首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
《Applied Geochemistry》2006,21(6):1064-1072
Atmospheric 222Rn concentrations were determined over a 10a period, which included the date of the Kobe, Japan earthquake, on January 17th 1995. It was found that the seismically related 222Rn anomaly was higher than the 99% confidence limits for the residual value of atmospheric 222Rn which had been observed 2 months before. The residual 222Rn concentration, in which residual values of the daily minimum are the difference between each normal 222Rn concentration (calculated from January 1984 to December 1993) and the daily minimum 222Rn concentration (January 1994 to January 1995), was calculated by applying the exponential smoothing method to the residual values for each day. It was found that the fluctuations of the residual values can be fitted very well to a log-periodic oscillation model. The real residual values stopped increasing at 1994.999 (December 31st 1994), which corresponds with the critical point (tc) of best fit model. This anomalous 222Rn variation can be seen as the result of local stresses, not primary stresses which directly lead to the Kobe earthquake. On the other hand, when the critical exponent (z) and the radial frequency (ω) of the model were simultaneously fixed 0.2  z  0.6 and 6  ω  12, tc (critical point) was between January 13th 1995 and January 27th 1995. The Kobe earthquake occurrence date (January 17th 1995) is within this range. Therefore this anomalous 222Rn variation can also be seen as the result of primary stresses which possibly led to the Kobe earthquake. There is a distinct possibility that similar statistical oscillations will be detected in other measurements such as microseismicity, tectonic strain, fluctuation in the ground level, or changes in groundwater elevations and composition.  相似文献   

2.
To investigate the possible variations of Rn concentration in crystalline rocks as a function of flow conditions, a field study was carried out of a fractured aquifer in granite. The method is based on the in situ measurement of Rn in groundwater, aquifer tests for the determination of hydraulic characteristics of the aquifer and laboratory measurement of Rn exhalation rate from rocks. A simple crack model that simulates the Rn concentration in waters circulating in a fracture intersecting a borehole was also tested. The Rn concentrations in groundwaters from boreholes of the study site ranged from 192 to 1597 Bq L−1. The Rn exhalation rates of selected samples of granite and micaschist were determined from laboratory experiments. The results yielded fluxes varying from 0.5 to 1.3 mBq m−2 s−1 in granite and from 0.5 to 0.9 mBq m−2 s−1 in micaschists. Pumping tests were performed in the studied boreholes to estimate the transmissivity and calculate the equivalent hydraulic aperture of the fractures. Transmissivities ranged from 10−5 to 10−3 m2 s−1. Using the cubic law, hydraulic equivalent fracture apertures were calculated to be in the range of 0.5–2.3 mm.  相似文献   

3.
The study reports the age evolution of groundwater as it flows from the recharge area through a regional alluvial aquifer system in North Gujarat-Cambay region in western India. Radiocarbon (14C), 4He and 4He / 222Rn dating methods have been employed. Sediments from a drill core in the Cambay Basin were also analysed for uranium (U) and thorium (Th) concentrations and the measured values have been used to estimate the 4He and 222Rn production rate for groundwater age calculations. Additionally, factors controlling the distribution of 222Rn, 4He and temperature anomalies in groundwater, vis-à-vis their relation to the tectonic framework and lithology of the study area, have also been examined.The multi-isotope study indicated a reasonable correspondence in groundwater age estimates by the three methods employed. The groundwater 14C ages increased, progressively, in the groundwater flow direction: from the foothills of Aravalli Mountains in the east, and reached a value of ∼35 ka towards the region of lowest elevation, linking Little Rann of Kachchh (LRK)-Nalsarovar (NS)-Gulf of Khambhat (GK) in the western part of the study area. In this region, groundwater ages obtained for free flowing thermal wells and springs employing 4He and 4He / 222Rn systematics are in the order of million years. Such anomalous ages are possibly due to enhanced mobilisation and migration of ‘excess helium’ from hydrothermal circulation vents along deep-seated faults. Excluding such anomalous cases and considering all uncertainties, presently estimated 4He and 4He / 222Rn groundwater ages are in reasonable agreement with 14C age estimates in the Cambay Basin for helium release factor (ΛHe) value of 0.4 ± 0.3. The 4He method also indicated west-southwards progression of groundwater ages up to ∼100 ka beyond the Cambay Basin.Large ‘excess helium’ concentrations are also seen to be generally associated with anomalous groundwater temperatures (> 35 °C) and found to overlie some of the basement faults in the study area, particularly along the east and the west flanks of the Cambay Basin. Groundwater 222Rn activities in most of the study area are 800 ± 400 dpm/l. But, a thermal spring at Tuwa on the east flank of the Cambay Basin, having granitic basement at shallow depth, recorded the highest 222Rn activity (∼63,000 dpm/l).  相似文献   

