum,quartz,albite,chlorite,illite,opal-A,dolomite,pyrite,and rarely calcite and kaolinite Athree-factor model explains the total variaition of major and trace elements in the argillaceous sediments.The first factor is an aluminosilicate factor and involves the following elements:Al,Si,Mg,Na,K,Ti,Mn,Nb,Y,Rb,Zn,Cu,Ni,Cr,Nband V,associated with chlorite,albite and illite.The second factor involves the elements Ca,Sr,Ba,Znand Sc and is related to carbonate lithology and mainly the carbonate concretions with gypsum.The third factor involves Fe and Ce with a weak association with Mn.The diagenesis of the Marathousa sediments and lignites was not very advanced as indicated by (a) the total thickness of the sequence (500m),(b) the presence of biogenic silica(opal-A) and (c) the age of the deposit(Pleistocene).FOr these reasons the rpresence of chlorite,illite and kaolinite in the sediments and lignite is due not to diagenetic reactions but to weathering of the flysch and metamorphic rocks at the edges of the Megalopolis Basin and transport of the weathering products(illite,chlorite,kaolinite)into the basin of deposition.The diagenetic minerals of the Marathousa sequence include pyrite,gypsum,dolomite and aragonite.  相似文献   

4.
The reservoirs of the SOngliao Basin are composed of typical unstable sandstones,with high percentages of volcanic fragments and feldspar,In the course of sedimentation and burying,a series of physical and chemical reactions took place between minerals and pore water and water-rock reactions and ion exchange caused changes in ion assemblage of pore water,Hydration-hydrolysis,dissolution and the albitization of feldspar made many ions free from their framework and inter into the pore water,and induced the precipitation of a large amount of authigenic minerals such as smectite and chlorite,During the diagenesis of sandstone.diagenetic reactions involved several stages with increasing depth,and so did the precipitation of authigenic minerals and the transformaiton of minerals.The migration of ions is related with the precipitation,transformation and dissolution of authigenic minerals.Thus,to deepen our study on sandstone diagenesis is an important link for the analysis of ion migration in the evolution of pore water ,the origin and evolution of pore water could be tracked in terms of the geochemistry of fluid inclusions in authigenic minerals.And the isotopic composition of the authigenic mineral calcite can provide its genetic information.  相似文献   

5.
The diagenetic environment, diagenetic responses, diagenetic transformation model and formation mechanisms of high-quality reservoirs (beach-bar sandstones of the Paleogene fourth member) in the Dongying depression were studied through the analysis of fluid inclusions, thin section and burial evolution history. The diagenetic fluids of the beach-bar sandstone reservoirs evolved from early high salinity and weak alkalinity to low salinity and strong acidity, late high salinity and strong alkalinity and late low salinity and acidity, which were accompanied by two stages of oil and gas filling. The fluids at the margins of the sandbodies were continuously highly saline and strongly alkaline. The western (eastern) reservoirs experienced early open (closed), middle open, and late closed diagenetic environments during their burial history. The flow pattern was characterized by upwelling during the majority of the diagenesis (in the east, a non-circulating pattern transitioned into an upwelling current). Due to the evolution of the diagenetic fluids, the diagenetic sequence of the beach-bar reservoirs was as follows: early weak carbonate cementation; feldspar and carbonate cement dissolution and authigenic quartz cementation; late carbonate and anhydrite cementation, authigenic feldspar cementation, and late quartz dissolution; and late carbonate cementation, feldspar dissolution, and authigenic quartz cementation. The diagenetic strength during these stages varied or was absent altogether in different parts of the reservoirs. Due to the closeness of the diagenetic environment and the flow pattern of the diagenetic fluids, the diagenetic products are variably distributed in the sandstones interbedded with mudstones and in the fault blocks. The evolution of multiple alternating alkaline and acidic diagenetic environments controlled the distribution patterns of the reservoir diagenesis and reservoir space, and the reservoir quality index, RQI, increased gradually from the margins to the centers of the sandstones. The closeness of the diagenetic environment and the flow patterns of the diagenetic fluids controlled the differences in the reservoir properties among the fault blocks. With increasing distance from the oil-source faults, the RQI values in the west gradually decreased and in the east initially increased and then decreased.  相似文献   

