首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 247 毫秒
1.
S. Jung   《Lithos》2005,84(3-4):168-184
The overwhelming part of the continental crust in the high-grade part of the Damara orogen of Namibia consists of S-type granites, metasedimentary rocks and migmatites. At Oetmoed (central Damara orogen) two different S-type granites occur. Their negative εNd values (− 3.3 to − 5.9), moderately high initial 87Sr/86Sr ratios (0.714–0.731), moderately high 206Pb/204Pb (18.21–18.70) and 208Pb/204Pb (37.74–37.89) isotope ratios suggest that they originated by melting of mainly mid-Proterozoic metasedimentary material. Metasedimentary country rocks have initial εNd of − 4.2 to − 5.6, initial 87Sr/86Sr of 0.718–0.725, 206Pb/204Pb ratios of 18.32–18.69 and 208Pb/204Pb ratios of 37.91–38.45 compatible with their variation in Rb/Sr, U/Pb and Th/Pb ratios. Some migmatites and residual metasedimentary xenoliths tend to have more variable εNd values (initial εNd: − 4.2 to − 7.1), initial Sr isotope ratios (87Sr/86Sr: 0.708–0.735) and less radiogenic 206Pb/204Pb (18.22–18.53) and 208Pb/204Pb (37.78–38.10) isotope compositions than the metasedimentary rocks. On a Rb–Sr isochron plot the metasedimentary rocks and various migmatites plot on a straight line that corresponds to an age of c. 550 Ma which is interpreted to indicate major fractionation of the Rb–Sr system at that time. However, initial 87Sr/86Sr ratios of the melanosomes of the stromatic migmatites (calculated for their U–Pb monazite and Sm–Nd garnet ages of c. 510 Ma) are more radiogenic (87Sr/86Sr: 0.725) than those obtained on their corresponding leucosomes (87Sr/86Sr: 0.718) implying disequilibrium conditions during migmatization that have not lead to complete homogenization of the Rb–Sr system. However, the leucosomes have similar Nd isotope characteristics than the inferred residues (melanosomes) indicating the robustness of the Sm–Nd isotope system during high-grade metamorphism and melting. On a Rb–Sr isochron plot residual metasedimentary xenoliths show residual slopes of c. 66 Ma (calculated for an U–Pb monazite age of 470 Ma) again indicating major fractionation of Rb/Sr at c. 540 Ma. However, at 540 Ma, these xenoliths have unradiogenic Sr isotope compositions of c. 0.7052, indicating depleted metasedimentary sources at depth. Based on the distinct Pb isotope composition of the metasedimentary rocks and S-type granites, metasedimentary rocks similar to the country rocks are unlikely sources for the S-type granites. Moreover, a combination of Sr, Nd, Pb and O isotopes favours a three-component mixing model (metasedimentary rocks, altered volcanogenic material, meta-igneous crust) that may explain the isotopic variabilty of the granites. The mid-crustal origin of the different types of granite emphasises the importance of recycling and reprocessing of pre-existing differentiated material and precludes a direct mantle contribution during the petrogenesis of the orogenic granites in the central Damara orogen of Namibia.  相似文献   

2.
Three types of chemically and isotopically distinct pore fluids from the southern San Joaquin basin previously recognized by J.B. Fisher and J.R. Boles also have distinctive 87Sr/86Sr ratios and Sr concentrations. Meteoric fluids have stable isotopic compositions which lie on or near the meteoric water line and low chlorinities. Sr concentrations are between 0.01 and 2.6 mg l−1, and 87Sr/86Sr ratios range from 0.7061 to 0.7078. Diagenetically modified connate marine fluids have δD-and δ18O-values more positive than −35‰ and 0‰, respectively, and have chlorinities generally comparable to seawater. Sr concentration are much higher than the meteoric group (16–198 mg l−1), although the 87Sr/86Sr ratios (0.7070–0.7081) are not distinctive. Mixed meteoric-modified connate fluids have δD, δ18O and chlorinity intermediate between the meteoric and modified connate groups. Sr concentrations are also intermediate, between 16 and 22 mg l−1, but 87Sr/86Sr ratios (0.7080–0.7087) are generally more radiogenic than either the meteoric or modified connate groups.

All of the fluids have 87Sr/86Sr ratios comparable to or lower than Tertiary seawater. Alteration of detrital plagioclase is the probable origin of the low isotopic ratios. Mass-balance calculations based on the Sr data suggest that essentially no transport of Sr occurred during diagenesis of sandstones containing modified connate pore fluids, while large amounts of Sr have been transported out of meteoric reservoirs by fluid flow. The chemically anomalous mixed meteoric-modified connate fluids contain the most radiogenic strontium in the basin. These fluids are spatially associated with major faults, and may represent clay mineral dehydration waters which have been transported upward from greater depth.