4.
Recent Lake Tanganyika Hg deposition records were derived using 14C and excess 210Pb geochronometers in sediment cores collected from two contrasting depositional environments: the Kalya Platform, located mid-lake and more removed from watershed impacts, and the Nyasanga/Kahama River delta region, located close to the lake’s shoreline north of Kigoma. At the Kalya Platform area, pre-industrial Hg concentrations are 23 ± 0.2 ng/g, increasing to 74 ng/g in modern surface sediment, and the Hg accumulation rate has increased from 1.0 to 7.2 μg/m2/a from pre-industrial to present, which overall represents a 6-fold increase in Hg concentration and accumulation. At the Nyasanga/Kahama delta region, pre-industrial Hg concentrations are 20 ± 3 ng/g, increasing to 46 ng/g in surface sediment. Mercury accumulation rate has increased from 30 to 70 μg/m2/a at this site, representing a 2–3-fold increase in Hg concentration and accumulation. There is a lack of correlation between charcoal abundance and Hg accumulation rate in the sediment cores, demonstrating that local biomass burning has little relationship with the observed Hg concentration or Hg accumulation rates. Examined using a sediment focusing-corrected mass accumulation rate approach, the cores have similar anthropogenic atmospheric Hg deposition profiles, suggesting that after accounting for background sediment concentrations the source of accumulating Hg is predominantly atmospheric in origin. In summary, the data document an increase of Hg flux to the Lake Tanganyika ecosystem that is consistent with increasing watershed sediment delivery with background-level Hg contamination, and regional as well as global increases in atmospheric Hg deposition.  相似文献   

5.
Estimation of Rn transfer from water to indoor air based on multi-day measurements may underestimate alpha exposure that occurs at short time scales in confined spaces, such as from showering, in houses with high Rn activities in the water supply. In order to examine one such incremental increase in exposure, variations in Rn in water and indoor air in 18 houses with private wells in western North Carolina (USA) were investigated. Radon in well water ranged from 158 to 811 Bq L−1 (median 239 Bq L−1). After 20-min showers in bathrooms with closed doors, peak Rn in air increases (above background) ranged from 71 to 4420 Bq m−3 (median 1170 Bq m−3). Calculated transfer coefficients at the scale of a 40-min closed bathroom (20-min shower plus 20 min post-shower) are described by a lognormal distribution whose geometric mean exceeds the widely-used ∼10−4 whole-house transfer coefficient by about one order of magnitude. As short-lived decay products grow from shower-derived Rn, short-term alpha energy exposure occurs in bathrooms in addition to the exposure caused by Rn mixed throughout the volume of the house. Due to the increasing ratio of Rn decay products to Rn, alpha energy exposure is greatest several minutes after the shower is turned off. For a 7.2-min shower with 10 min of additional exposure before opening the door, a geometric mean 5.6% increase in exposure over the ∼10−4 whole-house transfer coefficient derived from longer measurement periods was estimated. In addition to Rn activity in water, short-term shower exposure to Rn progeny depends on exposure time, ventilation, attachment and deposition, among other variable factors that characterize individual houses and residents.  相似文献   