6.
The Cretaceous Bashijiqike Formation is the main gas-bearing strata in the northern structural deformation zone of Kuqa subbasin. The acidic dissolution of this formation arose at 5–4Ma, which corresponds to the late burial stage of the Bashijiqike Formation. Variability of interlayer due to rock composition is negligible. Differentiation of acidic dissolution in sandstones was controlled by difference in amount of exogenous acid fluid from underlying strata. For the absence of sedimentary and structural carrier system between the isolated sandstone reservoirs, most fluid-rock systems show relative sealing feature during later burial stage by sealing feature of formation pressure, geochemical characteristics of formation water and content of diagenetic products in sandstones. Variation of sealing effects for different fluid-rock systems is obvious. The pressure coefficient is inversely proportional to acidic dissolved porosity of sandstone reservoirs, indicating that the variation of sealing effects for fluidrock system mainly controls the differentiation of acidic dissolution.  相似文献   

7.
Gas-bearing deposits in the Lower Mingyuefeng Formation of Paleogene, Lishui Sag, East China Sea Shelf Basin consist of shoreface sandstones of the highstand systems tract (HST) and transgressive systems tract (TST), and deltaic sandstones of the lowstand systems tract (LST) and falling stage systems tract (FSST). Detailed petrographic observations suggest that the diagenetic features and related evolution of these deposits cannot be simply characterized and demonstrated in the depth domain. However, the occurrence of diagenetic minerals systematically depends on the studied interval within the HST, TST, LST, and FSST; therefore, diagenesis in this region can be better constrained when studied in the context of the depositional environments and sequence stratigraphic framework. The eogenetic processes in such settings include: (1) microcrystalline siderite precipitated as concretions in almost all environments and systems tracts, which inhibited further mechanical compaction; (2) grain dissolution and kaolinitization occurred in shoreface HST sandstones and deltaic LST and FSST sandstones; (3) glaucony was locally observed, which did not clearly reflect the controls of facies or sequence stratigraphy; and (4) cementation by pyrite aggregates occurred in the shoreface HST sandstones and deltaic LST sandstones. The mesogenetic diagenesis includes: (1) partial conversion of kaolinite into dickite in deltaic LST sandstones, and minor chlorite cementation in deltaic FSST sandstones; (2) transformation of kaolinite into illite and quartz cementation in deltaic LST and FSST sandstones; (3) frequent precipitation of ankerite and ferroan calcite in shoreface TST sandstones and early HST sandstones, forming baffles and barriers for fluid flow, with common calcite in shoreface HST sandstones as a late diagenetic cement; and (4) formation of dawsonite in the deltaic LST and FSST sandstones, which is interpreted to be a product of the invasion of a CO2-rich fluid, and acts as a good indicator of CO2-bearing reservoirs. This study has thus constructed a reliable conceptual model to describe the spatial and temporal distribution of diagenetic alterations. The results may provide an entirely new conceptual framework and methodology for successful gas exploration in the continental margins of offshore China, thus allowing us to predict and unravel the distribution and quality evolution of clastic reservoirs at a more detailed and reliable scale.  相似文献   