These results suggest that the three types of fluids identified by Fisher and Boles represent three distinct mass transport regimes: a largely stagnant deep-basin system containing modified connate pore fluids; an actively recharging meteoric system along the basin flanks; and a third system restricted to the southern basin which may be characterized by largescale cross-formational fluid flow, rather than dilution by meteoric waters.  相似文献   


3.
S. Jung  E. Hoffer  S. Hoernes 《Lithos》2007,96(3-4):415-435
Major element, trace element and Nd–Sr–Pb–O isotope data for a suite of Neo-Proterozic, pre-orogenic, rift-related syenites from the Northern Damara orogen (Namibia) constrain their sources and petrogenesis. New U–Pb ages obtained on euhdreal titanite of inferred magmatic origin constrain the age of intrusion of the Lofdal and Oas syenites to ca. 750 Ma compatible with previous high-precision zircon analyses from the Oas complex. Major rock types from Lofdal and Oas are mildly sodic nepheline-normative and quartz-normative syenites and were primarily generated by fractional crystallization from a mantle-derived alkaline magma. Primitive samples from Lofdal and Oas show depletion of Rb, K and Th relative to Ba and Nb together with variable negative anomalies of P and Ti on a primitive mantle-normalized diagram. Evolved samples from Oas develop significant negative Ba, Sr, P and Ti anomalies and positive U and Th anomalies mainly as a function of crystal fractionation processes. The lack of a pronounced negative Nb anomaly in samples from Lofdal suggests that involvement of a crustal component is negligible. For the nepheline-normative samples from Lofdal, the unradiogenic Sr and radiogenic Nd isotope composition and low δ18O values suggest derivation of these samples from a moderately depleted lithospheric upper mantle with crustal-like U/Pb ratios (87Sr/86Sr: 0.7031–0.7035, ε Nd: ca. + 1, δ18O: 7‰, 206Pb/204Pb: ca.18.00, 207Pb/204Pb: 15.58–15.60). Primitive samples of the Oas quartz-normative syenites have identical isotope characteristics (87Sr/86Sr: 0.7034, ε Nd: ca. + 1, δ18O: 6.5‰, 206Pb/204Pb: ca.18.00, 207Pb/204Pb: 15.59) whereas more differentiated samples have higher 87Sr/86Sr ratios (0.709–0.714), slightly higher δ18O values (7.0–7.1‰), less radiogenic ε Nd values (− 1.1 to − 1.4) and more radiogenic 206Pb/204Pb ratios up to 18.27. These features together with model calculations using Sr–Nd–Pb isotopes suggest modification of a primary syenite magma by combined AFC processes involving ancient continental crust. In this case, high Nb abundances of the parental syenite liquid prevent the development of significant negative Nb anomalies that may be expected due to interaction with continental crust.  相似文献   

4.
The Korosten complex is a Paleoproterozoic gabbro–anorthosite–rapakivi granite intrusion which was emplaced over a protracted time interval — 1800–1737 Ma. The complex occupies an area of about 12 000 km2 in the north-western region of the Ukrainian shield. About 18% of this area is occupied by various mafic rocks (gabbro, leucogabbro, anorthosite) that comprise five rock suites: early anorthositic A1 (1800–1780 Ma), main anorthositic A2 (1760 Ma), early gabbroic G3 (between 1760 and 1758 Ma), late gabbroic G4 (1758 Ma), and a suite of dykes D5 (before 1737 Ma). In order to examine the relationships between the various intrusions and to assess possible magmatic sources, Nd and Sr isotopic composition in mafic whole-rock samples were measured. New Sr and Nd isotope measurements combined with literature data for the mafic rocks of the Korosten complex are consistent and enable construction of Rb–Sr and Sm–Nd isochronous regressions that yield the following ages: 1870 ± 310 Ma (Rb–Sr) and 1721 ± 90 Ma (Sm–Nd). These ages are in agreement with those obtained by the U–Pb method on zircons and indicate that both Rb–Sr and Sm–Nd systems have remained closed since the time of crystallisation. In detail, however, measurable differences in isotopic composition of the Korosten mafic rock depending on their suite affiliation were revealed. The oldest, A1 rocks have lower Sr (87Sr/86Sr(1760) = 0.70233–0.70288) and higher Nd (εNd(1760) = 1.6–0.9) isotopic composition. The most widespread A2 anorthosite and leucogabbro display higher Sr and lower Nd isotopic composition: 87Sr/86Sr(1760) = 0.70362, εNd(1760) varies from 0.2 to − 0.7. The G3 gabbro–norite has slightly lower εNd(1760) varying from − 0.7 to − 0.9. Finally, G4 gabbroic rocks show relatively high initial 87Sr/86Sr (0.70334–0.70336) and the lowest Nd isotopic composition (εNd(1760) varies from − 0.8 to − 1.4) of any of the mafic rocks of the Korosten complex studied to date. On the basis of Sr and Nd isotopic composition we conclude that Korosten initial melts may have inherited their Nd and Sr isotopic characteristics from the lower crust created during the 2.05–1.95 Ga Osnitsk orogeny and 2.0 Ga continental flood basalt event. Indeed, εNd(1760) values in Osnitsk rocks vary from 0.0 to − 1.9 and from 0.2 to 3.4 in flood basalts. We suggest that these rocks being drawn into the upper mantle might melt and give rise to the Korosten initial melts. 87Sr/86Sr(1760) values also support this interpretation. We suggest that the Sr and Nd isotopic data currently available on mafic rocks of the Korosten complex are consistent with an origin of its primary melts by partial melting of lower crustal material due to downthrusting of the lower crust into upper mantle forced by Paleoproterozoic amalgamation of Sarmatia and Fennoscandia.  相似文献   