6.
A continuously operated gas monitoring station was emplaced within the epicentral area of the NW Bohemian swarm earthquakes overlying directly the active Mariánské Lázně fault. The recordings of 8-month continuous monitoring period are presented. The variations in radon concentrations are similarly to variations in CO2, i.e. CO2 is considered to be the carrier gas for radon. Very small diurnal variations in gas concentration are caused by the earth tides, as daily variations in meteorological conditions cannot explain a short daily minimum at midday times. Sudden changes in gas concentration, which clearly exceed these diurnal variations occur and are always linked with seismic activities. Decreased gas concentration may indicate compression resulting in reduced fault permeability as is implied by negative peaks following local earthquake swarms. A sudden increase in CO2 and Rn concentration may indicate an increased fault permeability caused by stress redistribution, giving rise to opening of migration pathways. This implies a repeatedly sudden rise in gas concentration before local earthquake swarms. Several variations in gas concentration were monitored linked with remote earthquakes of ground motion amplitudes  >1 μm. These seismic events are accompanied by an interference of the diurnal gas concentration–stress-cycle along the Mariánské Lázně fault. However, if shocks of remote earthquake can alter properties of the migrating fluids or the fault properties it can be suggested that these are able to trigger local seismicity, as indicated in the case of the Slovenia earthquake on 12th July 2004.  相似文献   

7.
Many water-supply systems in South America utilize the waters of the Guarani aquifer at least as part of their networks. However, there is little present knowledge in Brazil of the factors affecting Rn presence in the water supplied for end-users, despite the economic importance of Guarani aquifer. 222Rn analyzes of 162 water samples were performed at 8 municipalities in São Paulo State, Brazil, with the aim of investigating the major factors affecting its presence in solution. The 222Rn activity concentration ranged from 0.04 up to 204.9 Bq/L, with three samples exceeding the World Health Organization maximum limit of 100 Bq/L. Aeration was confirmed as the most important factor for Rn release, as expected due to its gaseous nature. Accumulation in pipes and stratification in the water column were other significant factors explaining the data obtained in some circumstances. The Rn daughters 214Pb and 214Bi were also determined in a set of selected samples and their presence was directly related to the occurrence of Rn dissolved in water.  相似文献   

8.
Screening methodologies aim at improving knowledge about subsurface contamination processes before expensive intrusive operations, i.e. drilling and core-sampling, well installation and development, sampling of groundwater and free-phase product, are implemented. Blind field tests carried out at a hydrocarbon storage and distribution center in NE Spain suggest that Rn monitoring can be effectively used to locate the boundaries of subsurface accumulations of NAPLs. Sixty seven measurements of Rn in soil air were performed with a SARAD RTM 2100 current-ionization alpha-particle spectrometer following a 10 m square grid. Reductions of 222Rn concentration above a pool of LNAPL due to the preferential partition of Rn into the organic phase were spatially analyzed and resolved to yield the surface contour of the NAPL source zone. This surface trace of the source zone agreed well with the extent and situation inferred from measurements of free-phase thickness taken at eight monitoring wells at the site. Moreover, the good repeatability (as measured by replicate measurements at the same sampling point) and spatial resolution of the technique suggest that the boundaries of the plume can be delineated at the sub-decametre level.  相似文献   

9.
Hourly monitoring of electrical conductivity (EC) of groundwater along with groundwater levels in the 210 m deep boreholes (specially drilled for pore pressure/earthquake studies) and soil Rn gas at 60 cm below ground level in real time, in the Koyna-Warna region (characterized by basaltic rocks, >1500 m thick, and dotted with several sets of fault systems), western India, provided strong precursory signatures in response to two earthquakes (M 4.7 on 14/11/09, and M 5.1 on 12/12/09) that occurred in the study region. The EC measured in Govare well water showed precursory perturbations about 40 h prior to the M 5.1 earthquake and continued further for about 20 h after the earthquake. In response to the M 4.7 earthquake, there were EC perturbations 8 days after the earthquake. In another well (Koyna) which is located 4 km north of Govare well, no precursory signatures were found for the M 4.7 earthquake, while for M 5.1 earthquake, post-seismic precursors were found 18 days after the earthquake. Increased porosity and reduced pressure head accompanied by mixing of a freshwater component from the top zone due to earthquakes are the suggested mechanisms responsible for the observed anomalies in EC. Another parameter, soil Rn gas showed relatively proportional strength signals corresponding to these two earthquakes. In both the cases, the pre-seismic increase in Rn concentration started about 20 days in advance. The co-seismic drop in Rn levels was less by 30% from its peak value for the M 4.7 earthquake and 50% for the M 5.1 earthquake. The Rn anomalies are attributed to the opening and closing of micro-fractures before and during the earthquake. On line monitoring of these two parameters may be useful to check the entire chemistry change due to earthquake which may help to forecast impending earthquakes.  相似文献   

