首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
The standard thermodynamic properties at 25°C, 1 bar (ΔG fo, ΔH fo, S o, C Po, V o, ω) and the coefficients of the revised Helgeson–Kirkham–Flowers equations of state were evaluated for several aqueous complexes formed by dissolved metals and either arsenate or arsenite ions. The guidelines of Shock and Helgeson (Geochim Cosmochim Acta 52:2009–2036, 1988) and Sverjensky et al. (Geochim Cosmochim Acta 61:1359–1412, 1997) were followed and corroborated with alternative approaches, whenever possible. The SUPCRT92 computer code was used to generate the log K of the destruction reactions of these metal–arsenate and metal–arsenite aqueous complexes at pressures and temperatures required by the EQ3/6 software package, version 7.2b. Apart from the AlAsO4o and FeAsO4o complexes, our log K at 25°C, 1 bar are in fair agreement with those of Whiting (MS Thesis, Colorado School of Mines, Golden, CO, 1992). Moreover, the equilibrium constants evaluated in this study are in good to fair agreement with those determined experimentally for the Ca–dihydroarsenate and Ca–hydroarsenate complexes at 40°C (Mironov et al., Russ J Inorg Chem 40:1690, 1995) and for Fe(III)–hydroarsenate complex at 25°C (Raposo et al., J Sol Chem 35:79–94, 2006), whereas the disagreement with the log K measured for the Ca–arsenate complex at 40°C (Mironov et al., Russ J Inorg Chem 40:1690, 1995) might be due to uncertainties in this measured value. The implications of aqueous complexing between dissolved metals and arsenate/arsenite ions were investigated for seawater, high-temperature geothermal liquids and acid mine drainage and aqueous solutions deriving from mixing of acid mine waters and surface waters. Electronic Supplementary Material The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

2.
The low-temperature heat capacity (C P) of stishovite (SiO2) synthesized with a multi-anvil device was measured over the range of 5–303 K using the heat capacity option of a physical properties measurement system (PPMS) and around ambient temperature using a differential scanning calorimeter (DSC). The entropy of stishovite at standard temperature and pressure calculated from DSC-corrected PPMS data is 24.94 J mol−1 K−1, which is considerably smaller (by 2.86 J mol−1 K−1) than that determined from adiabatic calorimetry (Holm et al. in Geochimica et Cosmochimica Acta 31:2289–2307, 1967) and about 4% larger than the recently reported value (Akaogi et al. in Am Mineral 96:1325–1330, 2011). The coesite–stishovite phase transition boundary calculated using the newly determined entropy value of stishovite agrees reasonably well with the previous experimental results by Zhang et al. (Phys Chem Miner 23:1–10, 1996). The calculated phase boundary of kyanite decomposition reaction is most comparable with the experimental study by Irifune et al. (Earth Planet Sci Lett 77:245–256, 1995) at low temperatures around 1,400 K, and the calculated slope in this temperature range is mostly consistent with that determined by in situ X-ray diffraction experiments (Ono et al. in Am Mineral 92:1624–1629, 2007).  相似文献   

3.
In this paper, we analyze the impact of physical and chemical heterogeneity on solute travel time to a pumping well. We consider a solute undergoing reversible linear instantaneous equilibrium sorption. Both the distribution coefficient, K d , and the transmissivity field, T, are considered spatially variable, and are modeled as partially correlated spatial random functions. Groundwater flow and solute transport are then solved within the context of a numerical Monte Carlo framework. The results are analyzed on the basis of dimensional analysis techniques. Simple and compact expressions characterizing the dependence of the target travel time moments on relevant dimensionless groups are proposed. The functional form of these expressions is inspired by, and is consistent with, the previous works of Sanchez-Vila and Rubin (Water Resour. Res. 39(4):1086, 2003) and Riva et al. (J. Contam. Hydrol. 82:23–43, 2006) A key result is that the effects of the chemical and physical heterogeneities on the mean travel time can be decoupled consistently with existing analytical results. The relative role of physical and geochemical heterogeneities in travel time variance is more complex, and such a decoupling is not observed. Potential uses of this work include the assessment of aquifer reclamation time by means of a single pumping well.  相似文献   