5.
The Sr, Nd and Pb isotopic compositions for the Kovdor phoscorite–carbonatite complex (PCC), Kola Peninsula, NW Russia, have been determined to characterize the mantle sources involved and to evaluate the relative contributions of a plume and subcontinental lithospheric mantle in the formation of the complex. The Kovdor PCC is a part of the Kovdor ultramafic–alkaline–carbonatite massif, and consists of six intrusions. The initial isotopic ratios of the analyzed samples, calculated at 380 Ma, display limited variations: εNd, + 2.0 to + 4.7; 87Sr/86Sr, 0.70319 to 0.70361 (εSr, − 12.2 to − 6.2); 206Pb/204Pb, 18.38 to 18.74; 207Pb/204Pb, 15.45 to 15.50; 208Pb/204Pb, 37.98 to 39.28. The Nd and Sr isotope data of the Kovdor PCC generally fit the patterns of the other phoscorites and carbonatites from the Kola Alkaline Province (KAP), but some data are slightly shifted from the mixing line defined as the Kola Carbonatite Line, having more radiogenic 87Sr/86Sr ratios. However, the less radiogenic Nd isotopic compositions and negative Δ7/4 values of Pb isotopes of the analyzed samples exclude crustal contamination, but imply the involvement of a metasomatized lithospheric mantle source. Isotopic variations indicate mixing of at least three distinct mantle components: FOZO-like primitive plume component, EMI-like enriched component and DMM-like depleted component. The isotopic nature of the EMI- and DMM-like mantle component observed in the Kovdor samples is considered to be inherited from metasomatized subcontinental lithospheric mantle. This supports the previous models invoking plume–lithosphere interaction to explain the origin of the Devonian alkaline carbonatite magmatism in the KAP.  相似文献   

6.
Neogene volcanism in the Eastern Rif (Morocco) comprises a series of calc-alkaline, potassic calc-alkaline, shoshonitic and alkaline volcanic rocks. According to new stratigraphical, along with new and previous chronological and geochemical data, the orogenic volcanism was successively (1) calc-alkaline (basaltic andesites and andesites: 13.1 to 12.5 Ma, rhyolites: 9.8 Ma), (2) K-calc-alkaline (basaltic andesitic to rhyolitic lavas and granodiorites: 9.0 to 6.6 Ma), and (3) shoshonitic (absarokites, shoshonites, latites, trachytes: 7.0 to 5.4 Ma). The later Pliocene volcanism was basaltic and alkaline (5.6 to 1.5 Ma). The calc-alkaline and K-calc-alkaline series exhibit lower K2O (0.7–5.3 wt.%), Nb (8–19 ppm) contents and higher 87Sr/86Sr (0.70773–0.71016) than the shoshonitic series (K2O: 2.4–7.2 wt.%, Nb: 21–38 ppm, 87Sr/86Sr: 0.70404–0.70778). Pliocene alkaline basalts have a sodic tendency (Na2O/K2O: 1.7–3.5), high Nb content (up to 52 ppm), and low 87Sr/86Sr ratio (0.70360–0.70413). The variations through time of K2O, Nb and Sr isotopic ratio reflect different mantle sources: (i) calc-alkaline, potassic calc-alkaline and shoshonitic series are derived from a mantle source modified by older subduction, (ii) alkaline basalts are derived mainly from an enriched mantle source. Through time, incompatible elements such as Nb increased while 87Sr/86Sr decreased, suggesting a decreasing influence of metasomatized mantle (inherited subduction). Such evolution is related to the post-collision regimes operating in this area, and could be linked to the succession of extensional, compressional and strike-slip fault tectonics.  相似文献   

7.
Temporal variation of dissolved 87Sr/86Sr in the Yangtze River is poorly understood compared to other Tibetan rivers. In this study, dissolved Sr and 87Sr/86Sr were measured from a temporal series of water samples collected biweekly at Datong Hydrological Station over a period of one year. Our results show that Sr concentration in the Yangtze River ranges from 1.74 to 2.92 μmol/L with 87Sr/86Sr of 0.710125 to 0.710965. The Sr concentration and 87Sr/86Sr shows a distinct seasonal variation, with a general increase in 87Sr/86Sr ratios from summer to winter and some fluctuations during July and December, then followed by a gradually decrease till the next rainy season. The seasonal variation results from the variation of contributions from different sub-basin due to the spatially and seasonally variable rainfall across the basin. During the flood season, more contribution from upper reach (low 87Sr/86Sr values) due to the strong rainfall decreases the 87Sr/86Sr ratio at lower reach. While the severe drought which happened in the middle-lower reaches (high 87Sr/86Sr values) from January to May explains the decrease in the later part of the data by the decrease of the contribution from middle-lower reaches. The discharge weighted annual 87Sr/86Sr and annual Sr flux of the Yangtze River based on the time series data are 0.710628 and 1.9×109 mol/a, respectively. It was also indicated that dissolved 87Sr/86Sr in the Yangtze River is well correlated to the extreme climate events and might contribute to our explanation for reconstructing past climatic changes by using 87Sr/86Sr ratios of the sedimentary record in the delta .  相似文献   