10.
Sediments in Lake Qinghai archive important information about past environmental changes. In order to faithfully interpret the sediment records and constrain the elemental cycles, it is critical to trace various sources of sediments in the lake. The results show that the elemental input–output budgets are imbalanced for most major elements between riverine fluxes and mass accumulation rate (MAR) of Lake Qinghai sediments. A realistic model must include contributions of dry/wet atmospheric deposition that allow the major element mass balance for the lake to be defined. The budget estimation is based on mass balances of Si and Al, which are relatively immobile and carried to the lake via particulate forms. Estimated annual budget of dry atmospheric deposition is ∼1.3 ± 0.3 × 103 kt/a (accounting for ∼65% of the total inputs) to the lake sediments, assuming local loess within the catchment as a candidate for dry atmospheric deposition to the lake. The resultant flux of 300 ± 45 g/m2/a falls within the flux average of the desert area (400 g/m2/a) and the loess plateau (250 g/m2/a), consistent with the geographical setting of Lake Qinghai. The role of atmospheric deposition would be more significant if wet deposition via rainfall and snow were taken into account. This highlights the potential importance of dust as a significant source for sediment preservation flux for other catchments worldwide. The results also indicate that nearly all Ca input was preserved in the lake sediments under modern conditions, consistent with Ca2+ supersaturation of the lake water.  相似文献   

11.
We present here the first mercury speciation study in the water column of the Southern Ocean, using a high-resolution south-to-north section (27 stations from 65.50°S to 44.00°S) with up to 15 depths (0-4440 m) between Antarctica and Tasmania (Australia) along the 140°E meridian. In addition, in order to explore the role of sea ice in Hg cycling, a study of mercury speciation in the “snow-sea ice-seawater” continuum was conducted at a coastal site, near the Australian Casey station (66.40°S; 101.14°E). In the open ocean waters, total Hg (HgT) concentrations varied from 0.63 to 2.76 pmol L−1 with “transient-type” vertical profiles and a latitudinal distribution suggesting an atmospheric mercury source south of the Southern Polar Front (SPF) and a surface removal north of the Subantartic Front (SAF). Slightly higher mean HgT concentrations (1.35 ± 0.39 pmol L−1) were measured in Antarctic Bottom Water (AABW) compared to Antarctic Intermediate water (AAIW) (1.15 ± 0.22 pmol L−1). Labile Hg (HgR) concentrations varied from 0.01 to 2.28 pmol L−1, with a distribution showing that the HgT enrichment south of the SPF consisted mainly of HgR (67 ± 23%), whereas, in contrast, the percentage was half that in surface waters north of PFZ (33 ± 23%). Methylated mercury species (MeHgT) concentrations ranged from 0.02 to 0.86 pmol L−1. All vertical MeHgT profiles exhibited roughly the same pattern, with low concentrations observed in the surface layer and increasing concentrations with depth up to an intermediate depth maximum. As for HgT, low mean MeHgT concentrations were associated with AAIW, and higher ones with AABW. The maximum of MeHgT concentration at each station was systematically observed within the oxygen minimum zone, with a statistically significant MeHgTvs Apparent Oxygen Utilization (AOU) relationship (p < 0.001). The proportion of HgT as methylated species was lower than 5% in the surface waters, around 50% in deep waters below 1000 m, reaching a maximum of 78% south of the SPF. At Casey coastal station HgT and HgR concentrations found in the “snow-sea ice-seawater” continuum were one order of magnitude higher than those measured in open ocean waters. The distribution of HgT there suggests an atmospheric Hg deposition with snow and a fractionation process during sea ice formation, which excludes Hg from the ice with a parallel Hg enrichment of brine, probably concurring with the Hg enrichment of AABW observed in the open ocean waters. Contrastingly, MeHgT concentrations in the sea ice environment were in the same range as in the open ocean waters, remaining below 0.45 pmol L−1. The MeHgT vertical profile through the continuum suggests different sources, including atmosphere, seawater and methylation in basal ice. Whereas HgT concentrations in the water samples collected between the Antarctic continent and Tasmania are comparable to recent measurements made in the other parts of the World Ocean (e.g., Soerensen et al., 2010), the Hg species distribution suggests distinct features in the Southern Ocean Hg cycle: (i) a net atmospheric Hg deposition on surface water near the ice edge, (ii) the Hg enrichment in brine during sea ice formation, and (iii) a net methylation of Hg south of the SPF.  相似文献   