8.
The maximum palaeotemperature of oil-bearing sandstones in the UpperTriassic in the eastern Ordos basin has been determined by using many methods including thevitrinite reflectance, fluid inclusion, apatite fission track, illite crystallinity, chlorite polytypeand diagenetic change of authigenic minerals. The thermal gradient in the Late Mesozoic wasabout 2.9-3.0℃/100m. The Upper Triassic was in a mature stage of organic matter andhydrocarbon began to be generated and migrated during this period. The palaeotemperatures ofoil-bearing sandstones were in the range of 88-110℃; those for the generation and migrationof oil ranged from 112 to 122℃. The thickness of the denuded strata overlying the UpperTriassic was 2465-2750m. The present burial depth of oil-bearing sandstones is generally from400 to 1200m. At a depth of ca. 1900m, the temperature may reach 140℃. Below this depth,organic matter was supermature and mainly generated gas.  相似文献   

9.
The precipitation of authigenic quartz plays a significant role to reduce the reservoir characteristics and enhance the stiffness of the rock.The Es1 sandstone of Shahejie Formation is acting as a significant hydrocarbon producing rock in the Nanpu Sag.Various methods like thin section petrography,cathodoluminescence(CL),scanning electron microscope(SEM,with EDS),and electron microprobe analysis has been used to reveal the origin of quartz cement as well as to evaluate the effect of quartz cement on reservoir quality.The studied sandstone is classified as immature to mature feldspathic litharenite and lithic arkose and consists of quartz,feldspar,rock fragments and micas.Petrographic studies and SEM analysis shows that the authigenic quartz is acting a significant cement that reduces the reservoir quality.Whereas clay minerals(kaolinite and mixed layer illite to smectite)are dominant in the Es1 sandstone,that can reduce the reservoir quality.SEM,CL and thin section analysis reveal that there are two stages of quartz cement in the studied samples;that are pore filling authigenic cement and quartz overgrowth cement.Fluid inclusion homogenization temperatures shows that stages of quartz cement were developed with continuous process from 70℃ to 130℃.Quartz cements were generally originated from I/S reaction,feldspar dissolution,conversion of rock fragments and pressure solution.Feldspar dissolution(K-feldspar)and kaolinite to illite reaction is an insignificant silica source for the silica cement which is internally precipitated in a close system with diffusion transporting mechanism.Overall,quartz cement significantly enhance the rock strengthen and brittleness effectively as well as it reduce the overall reservoir quality.  相似文献   

10.
Qiongdongnan Basin has a tectonic geological background of high temperature and high pressure in a deep reservoir setting,with mantle-derived CO2.A water-rock reaction device was used under high temperature and high pressure conditions,in conjunction with scanning electron microscope(SEM)observations,to carry out an experimental study of the diagenetic reaction between sandstone at depth and CO2-rich fluid,which is of great significance for revealing the dissolution of deep clastic rock reservoirs and the developmental mechanism of secondary pores,promoting deep oil and gas exploration.In this study,the experimental scheme of the water-rock reaction system was designed according to the parameters of the diagenetic background of the deep sandstone reservoir in the Qiongdongnan Basin.Three groups of single mineral samples were prepared in this experiment,including K-feldspar samples,albite samples and calcite samples.Using CO2 as a reaction solution,a series of diagenetic reaction simulation experiments were carried out in a semi-closed high temperature and high pressure simulation system.A field emission scanning electron microscope(SEM)was used to observe the microscopic appearance of the mineral samples after the water-rock reaction,the characteristics of dissolution under high temperature and high pressure,as well as the development of secondary pores.The experimental results showed that the CO2-rich fluid has an obvious dissolution effect on K-feldspar,albite and calcite under high temperature and high pressure.For the three minerals,the main temperature and pressure window for dissolution ranged from 150℃to 300℃and 45 MPa to 60 MPa.Scanning electron microscope observations revealed that the dissolution effect of K-feldspar is most obvious under conditions of 150℃and 45 MPa,in contrast to conditions of200℃and 50 MPa for albite and calcite.Through the comparative analysis of experimental conditions and procedures,a coupling effect occurred between the temperature and pressure change and the dissolution strength and calcite.Under high temperature and high pressure,pressure changed the solubility of CO2,furthermore,the dissolution effect and strength of the sandstone components were also affected.The experiment revealed that high temperature and high pressure conditions with CO2-rich fluid has a significant dissolution effect on aluminosilicate minerals and is conducive to the formation of secondary pores and effective reservoirs.Going forward with the above understanding has important implications for the promotion of deep oil and gas exploration.  相似文献   