8.
The hydrochemical interaction between groundwater and lakewater influences the composition of water that percolates downward from the surficial aquifer system through the underlying intermediate confining unit and recharges the Upper Floridan aquifer along highlands in Florida. The 87Sr/86Sr ratio along with the stable isotopes, D, 18O, and 13C were used as tracers to study the interaction between groundwater, lakewater, and aquifer minerals near Lake Barco, a seepage lake in the mantled karst terrane of northern Florida. Upgradient from the lake, the 87Sr/86Sr ratio of groundwater decreases with depth (mean values of 0.71004, 0.70890, and 0.70852 for water from the surficial aquifer system, intermediate confining unit, and Upper Floridan aquifer, respectively), resulting from the interaction of dilute oxygenated recharge water with aquifer minerals that are less radiogenic with depth. The concentrations of Sr2+ generally increase with depth, and higher concentrations of Sr2+ in water from the Upper Floridan aquifer (20–35 μg/L), relative to water from the surficial aquifer system and the intermediate confining unit, result from the dissolution of Sr-bearing calcite and dolomite in the Eocene limestone. Dissolution of calcite [δ13C = −1.6 permil (%o)] is also indicated by an enriched δ13CDIC(-8.8 to -11.4% o) in water from the Upper Floridan aquifer, relative to the overlying hydrogeologic units (δ13CDIC < -16%o).

Groundwater downgradient from Lake Barco was enriched in 18O and D relative to groundwater upgradient from the lake, indicating mixing of lakewater leakage and groundwater. Downgradient from the lake, the 87Sr/86Sr ratio of groundwater and aquifer material become less radiogenic and the Sr2+ concentrations generally increase with depth. However, Sr2+ concentrations are substantially less than in upgradient groundwaters at similar depths. The lower Sr2+ concentrations result from the influence of anoxic lakewater leakage on the mobility of Sr2+ from clays. Based on results from mass-balance modeling, it is probable that cation exchange plays the dominant role in controlling the 87Sr/86Sr ratio of groundwater, both upgradient and downgradient from Lake Barco. Even though groundwater from the three distinct hydrogeologic units displays considerable variability in Sr concentration and isotopic composition, the dominant processes associated with the mixing of lakewater leakage with groundwater, as well as the effects of mineral-water interaction, can be ascertained by integrating the use of stable and radiogenic isotopic measurements of groundwater, lakewater, and aquifer minerals.  相似文献   


9.
Extensive magmatic activity developed at the northwestern part of the Anatolian block and produced basaltic lavas that are situated along and between the two segments of the North Anatolian Fault zone. This region is a composite tectonic unit formed by collision of continental fragments after consumption of Neotethyan ocean floor during the late Cretaceous. Northwestern Anatolian basalts and evolved lavas exhibit both tholeiitic and calc-alkaline characteristics. Mafic lavas are moderately enriched in LILE (except depleted part of Yuvacık and İznik samples) and depleted in HFSE (but not Zr, Hf) relative to primitive mantle values, suggesting derivation from a MORB-like mantle source that is unexpected in this subduction environment. Sr and Nd isotopes are close to the mantle array and vary beyond analytical error (87Sr/86Sr 0.70404–0.70546, 143Nd/144Nd 0.51270–0.51289). These geochemical features may result from two possible processes: (1) melting of a MORB-like mantle source that was modified by subduction-released fluids and melts or (2) modification of mafic liquids derived from a dominantly MORB-like source by crustal or lithospheric mantle material. Geochemical characteristics of the lavas (e.g., Ba/Rb, Rb/Sr, Ba/Zr, 87Sr/86Sr, Sr/P) vary systematically along the fault zone from east to west, consistent with a decrease in the degree of melting from east to west or a change in the nature of the source composition itself. Thus, the difference in incompatible elements and Sr–Nd isotopic ratios seems to result from small-scale mantle heterogeneity in a post-collisional tectonic environment.  相似文献   