4.
Elastic wave velocities for dense (99.8% of theoretical density) isotropic polycrystalline specimens of synthetic pyrope (Mg3Al2Si3O12) were measured to 1,000 K at 300 MPa by the phase comparison method of ultrasonic interferometry in an internally heated gas-medium apparatus. The temperature derivatives of the elastic moduli [(∂Ks/∂T) P = −19.3(4); (∂G/∂T) P = −10.4(2) MPa K−1] measured in this study are consistent with previous acoustic measurements on both synthetic polycrystalline pyrope in a DIA-type cubic anvil apparatus (Gwanmesia et al. in Phys Earth Planet Inter 155:179–190, 2006) and on a natural single crystal by the rectangular parallelepiped resonance (RPR; Suzuki and Anderson in J Phys Earth 31:125–138, 1983) method but |(∂Ks/∂T) P | is significantly larger than from a Brillouin spectroscopy study of single-crystal pyrope (Sinogeikin and Bass in Phys Earth Planet Inter 203:549–555, 2002). Alternative approaches to the retrieval of mixed derivatives of the elastic moduli from joint analysis of data from this study and from the solid-medium data of Gwanmesia et al. in Phys Earth Planet Inter 155:179–190 (2006) yield ∂2 G/∂PT = [0.07(12), 0.20(14)] × 10−3 K−1 and ∂2 K S /∂PT = [−0.20(24), 0.22(26)] × 10−3 K−1, both of order 10−4 K−1 and not significantly different from zero. More robust inference of the mixed derivatives will require solid-medium acoustic measurements of precision significantly better than 1%.  相似文献   

5.
This work is a contribution to the understanding of the mechanical properties of non-cohesive granular materials in the presence of friction and a continuation of our previous work (Roul et al. 2010) on numerical investigation of the macroscopic mechanical properties of sand piles. Besides previous numerical results obtained for sand piles that were poured from a localized source (“point source”), we here consider sand piles that were built by adopting a “line source” or “raining procedure”. Simulations were carried out in two-dimensional systems with soft convex polygonal particles, using the discrete element method (DEM). First, we focus on computing the macroscopic continuum quantities of the resulting symmetric sand piles. We then show how the construction history of the sand piles affects their mechanical properties including strain, fabric, volume fraction, and stress distributions; we also show how the latter are affected by the shape of the particles. Finally, stress tensors are studied for asymmetric sand piles, where the particles are dropped from either a point source or a line source. We find that the behaviour of stress distribution at the bottom of an asymmetric sand pile is qualitatively the same as that obtained from an analytical solution by Didwania and co-workers (Proc R Soc Lond A 456:2569–2588, 2000).  相似文献   