12.
A growing body of evidence suggests that fluids are intimately linked to a variety of faulting processes. Yet, the particular mechanisms through which fluids and associated parameters influence the stress regime and thus the seismicity of a particular area are not well understood.We carry out a study of the spatio-temporal behavior of earthquakes, fluid-related parameters (groundwater levels) and meteorological observables (precipitation) in the swarm earthquake area of Bad Reichenhall, southeastern Germany. The small volume in which the earthquakes take place, almost yearly occurring earthquake swarms and a permanent, seismo-meteorological monitoring network, provide nearly controlled experimental conditions to study the physics of earthquake swarms and to infer characteristic properties of the seismogenic crust.In this paper we (1) describe this fairly unique study area in terms of geology, seismicity and atmospheric conditions; (2) present two cases of earthquake swarms that seem to follow above-average rainfall events; and (3) examine the observed migration of hypocenters with a simple pore pressure diffusion model.We find significant correlation of seismicity with rainfall and groundwater level increase, and estimate an average hydraulic diffusivity of D = 0.75 ± 0.35 m2/s for Mt. Hochstaufen in 2002.  相似文献   

13.
Even if mires have proven to be relatively reliable archives over the temporal trends in atmospheric mercury deposition, there are large discrepancies between sites regarding the magnitude of the anthropogenic contribution to the global mercury cycle. A number of studies have also revealed significant differences in mercury accumulation within the same mire area. This raises the question of which factors, other than mercury deposition, affect the sequestration of this element in peat. One such factor could be vegetation type, which has the potential to affect both interception and retention of mercury. In order to assess how small-scale differences in vegetation type can affect mercury sequestration we sampled peat and living plants along three transects on a northern Swedish mire. The mire has two distinctly different vegetation types, the central part consists of an open area dominated by Sphagnum whereas the surrounding fen, in addition to Sphagnum mosses, has an understory of ericaceous shrubs and a sparse pine cover. A few main patterns can be observed in our data; (1) Both peat and Sphagnum-mosses have higher mercury content (both concentration and inventory) in the pine-covered fen compared to the open Sphagnum area (100% and 71% higher for peat and plants, respectively). These differences clearly exceed the 33% difference observed for lead-210, which is considered as a good analogue for atmospheric mercury deposition. (2) The differences in mercury concentration between peat profiles within a single vegetation type can largely be attributed to differences in peat decomposition. (3) When growing side by side in the open Sphagnum area, the moss species Sphagnum subsecundum has significantly higher mercury concentrations compared to S. centrale (24 ± 3 and 18 ± 2 ng Hg g−1, respectively). Based on these observations we suggest that species composition, vegetation type and decomposition can affect the mercury sequestration in a peat record, and that any changes in these properties over time, or space, have the potential to modify the mercury deposition signal recorded in the peat.  相似文献   

14.
The suggestion that radon could be used as a radioactive tracer of regolith-atmosphere exchanges and as a proxy for subsurface water on Mars, as well as its indirect detection in the Martian atmosphere by the rover Opportunity, have raised the need for a better characterization of its production process and transport efficiency in the Martian soil. More specifically, a proper estimation of radon exhalation rate on Mars requires its emanation factor and diffusion length to be determined. The dependence of the emanation factor as a function of pore water content (at 267 and 293 K) and the dependence of the adsorption coefficient on temperature, specific surface area and nature of the carrier gas (He, He + CO2) have been measured on a Martian soil analogue (Hawaiian palagonitized volcanic ash, JSC Mars-1), whose radiometric analysis has been performed. An estimation of radon diffusion lengths on Mars is provided and is used to derive a global average emanation factor (2-6.5%) that accounts for the exhalation rate inferred from the 210Po surface concentration detected on Martian dust and from the 214Bi signal measured by the Mars Odyssey Gamma Ray Spectrometer. It is found to be much larger than emanation factors characterizing lunar samples, but lower than the emanation factor of the palagonite samples obtained under dry conditions. This result probably reflects different degrees of aqueous alteration and could indicate that the emanation factor is also affected by the current presence of pore water in the Martian soil. The rationale of the “radon method” as a technique to probe subsurface water on Mars, and its sensitivity to soil parameters are discussed. These experimental data are useful to perform more detailed studies of radon transport in the Martian atmosphere using Global Climate Models and to interpret neutron and gamma data from Mars Odyssey Gamma Ray Spectrometer.  相似文献   