10.
In order to provide mantle and crustal constraints during the evolution of the Colombian Andes, Sr and Nd isotopic studies were performed in xenoliths from the Mercaderes region, Northern Volcanic Zone, Colombia. Xenoliths are found in the Granatifera Tuff, a deposit of Cenozoic age, in which mantle- and crustal-derived xenoliths are present in bombs and fragments of andesites and lamprophyres compositions. Garnet-bearing xenoliths are the most abundant mantle-derived rocks, but websterites (garnet-free xenoliths) and spinel-bearing peridotites are also present in minor amounts. Amphibolites, pyroxenites, granulites, and gneisses represent the lower crustal xenolith assemblage. Isotopic signatures for the mantle xenoliths, together with field, petrographic, mineral, and whole-rock chemistry and pressure–temperature estimates, suggest three main sources for these mantle xenoliths: garnet-free websterite xenoliths derived from a source region with low P and T (16 kbar, 1065 °C) and MORB isotopic signature, 87Sr/86Sr ratio of 0.7030, and 143Nd/144Nd ratio of 0.5129. Garnet-bearing peridotite and websterite xenoliths derived from two different sources in the mantle: i) a source with intermediate P and T (29–35 kbar, 1250–1295 °C) conditions, similar to that of sub-oceanic geotherm, with an OIB isotopic signature (87Sr/86Sr ratio of 0.7043 and 143Nd/144Nd ratio of 0.5129); and ii) another source with P and T conditions similar to those of a sub-continental geotherm (>38 kbar, 1140–1175 °C) and OIB isotopic characteristics (87Sr/86Sr ratio=0.7041 and 143Nd/144Nd ratio=0.5135).  相似文献   

11.
The significance of isotopic data on constraining the physical conditions of fluid-rock interaction and mineralization processes in carbonate rocks is discussed, based on the example of barite-tetrahedrite mineralization in Lower Devonian platform carbonates of the Western Greywacke Zone (Tyrol, Austria). Available strontium, oxygen, carbon and sulfur isotopic data are complemented with oxygen isotopic data for barite. Barites are homogeneous in δ18OV-SMOW and δ34SCDT with values of + 15.4 and + 23.5‰, respectively. Their 87Sr/86Sr ratios vary between 0.7128 and 0.7113 for the first generation and between 0.7117 and 0.7123 for younger remobilization. The dolomitic host rock shows a significant variation in Sr, O and C isotopic composition between non-mineralized and mineralized zones: 87Sr/86Sr ratios vary between 0.7076 and 0.7133, δ18OV-SMOW-values between +28.11 and +20.65‰, and δ13CPDB-values between −1.15 and + 3.06‰. Fluid/rock volume ratios on the order of 1.3–3.2 are calculated for open-system behaviour by modelling Sr, O and C isotopic shifting capacities. The isotope data combined with other geological evidence support the following genetic model: Subsequent to synsedimentary sulfide mineralization during an Early Devonian rifting stage, collision tectonics in Carboniferous time led to the expulsion of Ba- and Sr-rich orogenic brines, which evolved from metamorphic fluids consisting essentially of H2O and some CH4, into an external sedimentary fold-and-thrust belt. The brines remobilized the synsedimentary sulfides, mixed with meteoric waters in the platform carbonates, reacted with evaporitic horizons and finally caused the recrystallization of dolomite and the precipitation of Sr-rich barite in structurally weak zones at 70–130°C. During the later Alpine orogeny supergene oxidation products were formed, and sulfates, sulfides and carbonates were further remobilized into late faults and fractures.  相似文献   

12.
Sr–Nd–Pb isotope ratios of alkaline mafic intra-plate magmatism constrain the isotopic compositions of the lithospheric mantle along what is now the eastern foreland or back arc of the Cenozoic Central Andes (17–34°S). Most small-volume basanite volcanic rocks and alkaline intrusive rocks of Cretaceous (and rare Miocene) age were derived from a depleted lithospheric mantle source with rather uniform initial 143Nd/144Nd ( 0.5127–0.5128) and 87Sr/86Sr ( 0.7032–0.7040). The initial 206Pb/204Pb ratios are variable (18.5–19.7) at uniform 207Pb/204Pb ratios (15.60 ± 0.05). A variety of the Cretaceous depleted mantle source of the magmatic rocks shows elevated Sr isotope ratios up to 0.707 at constant high Nd isotope ratios. The variable Sr and Pb isotope ratios are probably due to radiogenic growth in a metasomatized lithospheric mantle, which represents the former sub-arc mantle beneath the early Palaeozoic active continental margin. Sr–Nd–Pb isotope signatures of a second mantle type reflected in the composition of Cretaceous (one late Palaeozoic age) intra-plate magmatic rocks (143Nd/144Nd  0.5123, 87Sr/86Sr  0.704, 206Pb/204Pb  17.5–18.5, and 207Pb/204Pb  15.45–15.50) are similar to the isotopic composition of old sub-continental lithospheric mantle of the Brazilian Shield.