6.
Gurenko et al. (Contrib Mineral Petrol 162:349–363, 2011) report laser-assisted fluorination (LF) and secondary ionization mass spectrometry (SIMS) 18O/16O datasets for olivine grains from the Canary Islands of Gran Canaria, Tenerife, La Gomera, La Palma and El Hierro. As with prior studies of oxygen isotopes in Canary Island lavas (e.g. Thirlwall et al. Chem Geol 135:233–262, 1997; Day et al. Geology 37:555–558, 2009, Geochim Cosmochim Acta 74:6565–6589, 2010), these authors find variations in δ18Ool (~4.6–6.0 ‰) beyond that measured for mantle peridotite olivine (Mattey et al. Earth Planet Sci Lett 128:231–241, 1994) and interpret this variation to reflect contributions from pyroxenite-peridotite mantle sources. Furthermore, Gurenko et al. (Contrib Mineral Petrol 162:349–363, 2011) speculate that δ18Ool values for La Palma olivine grains measured by LF (Day et al. Geology 37:555–558, 2009, Geochim Cosmochim Acta 74:6565–6589, 2010) may be biased to low values due to the presence of altered silicate, possibly serpentine. The range in δ18Ool values for Canary Island lavas are of importance for constraining their origin. Gurenko et al. (Contrib Mineral Petrol 162:349–363, 2011) took a subset (39 SIMS analyses from 13 grains from a single El Hierro lava; EH4) of a more extensive dataset (321 SIMS analyses from 110 grains from 16 Canary Island lavas) to suggest that δ18Ool is weakly correlated (R 2 = 0.291) with the parameter used by Gurenko et al. (Earth Planet Sci Lett 277:514–524, 2009) to describe the estimated weight fraction of pyroxenite-derived melt (Xpx). With this relationship, end-member δ18O values for HIMU-peridotite (δ18O = 5.3 ± 0.3 ‰) and depleted pyroxenite (δ18O = 5.9 ± 0.3 ‰) were defined. Although the model proposed by Gurenko et al. (Contrib Mineral Petrol 162:349–363, 2011) implicates similar pyroxenite-peridotite mantle sources to those proposed by Day et al. (Geology 37:555–558, 2009, Geochim Cosmochim Acta 74:6565–6589, 2010) and Day and Hilton (Earth Planet Sci Lett 305:226–234, 2011), there are significant differences in the predicted δ18O values of end member components in the two models. In particular, Day et al. (Geochim Cosmochim Acta 74:6565–6589, 2010) proposed a mantle source for La Palma lavas with low-δ18O (<5 ‰), rather than higher-δ18O (c.f. the HIMU-peridotite composition of Gurenko et al. in Contrib Mineral Petrol 162:349–363, 2011). Here we question the approach of using weakly correlated variations in δ18Ool and the Xpx parameter to define mantle source oxygen isotope compositions, and provide examples of why this approach appears flawed. We also provide reasons why the LF datasets previously published for Canary Island lavas remain robust and discuss why LF and SIMS data may provide complementary information on oxygen isotope variations in ocean island basalts (OIB), despite unresolved small-scale uncertainties associated with both techniques.  相似文献   

7.
This paper presents a computer tool that automatically predicts mining subsidence using the generalized n-k-g influence function detailed in (González Nicieza et al. Int J Rock Mech Min Sci 42(3):372–387, 2005). This function depends on two physical concepts: the first is gravity, which characterizes the forces acting on the ground, and the second, the convergence of the roof and floor of the mine workings due to the stress state of the ground. The developed tool also allows other influence functions to be used to predict subsidence, namely the spatial influence function (Ramírez Oyanguren et al. 2000) and the normal-type classical (Knothe, Arch Gór Hut 1, 1952) and modified (González Nicieza et al. Bull Eng Geol Environ 66(3):319–329, 2007) time functions. Moreover, the inputting and periodic updating of data from subsidence monitoring surveys is controlled by one of the tool’s modules using a method that minimizes errors resulting from time discontinuities in landmarks measurements. In addition, when actual landmarks measurements exist, the developed tool allows calibration of the subsidence parameters, minimizing the errors between actual measurements and those obtained by prediction. The tool includes a viewer, developed using OpenGL, which enables the results of the calculations carried out to be viewed, allowing the point of view to be varied. It also includes the option of viewing and saving the results of the calculations carried out over the original topographic plane defined in the AutoCAD DXF data file format. The efficacy of the tool is demonstrated via its application to a real case of mining work carried out in a village in the Principality of Asturias, Spain.  相似文献   