15.
Age-dated sediment cores from 4 remote lakes across California were analyzed for total Hg (HgT) concentration as a function of pre- and post-industrialization. Particle size, magnetic susceptibility and organic C and N, were measured to determine if the Hg concentration in sediment cores could be related to atmospheric deposition and/or watershed processes. Results indicate that (a) for each lake modern (1970–2004) HgT lake sediment concentrations have increased by an average factor of 5 times more than historic (pre-1850) HgT concentrations; (b) the ratio of modern to pre-industrial lake sediment HgT for these lakes are higher than estimated for other locations where atmospheric deposition is presumed to be the main source of Hg; (c) 2 of the 4 studied lakes demonstrated significant relationships between HgT concentrations and percentage organic material (r2 = 0.68 and p < 0.01; r2 = 0.67 and p < 0.01) whereas the other two indicated no significant relationship (r2 = 0.05 and p = 0.51; r2 = 0.12 and p = 0.36).  相似文献   

16.
Tailings resulted from sulphuric acid leaching process of uranium from sedimentary rocks contain high concentrations of 226Ra and its daughters, the most important of which is 222Rn. Movement of radon gas out of the tailings is strongly influenced by the physicochemical characteristics of these tailings especially their radium content and the grain size. So, the tailing samples were size fractionated into four sizes (>?250, 250–125, 125–74 and <?74 µm). The natural radioactivity was investigated using hyper-pure germanium detector and solid-state nuclear track detectors (CR-39) for bulk size and after size fractionation. The activity concentrations of different radionuclides in size-fractionated tailing samples have been shown to be strongly dependent on the size of the particles. In the range of >?250 and <?74 µm, the activity concentrations of 230Th, 226Ra, 214Pb, 214Bi, 210Pb, 232Th and 40K increased throughout with decreasing particle size, while that of 238U, 234U and 235U have an opposite effect. The results revealed an inverse relationship between the radon exhalation rate and size fractionation. Also, the results showed a good correlation between radium activity concentration and radon mass exhalation rate.  相似文献   

17.
Twenty-nine wells were selected for groundwater sampling in the town of Shahai, in the Hetao basin, Inner Mongolia. Four multilevel samplers were installed for monitoring groundwater chemistry at depths of 2.5–20 m. Results show that groundwater As exhibits a large spatial variation, ranging between 0.96 and 720 μg/L, with 71% of samples exceeding the WHO drinking water guideline value (10 μg/L). Fluoride concentrations range between 0.30 and 2.57 mg/L. There is no significant correlation between As and F concentrations. Greater As concentrations were found with increasing well depth. However, F concentrations do not show a consistent trend with depth. Groundwater with relatively low Eh has high As concentrations, indicating that the reducing environment is the major factor controlling As mobilization. Low As concentrations (<10 μg/L) are found in groundwater at depths less than 10 m. High groundwater As concentration is associated with aquifers that have thick overlying clay layers. The clay layers, mainly occurring at depths <10 m, have low permeability and high organic C content. These strata restrict diffusion of atmospheric O2 into the aquifers, and lead to reducing conditions that favor As release. Sediment composition is an additional factor in determining dissolved As concentrations. In aquifers composed of yellowish-brown fine sands at depths around 10 m, groundwater generally has low As concentrations which is attributed to the high As adsorption capacity of the yellow–brown Fe oxyhydroxide coatings. Fluoride concentration is positively correlated with pH and negatively correlated with Ca2+ concentration. All groundwater samples are over-saturated with respect to calcite and under-saturated with respect to fluorite. Dissolution and precipitation of Ca minerals (such as fluorite and calcite), and F adsorption–desorption are likely controlling the concentration of F in groundwater.  相似文献   