Published Nd and Sr isotopic compositions of Mesozoic to Cenozoic arc-related magmatic rocks (18–40°S) represent the composition of the convective sub-arc mantle in the Central Andes and are similar to those of the Cretaceous (and rare Miocene) intra-plate magmatic rocks. The dominant convective and lithospheric mantle type beneath this old continental margin is depleted mantle, which is compositionally different from average MORB-type depleted mantle. The old sub-continental lithospheric mantle did not contribute to Mesozoic to Cenozoic arc magmatism.  相似文献   


13.
Andreas Stracke  Ernst Hegner 《Lithos》1998,45(1-4):545-560
The Tabar–Lihir–Tanga–Feni (TLTF) volcanic island chain occurs in a zone of lithospheric extension superimposed on a post-collisonal tectonic setting along the Pacific and Indo-Australian plates northeast of Papua New Guinea. We present geochemical and Sr, Nd, and Pb isotope data for volcanic rocks from these islands and three recently discovered seamounts located at Lihir island. Major element data document an alkalic affinity of the sample suite and trachybasalts as the predominant rock type. Negative Nb-anomalies in extended trace element patterns, enrichment of the light rare earth elements, and Ce/Pb ratios of about 4 are typical of the values in calc alkaline island arc volcanics and support an origin from subduction-modified mantle. 87Sr/86Sr ratios of 0.7037 to 0.7044 and Nd values of +5.6 to +6.8 indicate that the upper mantle evolved with a time-integrated depletion in LREE, however, not as severe as that recorded in basalts from the East Pacific Rise. Variable 87Sr/86Sr ratios at less variable 143Nd/144Nd ratios suggest that 87Sr/86Sr ratios of the melts were modified by secondary processes, such as assimilation of seawater Sr from crustal rocks. The Pb isotope ratios are uniform, moderately radiogenic (206Pb/204Pb ca. 18.7 to 18.8), and similar to those reported for the active Mariana arc. Elevated 207Pb/204Pb ratios relative to Pacific MORB suggest melting of small amounts of subducted sediments (ca. 1–2 wt.%). An important control of subducted sediment on the chemistry of the melts can also be inferred from the ratios of highly incompatible trace elements (e.g., Th, U, Pb, La, and Nb). Additional mantle enrichment by subduction derived fluids is reflected in high values of highly incompatible trace element ratios between fluid mobile (e.g., Ba) and fluid immobile elements (e.g., Th, Nb). The results of this study document that the chemical composition of igneous rocks from post-collisional tectonic settings are strongly influenced by previous plate tectonics. This conclusion implies that the information conveyed by tectonic discrimination diagrams for these rocks must be interpreted with care.  相似文献   

14.
Volumetrically minor microsyenites, alkali microgranite and related trachytic dykes intrude early Pliocene OIB-like alkali basaltic and basanitic flows of the Meseta del Lago Buenos Aires in Central Patagonia (47°S–71°30′W), and occur together with scarce trachytic lava flows. Whole-rock K–Ar ages between 3.98 and 3.08 Ma indicate that the emplacement of these felsic rocks occurred more or less synchronously with that of the post-plateau basaltic sequence that they intrude, during a bimodal mafic–felsic magmatic episode devoid of intermediate compositions. Chemically, these rocks have A1-type granitoid affinities and are characterized by high silica and alkali contents (60–68 wt.% SiO2; 8.7–10.8 wt.% Na2O + K2O), major and trace elements patterns evidencing evolution by low-pressure fractional crystallization, and Sr and Nd isotopic signatures similar to those of coeval basalts ((87Sr/86Sr)o = 0.70488–0.70571; (143Nd/144Nd)o = 0.512603–0.512645). Nevertheless, some of them have the most radiogenic Sr values ever reported for a magmatic rock in the Meseta and even in the whole Neogene Patagonian Plateau Lavas province ((87Sr/86Sr)o = 0.70556–0.70571; (143Nd/144Nd)o = 0.512603–0.512608). In addition, very high contents of strongly incompatible elements in the most evolved rocks, together with Sr isotopic ratios higher than those of coeval basalts, suggest the occurrence of open-system magmatic processes. Continuous fractional crystallization from a primitive basaltic source, similar to post-plateau coeval basalts, towards alkali granites combined with small rates of assimilation of host Jurassic tuffs (AFC) in a shallow magmatic reservoir, best explains the geochemical and petrographic features of the felsic rocks. Therefore, A1-type magmatic rocks can be generated by open-system crystallization of deep asthenospheric melts in back-arc tectonic settings.

In Central Patagonia, these  3–4 Ma old alkaline intrusions occur aligned along a  N160–170 trending lineament, the Zeballos Fault Zone, stacking the morphotectonic front of one segment of the Patagonian Cordillera. Intrusion along this fault zone occurred during the onset of a new transtensional or extensional event in the area, related to major regional tectonics occurring in possible relation with the collision of one segment of the Chile Spreading Ridge with the trench.  相似文献   


15.
Mixed marine, brackish-water and terrestrial vertebrate skeletal apatite is found in the late Paleocene-early Eocene Tuscahoma and Bashi Formations of Mississippi. The co-Occurrence in these near-coastal marine deposits of skeletal apatite with different provenances offers a unique opportunity for unraveling the effects of diagenesis on apatite 87Sr/86Sr composition, with bearings on the use of this isotope pair as paleosalinity indicator. The results show that the Sr isotopes of all originally poorly ordered phases of skeletal apatite have extensively re-equilibrated with pore water with significantly lower 87Sr/86Sr ratios than late Paleocene-early Eocene seawater. For example, marine shark and ray teeth from the Bashi Formation all have clearly nonmarine 87Sr/86Sr ratios, 0.7073-0.7075, compared with a coeval seawater ratio in the range 0.7077-0.7078. However, separated shark tooth enamel, with a high original crystallinity, appears to have retained all or most of its in vivo Sr isotopic signature until the present. Here we also show that 87Sr/86Sr results on recent vertebrate skeletal material from different environments are in good agreement with expected values for respective habitat.