8.
In the course of numerical experiments selected algorithms for stress tensor inversion and separation of heterogeneous populations of calcite twins and striated faults were tested. Artificial data sets were created in a manner simulating natural processes. They were composed of data, dynamically compatible with one or two stress tensors and chaotic “noise” imitating natural imperfections. For calcite twins the classical inversion procedure is considered valid, with restrictions regarding a high proportion of chaotic data, when shape ratio of the stress tensor Φ is poorly constrained. The algorithm of Etchecopar (1984 fide Tourneret and Laurent in Tectonophysics 180:287–302, 1990) devised originally for calcite twins has been modified and applied to fault/slip data, facilitating a rejection of incompatible outliers. Two main classes of data separation procedures were tested: separation contemporary with inversion and separation prior to inversion, utilising hierarchical clustering. The separation contemporary with inversion performs moderately but often fails with complex calcite twin sets. The performance of hierarchical clustering is high, but only with a σ 1 orientation as a similarity criterion—the new strategy introduced in this contribution. For fault/slip data the hierarchical clustering with the right-dihedra construction as the similarity criterion (Nemcok et al. 1999) is satisfactory. Additionally, a new approach is proposed for fault/slip data, utilising principles of the classical algorithm for heterogeneous populations of calcite twins. Validated algorithms for striated faults were successfully applied to a natural data set from the Holy Cross Mts (central Poland).  相似文献   

9.
The compressibilities of two synthetic glaucophane samples were measured over the range of 0–10 GPa at ambient temperature in a diamond-anvil cell at the Cornell High-Energy Synchrotron Source (CHESS). The pressure–volume data were fitted to the Birch–Murnaghan equation of state taking care to include only data with a minimum of deviatoric stress. When using a second-order truncation, both samples yielded essentially identical values of the bulk modulus K 0, which had an average value of 91.8 ± 1.3 GPa. Maximum compression was observed approximately along the a* axis as shown by the strain ellipsoid and supported by the a axis showing the highest compressibility. These results agree closely with the earlier study of a natural glaucophane single-crystal by Comodi et al. (Eur J Mineral 3:485–499, 1991), suggesting that the substitution of about 20–30 mol.% of Fe for Mg and Al in the structure may not significantly change its compressibility.  相似文献   

10.
High precision U–Pb geochronology of rutile from quartz–carbonate–white mica–rutile veins that are hosted within eclogite and schist of the Monte Rosa nappe, western Alps, Italy, indicate that the Monte Rosa nappe was at eclogite-facies metamorphic conditions at 42.6 ± 0.6 Ma. The sample area [Indren glacier, Furgg zone; Dal Piaz (2001) Geology of the Monte Rosa massif: historical review and personal comments. SMPM] consists of eclogite boudins that are exposed inside a south-plunging overturned synform within micaceous schist. Associated with the eclogite and schist are quartz–carbonate–white mica–rutile veins that formed in tension cracks in the eclogite and along the contact between eclogite and surrounding schist. Intrusion of the veins at about 42.6 Ma occurred at eclogite-facies metamorphic conditions (480–570°C, >1.3–1.4 GPa) based on textural relations, oxygen isotope thermometry, and geothermobarometry. The timing of eclogite-facies metamorphism in the Monte Rosa nappe determined in this study is identical to that of the Gran Paradiso nappe [Meffan-Main et al. (2004) J Metamorphic Geol 22:261–281], confirming that these two units have shared the same Alpine metamorphic history. Furthermore, the Gran Paradiso and Monte Rosa nappes underwent eclogite-facies metamorphism within the same time interval as the structurally overlying Zermatt-Saas ophiolite [∼50–40 Ma; e.g., Amato et al. (1999) Earth Planet Sci Lett 171:425–438; Mayer et al. (1999) Eur Union Geosci 10:809 (abstract); Lapen et al. (2003) Earth Planet Sci Lett 215:57–72]. The nearly identical PTt histories of the Gran Paradiso, Monte Rosa, and Zermatt-Saas units suggest that these units shared a common Alpine tectonic and metamorphic history. The close spatial and temporal associations between high pressure (HP) ophiolite and continental crust during Alpine orogeny indicates that the HP internal basement nappes in the western Alps may have played a key role in exhumation and preservation of the ophiolitic rocks through buoyancy-driven uplift. Coupling of oceanic and continental crust may therefore be critical in preventing permanent loss of oceanic crust to the mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号