11.
Despite a great interest in Brazilian Equatorial Margin exploration, very little was published on the diagenesis of sandstones from that area. A wide recognition petrographic study was performed to identify the major diagenetic processes that impacted the porosity of Lower Cretaceous sandstones of the Pará-Maranhão, São Luís, Bragança-Viseu and Barreirinhas basins. Arkoses from the Pará-Maranhão Basin show neoformed or infiltrated clay coatings, mica replacement and expansion by kaolinite and vermiculite, and precipitation of grain-replacive and pore-filling quartz, kaolinite, albite, chlorite, calcite, dolomite, siderite, pyrite and titanium oxides. Compaction, quartz and calcite cementation were the main porosity-reducing processes. Barreirinhas Basin lithic arkoses and subarkoses display clay coatings, compaction of metamorphic fragments into pseudomatrix, and precipitation of grain-replacive and pore-filling kaolinite, quartz, albite, chlorite, calcite, dolomite, TiO2 and pyrite. The main porosity-reducing processes were calcite cementation in the subarkoses, and compaction and quartz cementation in lithic arkoses. Quartzarenites from this basin were early- and pervasively cemented by dolomite. Arkoses and lithic arkoses of the São Luís and Bragança-Viseu basins show clay coatings, pseudomatrix from mud intraclasts compaction, and precipitation of pore-filling and grain-replacive kaolinite, vermiculite, smectite, quartz, albite, chlorite, illite, calcite, dolomite, hematite, TiO2 and pyrite. Compaction of mud intraclasts and dissolution of feldspars and heavy minerals were the main porosity-modification processes. These preliminary results may contribute to the understanding of the spatial and temporal distribution of the diagenetic processes and their impacts on the porosity of the sandstones from these basins.  相似文献   

12.
《Sedimentary Geology》1999,123(1-2):129-146
The succession of sandstone cements in chert and volcanic lithic arenites and wackes from the northern Bowser Basin of British Columbia comprises a record of diagenesis in shallow marine, deltaic, and coastal plain siliciclastic sediments that pass through the oil window and reach temperatures near the onset of metamorphism. The succession of cements is consistent with seawater in the sandstones mixing with acid waters derived from dewatering of interbedded organic rich muds. Sandstone cement paragenesis includes seven discrete cement stages. From earliest to latest the cement stages are: (1) pore-lining chlorite; (2) pore-lining to pore-filling illite; (3) pore-filling kaolinite; (4) oil migration through some of the remaining connected pores; (5) chlorite dissolution; (6) quartz cement; and (7) calcite cement. These seven cement stages are interpreted as a record of the evolution of pore waters circulating through the sandstones after burial. The earliest cement stages, as well as the depositional environments, are compatible with seawater as the initial pore fluid. Seawater composition changed during transport through the sandstones, first by loss of Mg2+ and Fe2+ during chlorite precipitation (stage 1). Dewatering of interbedded organic-rich mudstones probably added Mg2+ and Fe2+ to partially buffer the loss of these cations to chlorite. Acids produced during breakdown of organic matter are presumed to have mixed into sandstone pore fluids due to further compaction of the muds, leading to reduction of initial alkalinity. Reduction in alkalinity, in turn, favours change from chlorite to illite precipitation (stage 2), and finally to kaolinite (stage 3). Pore waters likely reached their peak acidity at the time of oil migration (stage 4). Chlorite dissolution (stage 5) and quartz precipitation (stage 6) occurred when pores were filled by these hydrocarbon-bearing and presumably acidic fluids. Fluid inclusions in fracture-filling quartz cements contain petroleum, high-pressure methane, and methane-rich aqueous solutions. Homogenization temperatures from primary two-phase inclusions are consistent with quartz cementation during progressive heating between approximately 100 and 200°C. Following quartz precipitation, alkaline pore waters were re-established, as evidenced by late-stage calcite cement (stage 7).  相似文献   