Earlier analyses of calcite material from the Bashi Formation indicated the existence of a shift in seawater 87Sr/86Sr to a lower value at the Paleocene-Eocene boundary. The strong influence of pore water with low, nonmarine 87Sr/86Sr on the apatite in the Bashi Formation suggests that the proposed isotopic shift may be an artifact related to diagenetic processes.  相似文献   


16.
以详细的岩石学研究为基础,综合利用碳、氧、锶同位素等地球化学资料,深入分析了塔里木盆地中央隆起区上寒武统—下奥陶统白云石化流体演化规律以及白云岩成因机制。结果表明,上寒武统白云岩主要由泥晶—粉晶白云岩、微生物白云岩和(残余)颗粒白云岩等原始结构保留较好的白云岩构成,其C、Sr同位素与同期海水相近,O同位素值偏正,属于同生/准同生期与轻微蒸发海水有关的白云石化的产物;下奥陶统白云岩以细晶自形—半自形白云石为主,原始结构保留差,其C、Sr同位素与同期海水近似,但O同位素值略微偏负,主要为浅埋藏期白云石化的产物。部分早期白云岩在中—深埋藏过程中受埋藏重结晶和构造—热液白云石化的影响,形成细晶—粗晶他形白云岩和缝洞鞍形白云石充填物,该阶段白云石化流体主要来自于地层内封存的海源流体、深部热液以及蒸发岩层间热卤水,多期多源流体的共同作用导致该类白云岩具有较宽的Sr同位素组成和明显负偏的O同位素值。总体上,研究区白云岩具有早期形成(近地表到浅埋藏期大规模交代)、中期加强(中—深埋藏期部分重结晶)、晚期改造(热液局部调整)的整体演化趋势。  相似文献   

17.
The Bandombaai Complex (southern Kaoko Belt, Namibia) consists of three main intrusive rock types including metaluminous hornblende- and sphene-bearing quartz diorites, allanite-bearing granodiorites and granites, and peraluminous garnet- and muscovite-bearing leucogranites. Intrusion of the quartz diorites is constrained by a U–Pb zircon age of 540±3 Ma.

Quartz diorites, granodiorites and granites display heterogeneous initial Nd- and O isotope compositions (Nd (540 Ma)=−6.3 to −19.8; δ18O=9.0–11.6‰) but rather low and uniform initial Sr isotope compositions (87Sr/86Srinitial=0.70794–0.70982). Two leucogranites and one aplite have higher initial 87Sr/86Sr ratios (0.70828–0.71559), but similar initial Nd (−11.9 to −15.8) and oxygen isotope values (10.5–12.9‰). The geochemical and isotopic characteristics of the Bandombaai Complex are distinct from other granitoids of the Kaoko Belt and the Central Zone of the Damara orogen. Our study suggests that the quartz diorites of the Bandombaai Complex are generated by melting of heterogeneous mafic lower crust. Based on a comparison with results from amphibolite-dehydration melting experiments, a lower crustal garnet- and amphibole-bearing metabasalt, probably enriched in K2O, is a likely source rock for the quartz diorites. The granodiorites/granites show low Rb/Sr (<0.6) ratios and are probably generated by partial melting of meta-igneous (intermediate) lower crustal sources by amphibole-dehydration melting. Most of the leucogranites display higher Rb/Sr ratios (>1) and are most likely generated by biotite-dehydration melting of heterogeneous felsic lower crust. All segments of the lower crust underwent partial melting during the Pan-African orogeny at a time (540 Ma) when the middle crust of the central Damara orogen also underwent high T, medium P regional metamorphism and melting. Geochemical and isotope data from the Bandombaai Complex suggest that the Pan-African orogeny in this part of the orogen was not a major crust-forming episode. Instead, even the most primitive rock types of the region, the quartz diorites, represent recycled lower crustal material.  相似文献   


18.
The Maowu eclogite–pyroxenite body is a small (250×50 m) layered intrusion that occurs in the ultra-high-pressure (UHP) metamorphic terrane of Dabieshan, China. Like the adjacent Bixiling complex, the Maowu intrusion was initially emplaced at a crustal level, then subducted along with the country gneisses to mantle depths and underwent UHP metamorphism during the collision of the North and South China Blocks in the Triassic. This paper presents the results of a geochemical and isotopic investigation on the metamorphosed Maowu body. The Maowu intrusion has undergone open system chemical and isotopic behavior three times. Early crustal contamination during magmatic differentiation is manifested by high initial 87Sr/86Sr ratios (0.707–0.708) and inhomogeneous negative Nd(T) values of −3 to −10 at 500 Ma (probable protolith age). Post-magmatic and pre-UHP metamorphic metasomatism is indicated by sinusoidal REE patterns of garnet orthopyroxenites, lack of whole-rock (WR) Sm–Nd isochronal relationship, low δ18O values and an extreme enrichment of Th and REE in a clinopyroxenite. Finally, K and Rb depletion during UHP metamorphism is deduced from the high initial 87Sr/86Sr ratios unsupported by in situ Rb/Sr ratios. Laser ICP-MS spot analyses on mineral grains show that (1) Grt and Cpx attained chemical equilibrium during UHP metamorphism, (2) Cpx/Grt partition coefficients for REE correlate with Ca, and (3) LREE abundances in whole rocks are not balanced by that of the principal phases (Grt and Cpx), implying that the presence of LREE-rich accessory phases, such as monazite and apatite, is required to account for the REE budget.