18.
A peat core from an ombrotrophic bog documents the isotopic evolution of atmospheric Pb in central Ontario since AD 1804 ± 53 (210Pb dating). Despite the introduction of unleaded gasoline in the mid-1970’s, the ratio 206Pb/207Pb in atmospheric deposition has not increased as expected, but rather continues to decline. In fact, snowpack sampling (2005 and 2009) and rainwater samples (2008) show that the isotopic composition of atmospheric Pb today is often far less radiogenic than the gasoline lead that had been used in Canada in the past. The peat, snow, and rainwater data presented here are consistent with the Pb isotope data for aerosols collected in Dorset in 1984 and 1986 which were traced by Sturges and Barrie (1989) to emissions from the Noranda smelter in northern Quèbec, Canada’s largest single source of atmospheric Pb. Understanding atmospheric Pb deposition in central Ontario, therefore, requires not only consideration of natural sources and past contributions from leaded gasoline, but also emissions from metal smelting and refining.Lead in the streams which enter Kawagama Lake today (206Pb/207Pb = 1.16 − 1.19) represents a mixture between the natural values (1.191 − 1.201 estimated using pre-industrial lake sediments) and the values found in the humus layer of the surrounding forest soils (206Pb/207Pb = 1.15 − 1.19). In the lake itself, however, Pb is much less radiogenic (206Pb/207Pb as low as 1.09) than in the streams, with the dissolved fraction less radiogenic than particulate material. The evolution of Pb isotope ratios within the watershed apparently reflects preferential removal by sedimentation of comparatively dense, radiogenic, terrestrial particles (derived from the mineral fraction of soils) from the humus particles with lower ratios of 206Pb/207Pb (because of atmospheric Pb contamination). Despite the contemporary enrichments of Pb in rain and snow, concentrations of dissolved Pb in the lake are extremely low (sometimes below 10 ng/l), with Pb concentrations and Pb/Sc ratios approaching “natural” values because of efficient binding to particles, and their subsequent removal in the watershed.  相似文献   

19.
Extreme U and Pb isotope variations produced by disequilibrium in decay chains of 238U and 232Th are found in calcite, opal/chalcedony, and Mn-oxides occurring as secondary mineral coatings in the unsaturated zone at Yucca Mountain, Nevada. These very slowly growing minerals (mm my−1) contain excess 206Pb and 208Pb formed from excesses of intermediate daughter isotopes and cannot be used as reliable 206Pb/238U geochronometers. The presence of excess intermediate daughter isotopes does not appreciably affect 207Pb/235U ages of U-enriched opal/chalcedony, which are interpreted as mineral formation ages.Opal and calcite from outer (younger) portions of coatings have 230Th/U ages from 94.6 ± 3.7 to 361.3 ± 9.8 ka and initial 234U/238U activity ratios (AR) from 4.351 ± 0.070 to 7.02 ± 0.12, which indicate 234U enrichment from percolating water. Present-day 234U/238U AR is ∼1 in opal/chalcedony from older portions of the coatings. The 207Pb/235U ages of opal/chalcedony samples range from 0.1329 ± 0.0080 to 9.10 ± 0.21 Ma, increase with microstratigraphic depth, and define slow long-term average growth rates of about 1.2-2.0 mm my−1, in good agreement with previous results. Measured 234U/238U AR in Mn-oxides, which pre-date the oldest calcite and opal/chalcedony, range from 0.939 ± 0.006 to 2.091 ± 0.006 and are >1 in most samples. The range of 87Sr/86Sr ratios (0.71156-0.71280) in Mn-oxides overlaps that in the late calcite. These data indicate that Mn-oxides exchange U and Sr with percolating water and cannot be used as a reliable dating tool.In the U-poor calcite samples, measured 206Pb/207Pb ratios have a wide range, do not correlate with Ba concentration as would be expected if excess Ra was present, and reach a value of about 1400, the highest ever reported for natural Pb. Calcite intergrown with opal contains excesses of both 206Pb and 207Pb derived from Rn diffusion and from direct α-recoil from U-rich opal. Calcite from coatings devoid of opal/chalcedony contains 206Pb and 208Pb excesses, but no appreciable 207Pb excesses. Observed Pb isotope anomalies in calcite are explained by Rn-produced excess Pb. The Rn emanation may strongly affect 206Pb-238U ages of slow-growing U-poor calcite, but should be negligible for dating fast-growing U-enriched speleothem calcite.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号