13.
为明确克拉美丽气田滴西地区石炭系蚀变熔结凝灰岩储层经历的流体作用及成岩孔隙演化过程,利用铸体薄片观察、扫描电镜、电子探针、阴极发光、荧光、微量/稀土元素分析及U-Pb同位素定年等方法技术开展综合研究.结果表明,火山碎屑物质的溶解及成岩转化为自生矿物的形成提供了物质基础;成岩过程中因埋藏、生烃、热液充注等活动而产生的成岩环境改变是控制区内孔隙形成及演化的重要因素:伴随着有机质的成熟,有机酸溶蚀形成大量晶屑铸模孔并在孔隙中沉淀出高岭石及石英;随着酸性流体向碱性转变,在溶蚀孔隙中沉淀出钠长石以及方解石,其充填作用使孔隙急剧减少;燕山中期(135±27 Ma)的构造热事件对储层形成及演化起到关键作用:高温、含硅热液流体的充注使基质中的伊利石转变为钾长石,同时二次溶解形成的Ca2+与流体携带的P5+、Ti4+、F-等离子结合形成含氟磷灰石、榍石充填孔隙,多余的SiO2则在孔隙中沉淀出石英.随着成岩环境再次向碱性、还原环境转变,含砷黄铁矿进一步在孔隙中形成,高岭石则进一步向绿泥石转化.温度升高引起的脱玻化、黏土矿物/沸石矿物转化、重结晶作用以及溶解作用在一定程度上增加了岩石中的次生储集空间,有利于油气的储集.   相似文献   

14.
The fluvial Triassic reservoir subarkoses and arkoses (2409·5–2519·45 m) of the El Borma oilfield, southern Tunisia, were subjected to cementation by haematite, anatase, infiltrated clays, kaolinite and K-feldspar at shallow burial depths from meteoric waters. Subsequently, basinal brines controlled the diagenetic evolution of the sandstones and resulted initially in the precipitation of quartz overgrowths, magnesian siderite, minor ferroan magnesite and anhydrite. The enrichment of siderite in 12C isotope (δ13CPDB= - 14·5 to - 9‰) results from derivation of carbon from the thermal decarboxylation of organic matter. During further burial, the precipitation of dickite and pervasive transformation of kaolinite into dickite occurred, followed by the formation of microcrystalline K-feldspar and quartz, chlorite and illite, prior to the emplacement of oil. Present day formation waters are Na-Ca-Cl brines evolved by the evaporation of seawater and water/mineral interaction and are in equilibrium with the deep burial (≤ 3·1 km) minerals. These waters are suggested to be derived from the underlying Silurian and Devonian dolomitic mudstones.  相似文献   

15.
安塞油田长2油层成岩作用及其对储层物性的影响   总被引:7,自引:7,他引:7  
安塞地区长2油层储层以中细粒长石砂岩为主,主要成岩矿物为绿泥石环边、方解石胶结物、石英和长石加大生长、伊利石、伊一蒙混层、钠长石和高岭石等。绿泥石环边的发育对原生粒间孔的保存起到有利的作用。石英加大级别达Ⅲ级,加大边含有丰富的有机包体,均一温度范围48.1~76.5℃,烃类进入储层的时间为早白垩世中期至晚白垩世。储层发育多种孔隙类型,面孔率平均为11.60%.主要类型有粒间孔、骨架颗粒溶孔和微裂缝等。残余粒间孔和骨架颗粒溶孔是本区长2储层的主要孔隙类型。根据成岩作用的矿物岩石学标志、有机质成熟度及古温度,将长2油层砂岩的成岩作用划分为3个成岩阶段:早成岩阶段、晚成岩阶段和表生成岩阶段。储层性质明显地受到沉积微相和成岩作用的影响,沉积物粒度较粗、厚度较大的分流河道储集物性明显优于各种粒度较细、厚度较薄的分流间席状砂体。  相似文献   