Sm–Nd isotope analyses of minerals yielded three internal isochrons with ages of 221±5 Ma and (T)=−5.4 for an eclogite, 231±16 Ma and (T)=−6.2 for a garnet websterite, and 236±19 Ma and (T)=−6.9 for a garnet clinopyroxenite. The Cpx/Grt chemical equilibrium and the consistent mineral isochron ages indicate that the metasomatic processes mentioned above must have occurred prior to the UHP metamorphism. These Sm–Nd ages agree with published zircon and monazite U–Pb ages and constrain the time of UHP metamorphism to 220–236 Ma. The Maowu and Bixiling layered intrusions are similar in their in situ tectonic relationship with their country gneisses, but the two bodies are distinguished by their magma-chamber processes. The Bixiling magmas were contaminated by the lower crust, whereas the Maowu magmas were contaminated by the upper crustal rocks during their emplacement and differentiation. The two complexes represent two distinct suites of magmatic rocks, which have resided in the continental crust for about 300–400 Ma before their ultimate subduction to mantle depths, UHP metamorphism and return to the crustal level.  相似文献   


19.
Isotope and trace element geochemistry of Colorado Plateau volcanics   总被引:5,自引:0,他引:5  
Basalts from the San Francisco Peaks and North Rim of Grand Canyon, nephelinites from the Hopi Buttes and Navajo minettes (Colorado Plateau) have been analyzed for trace element contents and Sr, Nd, Pb isotope compositions. The ages increase eastward from the Quaternary (basalt) to 5 Ma (nephelinite) and 30 Ma (minette) as does the depth of melt generation inferred from xenolith mineralogy and major element geochemistry.

The three rock types present an enrichment of incompatible elements (although minettes present negative concentration spikes for Nb, Zr, Ti, Ba, Sr) relative to other magma types. The chondrite-normalized Ce/Yb ratio changes from 8–22 (basalt) to 25–30 (nephelinite) and 33–60 (minette) and reflects small degrees of partial melting of a mantle source with a garnet/clinopyroxene ratio increasing with depth. The negative Eu anomaly present in minette, the low Sr/Nd and high Pb/Ce suggest the presence of a recycled continental crust component in their mantle source.

The 87Sr/86Sr ratio varies from 0.7032-0.7045 (basalt and nephelinite) to 0.7052-0.7071 (minette), while εNd is remarkably more constant at +0.8 to +3.7 (nephelinite) and −2.6 to +2.2 (basalt and minette). Good linear correlations are observed in both 207Pb/204Pb and 208Pb/204Pb vs. 206Pb/204Pb diagrams with basalt being the least and nephelinite the most radiogenic and indicate a 2.3 ±0.1 Ga age and a Th/U of 3.4.

Three lithospheric source components are indicated: a) an OIB-type depleted mantle source, b) an end-member with unradiogenic Sr, Nd and Pb for basalt and nephelinite and c) a recycled crustal component for minette.  相似文献   


20.
The Quaternary Acatlán Volcanic Field (AVF) is located at the western edge of the Trans-Mexican Volcanic Belt (TMVB). This region is related to the subduction of the Pacific Cocos and Rivera plates beneath the North American plate since the late Miocene. AVF rocks are products of Pleistocene volcanic activity and include lava flows, domes, erupted basaltic andesite, trachyandesite, trachydacite, and rhyolite of calc–alkaline affinity. Most rocks show depletion in high field-strength elements and enrichment in large ion lithophile elements and light rare earth elements as is typical for magmas in subduction-related volcanic arcs. 87Sr/86Sr values range from 0.70361 to 0.70412, while Nd values vary from +2.3 to +5.2. Sr–Nd isotopic data plot along the mantle array. On the other hand, lead isotope compositions (206Pb/204Pb=18.62–18.75, 207Pb/204Pb=15.57–15.64, and 208Pb/204Pb=38.37–38.67) give evidence for combined influences of the upper mantle, fluxes derived from subducted sediments, and the upper continental crust involved in magma genesis at AVF. Additionally δ18O whole rock analyses range from +6.35‰ in black pumice to +10.9‰ in white pumice of the Acatlán Ignimbrite. A fairly good correlation is displayed between Sr as well as O isotopes and SiO2 emphasizing the effects of crustal contamination. Compositional and isotopic data suggest that the different AVF series derived from distinct parental magmas, which were generated by partial melting of a heterogeneous mantle source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号