16.
Iron oxide concretions are formed from post depositional, paleogroundwater chemical interaction with iron minerals in porous sedimentary rocks. The concretions record a history of iron mobilization and precipitation caused by changes in pH, oxidation conditions, and activity of bacteria. Transport limited growth rates may be used to estimate the duration of fluid flow events. The Jurassic Navajo Sandstone, an important hydrocarbon reservoir and aquifer on the Colorado Plateau, USA, is an ideal stratum to study concretions because it is widely distributed, well exposed and is the host for a variety of iron oxide concretions.Many of the concretions are nearly spherical and some consist of a rind of goethite that nearly completely fills the sandstone porosity and surrounds a central sandstone core. The interior and exterior host-rock sandstones are similar in detrital minerals, but kaolinite and interstratified illite–smectite are less abundant in the interior. Lepidocrocite is present as sand-grain rims in the exterior sandstone, but not present in the interior of the concretions.Widespread sandstone bleaching resulted from dissolution of early diagenetic hematite grain coatings by chemically reducing water that gained access to the sandstone through fault conduits. The iron was transported in solution and precipitated as iron oxide concretions by oxidation and increasing pH. Iron diffusion and advection growth time models place limits on minimum duration of the diagenetic, fluid flow events that formed the concretions. Concretion rinds 2 mm thick and 25 mm in radius would take place in 2000 years from transport by diffusion and advection and in 3600 years if transport was by diffusion only. Solid concretions 10 mm in radius would grow in 3800 years by diffusion or 2800 years with diffusion and advection.Goethite (α-FeO (OH)) and lepidocrocite (γ-FeO (OH)) nucleated on K-feldspar grains, on illite coatings on sand grains, and on pore-filling illite, but not on clean quartz grains. Model results show that regions of detrital K-feldspar in the sandstone that consume H+ more rapidly than diffusion to the reaction site determine concretion size, and spacing is related to diffusion and advection rates of supply of reactants Fe2+, O2, and H+.  相似文献   

17.
Lower Cretaceous sandstones of the Qishn Formation have been studied by integrating sedimentological, petrological and petrophysical analyses from wells in the Masila oilfields of eastern Yemen. These analyses were used to define the origin, type of diagenesis and its relation to reservoir quality. The sandstones of the Qishn Formation are predominately quartz arenite to subarkose arenite with sublitharenite and quartz wackes displaying a range of porosities, averaging 22.33%. Permeability is likewise variable with an average of 2844.2 mD. Cementation coupled with compaction had an important effect on porosity destruction after sedimentation and burial. The widespread occurrence of early calcite cement suggests that the sandstones of the Qishn Formation lost significant primary porosity at an early stage of its diagenetic history. In addition to poikilotopic calcite, several different cements including kaolinite, illite, chlorite and minor illite–smectite occur as pore‐filling and pore‐lining cements, which were either accompanied by or followed the development of the early calcite cement. Secondary porosity development occurred due to partial to complete dissolution of early calcite cements and feldspar grains. The new data presented in this paper suggest the reservoir quality of Qishn sandstones is strongly linked to their diagenetic history; hence, the reservoir quality is reduced by clay minerals, calcite and silica cements but is enhanced by the dissolution of the unstable grains, in addition to partial or complete dissolution of calcite cements and unstable grains. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
鄂尔多斯盆地东部太原组砂岩骨架颗粒中几乎没有碎屑长石,残余的微量长石(在岩石中的平均含量为0.4%.低于X射线衍射检测限)主要为钾长石,同时具有较低的自生高岭石含量(1.02%)、很低的自生石英含量和同期火山物质含量,以及较高的自生伊利石含量(1.22%),这表明太原组的自生伊利石主要是在相对高温的深埋藏封闭条件下,通过钾长石溶解反应:钾长石+H~++H_2O→高岭石+硅质+K~+和高岭石伊利石化反应:高岭石+K~+→伊利石+H~++H_2O或其加和反应:钾长石+高岭石→硅质+伊利石+H_2O形成,后者通过消耗钾离子而克服钾长石溶解的动力学屏障,是前者的重要驱动反应,并向流体输出氢离子,因此对次生孔隙的形成、尤其是在相对深埋藏的成岩过程中与钾长石溶解有关的次生孔隙的形成具有显著的积极作用.  相似文献   

19.
塔中地区志留系沥青砂岩成岩作用及其对储层性质的影响   总被引:5,自引:0,他引:5  
运用沉积学原理对塔中地区志留系经历复杂成岩演化的沥青砂岩进行研究分析,了解到该岩石主要经过压实作用、胶结作用和溶蚀作用等成岩作用。其胶结物的主要类型有绿泥石、伊利石、高岭石、伊-蒙混层等粘土矿物以及碳酸盐矿物、石英、长石、黄铁矿等。孔隙类型以粒间孔隙、粒内孔、铸模孔、特大孔、裂缝孔隙等为主,其中以粒间孔隙最为发育,低地温梯度有利于在深层形成次生孔隙。志留系沥青砂岩储层物性受沉积和成岩双重因素的影响,成岩演化阶段处于晚成岩A期。根据影响储层物性的储层成岩作用,可将成岩相类型划分为不稳定碎屑溶蚀成岩相、压实-弱溶蚀成岩相、压实充填成岩相、压实压溶成岩相、碳酸盐胶结成岩相等几种主要类型,成岩相类型决定了储层性质,不稳定碎屑溶蚀成岩相和压实-弱溶蚀成岩相是本区较好的油气储层。  相似文献   

20.
The Middle Jurassic Khatatba Formation acts as a hydrocarbon reservoir in the subsurface in the Western Desert, Egypt. This study, which is based on core samples from two exploration boreholes, describes the lithological and diagenetic characteristics of the Khatatba Formation sandstones. The sandstones are fine‐ to coarse‐grained, moderately to well‐sorted quartz arenites, deposited in fluvial channels and in a shallow‐marine setting. Diagenetic components include mechanical and chemical compaction, cementation (calcite, clay minerals, quartz overgrowths, and a minor amount of pyrite), and dissolution of calcite cements and feldspar grains. The widespread occurrence of an early calcite cement suggests that the Khatatba sandstones lost a significant amount of primary porosity at an early stage of its diagenetic history. In addition to calcite, several different cements including kaolinite and syntaxial quartz overgrowth occur as pore‐filling and pore‐lining cements. Kaolinite (largely vermicular) fills pore spaces and causes reduction in the permeability of the reservoir. Based on framework grain–cement relationships, precipitation of the early calcite cement was either accompanied by or followed the development of part of the pore‐lining and pore‐filling cements. Secondary porosity development occurred due to partial to complete dissolution of early calcite cements and feldspar. Late kaolinite clay cement occurs due to dissolved feldspar and has an impact on the reservoir quality of the Khatatba sandstones. Open hydraulic fractures also generated significant secondary porosity in sandstone reservoirs, where both fractures and dissolution took place in multiple phases during late diagenetic stages. The diagenesis and sedimentary facies help control the reservoir quality of the Khatatba sandstones. Fluvial channel sandstones have the highest porosities and permeabilities, in part because of calcite cementation, which inhibited authigenic clays or was later dissolved, creating intergranular secondary porosity. Fluvial crevasse‐splay and marine sandstones have the lowest reservoir quality because of an abundance of depositional kaolinite matrix and pervasive, shallow‐burial calcite and quartz overgrowth cements, respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号